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Regulation of fatty acid uptake and metabolism
in L6 skeletal muscle cells by resistin
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Abstract Resistin has been proposed as a potential link between
obesity and insulin resistance. It is also well established that al-
tered metabolism of fatty acids by skeletal muscle can lead to
insulin resistance and lipotoxicity. However, little is known
about the effect of resistin on long chain fatty acid uptake and
metabolism in skeletal muscle. Here we show that treating rat
skeletal muscle cells with recombinant resistin (50 nM, 24 h) de-
creased uptake of palmitate. This correlated with reduced cell
surface CD36 content and lower expression of FATP1, but no
change in FATP4 or CD36 expression. We also found that res-
istin decreased fatty acid oxidation by measuring 14CO2 produc-
tion from [1-14C] oleate and an increase in intracellular lipid
accumulation was detected in response to resistin. Decreased
AMPK and ACC phosphorylation were observed in response
to resistin while expression of ACC and AMPK isoforms was
unaltered. Resistin mediated these effects without altering cell
viability. In summary, our results demonstrate that chronic incu-
bation of skeletal muscle cells with resistin decreased fatty acid
uptake and metabolism via a mechanism involving decreased cell
surface CD36 content, FATP1 expression and a decrease in
phosphorylation of AMPK and ACC.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
1. Introduction

There has been considerable debate as to whether resistin [1]

may play a role in the etiology of insulin resistance and diabe-

tes in obesity [2]. However, an increased plasma resistin con-

centration was observed in serum of obese [3] or type 2

diabetic individuals [4] and thiazolidinedione treatment re-

sulted in decreased plasma resistin levels in type 2 diabetic pa-

tients [5]. Work to date on the metabolic effects of resistin has

been complicated principally by several major caveats, includ-

ing the lack of similarity between rodent and human resistin

sequence [1,6] and site of production [7,8], the discrepancy be-

tween resistin mRNA and circulating protein levels [9,10] and

alterations that occur in obesity [1,11–13] and whether resistin

alters metabolism and insulin sensitivity in muscle or liver

[14–21].

Nevertheless, It is clear from published literature that resi-

stin may potentially play an important in vivo role in regulat-

ing carbohydrate and lipid metabolism. Reduced resistin levels
*Corresponding author. Fax: +416 736 5698.
E-mail address: gsweeney@yorku.ca (G. Sweeney).

0014-5793/$30.00 � 2005 Federation of European Biochemical Societies. Pu

doi:10.1016/j.febslet.2005.08.011
via using an antisense approach [18], dominant inhibitory res-

istin [20] or knockout mice [15] were all associated with in-

creased insulin sensitivity which typically manifested as

decreased hepatic glucose production and lowered fasting

blood glucose levels. Conversely, increasing resistin levels in

transgenic mice [17,19], using recombinant protein [1,16,18]

or surgically transplanting adipocytes overexpressing resistin

[21] was associated with insulin resistance at the level of muscle

or liver. Addition of the recombinant protein to cultured adi-

pocytes [1], cardiomyocytes [22] or skeletal muscle cells [14,23]

