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1. INTRODUCTION 

For an algebraic number a, we denote by D*(a) the discriminant of the 
minimal defining polynomial of a over Z and we write d, for the denominator 
of a. Thus, d, is the least positive integer such that d,a is an algebraic integer. 