impaired insulin-stimulated glucose uptake and neutralization

of resistin function with anti-resistin antibody improved insu-

lin action in adipocytes [1]. Surprisingly little is known about

the effect of resistin on fatty acid metabolism in skeletal muscle

and it is imperative that we understand this given the well

established role for fatty acids in regulating muscle insulin sen-

sitivity [24]. Therefore, in this study we treated rat skeletal

muscle cells with recombinant resistin and investigated

changes in fatty acid uptake and metabolism and mechanisms

underlying these processes.
2. Materials and methods

2.1. Materials
Cell culture medium (a-MEM) and all other cell culture components

were purchased from Wisent (St Foy, QC, Canada), 5-aminoimidaz-
ole-4-carboxamide-1-b-DD-ribofuranoside (AICAR) was purchased
from Toronto Research Chemicals Inc (Toronto, Ont., Canada). Hu-
man insulin (Humulin�R) was from Eli Lilly (Toronto, Ont., Canada).
[1-14C] oleate was from Amersham (Baie d�Urfe, QC, Canada). Re-
combinant human resistin was obtained from Peprotech (Ottawa,
Ont., Canada). BODIPY-conjugated palmitate was purchased from
Molecular Probes (Eugene, OR). Antibodies for FATP-1, FATP-4,
CD36, AMPKa-1 and AMPKa-2 were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA). Polyclonal phosphospecific antibod-
ies to AMPK (Thr-172) and ACC (Ser79) and anti-ACC antibody were
from Cell Signaling (Beverly, MA). Oil red O and triethyl-phosphate
were from Fluka Chemie (Buchs, Switzerland). All other reagents were
of the highest grade available.

2.2. Cell culture
L6 rat skeletal muscle cells were cultured as described previously [25]

in minimum essential medium (a-MEM) supplemented with 10% (v/v)
fetal bovine serum and 1% antibiotic/antimycotic solution (100 units/
ml penicillin, 100 lg/ml streptomycin, 250 ng/ml amphotericin B) in
a humidified atmosphere of 95% air and 5% CO2 at 37 �C. These stock
cells were sub-cultivated before reaching confluence and standard
growth medium was changed every two days. When required, cells
were harvested with 0.25 mM trypsin and 0.2% EDTA (�1 min
at 37 �C), resuspended with 10% or 2% medium for growth and
differentiation, respectively, and seeded for the assigned experimental
conditions.
blished by Elsevier B.V. All rights reserved.
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2.3. Measurement of fatty acid uptake
To determine fatty acid uptake, L6 skeletal muscle cells were grown

on cover slips in 12-well plates. After 24 h treatment with or without
resistin (50 nM), cells were starved for 3–5 h and incubated with insulin
(100 nM) for 15 min, in the continued presence of resistin. After this
incubation period, medium was aspirated and the cells were washed
twice with PBS containing fatty acid-free albumin. Immediately after
washing, the cells were incubated with BODIPY-conjugated palmitate
(1 lM) for 2 min at 37 �C, then the cover slips were washed three times
with cold PBS and transferred on mounted on clean glass slides using
Dako antifade solution. Non-specific uptake is determined via compe-
tition with 5 mM palmitate. For confocal microscopy analysis, BOD-
IPY-conjugated fatty acids were excited at 488 nm with Olympus 300
multiline argon laser. Fluorescent images were obtained using Fluo-
view software and fluorescence intensity quantitated by ImageJ soft-
ware. Preliminary results using insulin identified that fluorescent
fatty acid uptake occurred in a time- and concentration-dependent
manner (data not shown).

2.4. Analysis of cell surface CD36 content
The level of CD36 at the cell surface was measured in intact cells by

an antibody-coupled colorimetric assay. Briefly, L6 myoblast were
grown in 12 well plates in the presence or absence of resistin (50 nM,
24 h) followed by the 5 h of serum starvation in the continued presence
of resistin. Cells were then treated with or without insulin (100 nM) for
15 min. Subsequently, cells were quickly washed in ice-cold PBS and
incubated with anti-CD36 polyclonal antibody (H300, Santa Cruz Bio-
technology, 1:200 dilution) for 60 min at 4 �C. Cells were washed and
fixed in 3% paraformaldehyde for 3 min on ice. The fixative was then
neutralized by incubation in 10 mM glycine in ice-cold PBS for 10 min.
Cells were blocked in 10% goat serum for 10 min and then incubated
with horseradish peroxidase-conjugated goat anti-rabbit IgG (1:1000
dilution, 4 �C) for 60 min. Cells were washed 5 times with ice-cold
PBS and incubated for 30 min at room temperature with 1 ml of
OPD reagent (0.4 mg ml 1O-phenylenediamine di-hydrochloride and
0.4 mg ml�1 urea hydrogen peroxide in 0.05 M phosphate citrate buf-
fer) per well. The reaction was stopped by adding 0.25 ml of HCl
(3 M). The supernatant was collected and the absorbance was mea-
sured at 492 nm. Absorbance associated with non-specific binding (pri-
mary antibody omitted) was used as a blank.

2.5. Western blot analysis of fatty acid transporters
L6 cells were grown in 6-well plates and treated with or without res-

istin (50 nM) for 24 h, followed by serum-starving for 3–5 h in the con-
tinued presence of resistin and then cells were treated with insulin
(100 nM). Plates were washed three times with ice-cold PBS then
200 ll of lysis buffer (135 mM NaCl, 1 mM MgCl2, 2.7 mM KCl,
20 mM Tris (pH 8.0), Triton 1%, glycerol 10%, and protease and phos-
phatase inhibitors including 0.5 mM Na3VO4, 10 mM NaF, 1 lM leu-
peptin, 1 lM pepstatin, 1 lM okadaic acid, 0.2 mM PMSF) were
added as previously described [26]. Whole cell lysate was centrifuged
(12000 rpm, 4 �C for 10 min) and the supernatant was used for further
analysis. An aliquot of the cell lysate was used to determine the protein
concentration in each sample. Prior to loading onto SDS–PAGE gels,
the samples were diluted 1:1 (v/v) with 2· Laemmli sample buffer
(62.5 mM Tris–HCl (pH 6.8), 2% (w/v) SDS, 50 mM DTT, 0.01%
(w/v) bromophenol blue). Aliquots of cell lysates containing 25 lg of
protein were then subjected to SDS–PAGE (8–10% resolving gels),
and then transferred to polyvinylidene difluoride (PVDF) membranes
(Bio-Rad, Burlington, Ont., Canada). The expression level of AMP-
Ka-1, AMPKa-2, ACC, FATP1, FATP4 and CD36 were determined
using specific antibodies (1:500 dilution for AMPK-a1 and AMPK-
a2, 1:1000 for all others). Phosphorylation level of AMPK (Thr-172)
and ACC (Ser-79) was detected using phospho-specific antibodies at
a 1:1000 dilution. Primary antibody detection was performed using
horseradish peroxidase (HRP)-conjugated appropriate secondary anti-
body and visualized using enhanced chemiluminescence (Perkin–
Elmer, Burlington, Ont., Canada).

2.6. Measurement of fatty acid oxidation
Fatty acid oxidation was measured by the production of 14CO2 from

[1-14C] oleate as previously described [26] with a few modifications.
Briefly, cells were cultivated in 60 · 15 mm Petri dishes with or without
resistin (50 nM) for 24 h and starved for 3–5 h, in the continued pres-
ence of resistin, prior to addition of appropriate reagents for times and
at concentration as indicated below. Cells were incubated for 2 h with
medium containing 0.15 lCi ml�1

DD-[1-14C] oleate in the presence or
absence of AICAR (1 mM) for 2 h. Each petri dish was sealed with
parafilm which had a piece of Whatman paper taped facing the inside
of the petri dish. After 2 h of incubation the Whatman paper was wet
with 100 ll of phenylethylamine–methanol (1:1) to trap the CO2 pro-
duced during the incubation period and 200 ll of H2SO4 (4 M) was
then added.. After incubation for 1 h at 37 �C, the pieces of Whatman
paper were removed and transferred to scintillation vials for radioac-
tivity counting.

2.7. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay
Cell viability was determined using the 3-(4,5-dimethyl-2-thiazolyl)-

2,5-diphenyltetrazolium bromide (MTT) assay (Sigma–Aldrich, St.
Louis, MO). Briefly, cells were seeded at a density of 1 · 106 cells/ml
in 96-well plates and incubated in the presence or absence of resistin
(50 nmol/l) for 24 h. MTT was then added and the ability of cells to
reduce this substrate to the blue formazan product was determined col-
orimetrically (550 nm) as an indicator of metabolically-active cells.

2.8. Oil red O staining of intracellular lipid
Determination of lipid content was carried out as described by the

method of Pedrini et al. [27] with minor modifications. L6 myoblasts
were grown on cover slips in 12 well plates and incubated with or with-
out resistin (50 nM) for 24 h and serum starved 3–5 h in the continued
presence of resistin. After this period, cells were fixed in 3.7% formal-
dehyde for 60 min and excess of formaldehyde was removed by three
rinses in deionised water for 30 s. Subsequently, oil red O staining
was carried out as described previously [28]. Images were obtained
on a Laser Scanning Confocal Microscope (Olympus fluoview 300,
60· objective) using HeNe laser (Texas red excitation filter at
543 nm). The intensity of lipid droplets/cytoplasmic area was then ana-
lysed quantitatively by using Image-J software.

2.9. Statistical analysis
Data are expressed as means ± S.E.M. Statistical analysis was

undertaken using paired Student�s t test. Differences between groups
were considered statistically significant when P < 0.05.
3. Results

We first examined the effect of resistin on BODIPY-conju-

gated palmitate uptake in L6 myoblasts. Fig. 1A shows fluores-

cence intensity in cells treated with resistin alone or in

combination with insulin. It is clear that resistin decreased

uptake of this long chain fatty acid whereas insulin caused the

expected small increase in uptake. Quantitative analysis of this

data shows that incubation of cells with resistin for 24 h signifi-

cantly reduced both basal and insulin-stimulated fatty acid up-

take (Fig. 1B). We demonstrated that the effect of resistin on

fatty acid metabolism was not due to a non-specific effect on cell

metabolism by conductingMTT assay under similar conditions

and finding no change was induced by resistin (control

1.0 ± 0.02 and resistin (50 nM, 24 h) 1.03 ± 0.03). To further

investigate the underlying mechanism for the decreased fatty

acid uptake induced by resistin (Fig. 1) we next examined cell

surface CD36 content and expression of fatty acid transporter

proteins found in L6 myoblasts. Resistin decreased basal levels

of cell surface CD36 and prevented insulin-induced CD36 trans-

location (Fig. 2A). Whereas no change in total expression of

FATP-4 or CD36 was detected, we found that resistin signifi-

cantly decreased expression of FATP-1 (Fig. 2B).

Having demonstrated that resistin decreased fatty acid

uptake, we next examined if a similar effect on fatty acid

oxidation was observed. To do this we measured 14CO2 pro-



Fig. 1. Effect of resistin on uptake of BODIPY-palmitate. We
examined uptake of the fluorescently labeled long chain fatty acid
palmitate in L6 myoblasts. Representative images demonstrating
decreased fatty acid uptake in cells treated with resistin (50 nM,
24 h) and increased uptake in response to insulin (100 nM, 15 min) are
shown in A. Quantitative analysis of >25 individual cells from multiple
fields of view is shown in B and values represent mean ± S.E.M. where
* indicates P < 0.05 compared to control and # indicates P < 0.05
compared to resistin.

Fig. 2. Effect of resistin on cell surface CD36 levels and fatty acid
transporter expression. The amount of CD36 detected at the cell
surface was determined after treatment with insulin (100 nM, 15 min)
in the presence or absence of resistin (50 nM, 24 h) as shown in A. In
B, FATP-1, FATP-4 and CD36 expression in cells treated with resistin
(50 nM, 24 h) were examined as described in Section 2. Representative
images of individual experiments are shown together with quantitative
analysis of three individual experiments where control is assigned a
value of 1 and values represent mean ± S.E.M. In both A and B
* indicates P < 0.05 compared to control and #P < 0.05 compared
to insulin alone.

Fig. 3. Effect of resistin on fatty acid oxidation. The effect of resistin
(50 nM, 24 h) on 14CO2 production from [1-14C] oleate is shown.
AICAR (1 mM, 2 h) was also used as a positive control. Data are
representative of at least three independent experiments expressed as
mean ± S.E.M. and * indicates P < 0.05 compared to control.
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duction from [1-14C] oleate and found that resistin treatment

decreased fatty acid oxidation in L6 cells (Fig. 3). We used AI-

CAR as a positive control to increase fatty acid oxidation lev-

els and found that the ability of AICAR to increase fatty acid

oxidation was also prevented by resistin (Fig. 3). We next

investigated whether the effects of resitin on fatty acid uptake

and metabolism were reflected in a change in intramuscular

lipid accumulation. Oil red staining of myoblasts demon-

strated that treatment of cells with resistin was associated with

increased lipid staining (Fig. 4A) and this was found to be a

statistically significant difference of almost 1.5-fold upon quan-

titative analysis (Fig. 4B).

Both AMPK and ACC play a critical role in regulating fatty

acid oxidation, but it is not known whether 24 h treatment of

muscle cells with resistin alters phosphorylation or expression

of these key enzymes. We show in Fig. 5 that phosphorylation

of AMPK is significantly reduced by resistin. However, no

change in expression of either AMPK isoform (AMPK-a1 or

AMPK-a2) was detected (Fig. 5). Similarly, we investigated

the effect of resistin on ACC and found a decrease in phos-

phorylation (Fig. 6A) but no change in expression of ACC2,

the isoform expressed in myoblasts (Fig. 6B).



Fig. 4. Effect of resistin on lipid accumulation. Lipid accumulation in
muscle cells was determined by oil red staining in control cells and cells
which were treated with resistin (50 nM, 24 h). Representative images
from analysis by confocal microscopy are shown in A while B shows a
summary (mean ± S.E.M.) of quantitative analysis of >30 cells from
each of two independent experiments and * indicates P < 0.05
compared to control.

Fig. 5. Effect of resistin on AMPK phosphorylation and isoform
expression. We examined AMPK phosphorylation and AMPK-a1 and
AMPK-a2 content in lysates from cells treated with resistin (50 nM,
24 h) as described in Section 2. Representative images of individual
experiments are shown together with quantitative analysis of three
individual experiments where control is assigned a value of 1 and
values represent mean ± S.E.M. where * indicates P < 0.05 compared
to control.

Fig. 6. Effect of resistin on ACC phosphorylation and expression. We
examined ACC phosphorylation (A) and total ACC content (B) in
lysates from cells treated with resistin (50 nM, 24 h) as described in
Section 2. Representative images of individual experiments are shown
together with quantitative analysis of three individual experiments
where control is assigned a value of 1 and values represent mean ±
S.E.M. where * indicates P < 0.05 compared to control.
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4. Discussion

Several studies have proposed that endocrine effects of resi-

stin may represent one mechanism underlying the development

of skeletal muscle insulin resistance in obesity [2]. This resulted

from initial studies where addition of the recombinant protein

to normal mice or cultured adipocytes impaired insulin action

and neutralization of resistin function with anti-resistin anti-

body improved insulin action in mice with diet-induced obesity

[1]. More recently, preventing resistin action in transgenic mice

expressing a dominant inhibitory version of the protein im-

proved insulin sensitivity and glucose tolerance in mice [20].

It was speculated that this in vivo effect of resistin may involve

decreased triglyceride and free fatty acid concentrations [20].

Despite the interest in resistin as a possible cause of insulin

resistance in obesity, few studies which examine the metabolic

effects of resistin have been completed. An ability to regulate

glucose production in the liver [15–19], glucose uptake in adi-

pocytes [4] and glucose uptake and metabolism in skeletal mus-

cle [14,18,19,21,29] has been documented. However, the direct

effect of resistin on fatty acid uptake and oxidation in skeletal

muscle has not been determined.

In this study we show that chronic (24 h) treatment of L6

rat skeletal muscle cells with recombinant resistin decreased

fatty acid uptake and metabolism. We have previously dem-

onstrated that resistin can induce insulin resistance in skeletal

muscle cells [14] and here we further investigated whether

these effects of resistin manifested as an alteration in the total

triacylglycerol accumulation in cells. We found increased lipid

accumulation was induced by resistin, in keeping with the well

characterized ability of intracellular lipid to induce insulin

resistance. Interestingly, the bulk of available literature exam-

ining in vivo effects of resistin suggests that resistin regulates

glucose homeostasis primarily by causing hepatic insulin resis-

tance [15,16,18]. It is possible that our results correlate well

with this hypothesis since decreased fatty acid uptake and uti-

lization in skeletal muscle in vivo will likely lead to higher cir-

culating free fatty acid levels. This elevated plasma free fatty

acid level must be dealt with by other tissues and it is likely
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that increased hepatic steatosis may be one result. Indeed, a

very recent study has demonstrated that a decrease in circulat-

ing resistin levels in type 2 diabetic patients, induced by thia-

zolidinedione treatment, correlated with decreased fat content

in liver and improved insulin sensitivity in this tissue [5].

Thus, we suggest it is possible that resistin may induce hepatic

insulin resistance both by directly acting on hepatocytes or by

altering the ability of skeletal muscle to contribute to fatty

acid homeostasis.

Upon investigating mechanisms whereby resistin may con-

trol fatty acid metabolism we also demonstrated in this study

that resistin decreased the level of AMPK phosphorylation in

skeletal muscle, with no alteration in expression of either

isoform. Similarly, in a previous in vivo study, phosphoryla-

tion of AMPK was attenuated in rats overexpressing resistin

[19]. ACC phosphorylation and inactivation is directly medi-

ated by AMPK [30,31]. Thus, a decrease in AMPK phos-

phorylation and activity would be expected to lead to

decreased ACC phosphorylation, and thus increased activity

of this enzyme. In keeping with this, we found that ACC

phosphorylation was also decreased by resistin in this study.

Increased ACC activity subsequently leads to increased mal-

onyl co-A levels which mediate an inhibitory effect on

CPT-1, preventing fatty acid transport into mitochondria.

Therefore, this mechanism explains the observed decrease in

fatty acid oxidation we observed in response to resistin. We

did not find any change in ACC2 expression, the only

isoform in L6 myoblasts and predominant form in rat skele-

tal muscle [31], in response to resistin. This is not surprising

since alterations in the total amount of ACC in skeletal mus-

cle do not seem to play an important role in regulating insu-

lin resistance as they are unaltered by manipulations such as

fasting and refeeding [32].

The mechanism whereby resistin alters AMPK phosphoryla-

tion is unknown. This is in part due to the fact that resistin

receptors are yet to be cloned and we still do not have sufficient

details on the signaling mechanisms regulated by resistin.

Thus, although it is likely that crosstalk may occur between

resistin-stimulated signaling pathways and components of the

AMPK pathway, this has yet to be established. However, it

is likely that the ability of resistin to decrease AMPK phos-

phorylation may be mediated by altering activity of upstream

kinase or the phosphatases involved in deactivating AMPK.

Phosphorylation of AMPK on Thr172 normally increases

activity of the protein 50- to 100-fold [30] and LKB1 was re-

cently identified as AMPK kinase [33]. However, whether res-

istin regulates LKB1 activity is at present unknown. Similarly,

the ability of resistin to promote desphosphorylation of

AMPK by PP2Ca, or the less potent PP2Ac [34] remains to

be determined.

In summary, we have shown that resistin targets AMPK and

regulates fatty acid uptake and metabolism in rat skeletal mus-

cle cells. Specifically, resistin decreased both uptake and oxida-

tion of long chain fatty acids. The mechanisms underlying

these effects include decreased cell surface CD36 content and

FATP-1 expression, a reduction in phosphorylation and acti-

vation of AMPK and a decrease in phosphorylation, therefore

increased activity of ACC. Future work examining the effect of

resistin on these parameters in skeletal muscle in vivo and the

significance in the pathogenesis of insulin resistin will prove

interesting.
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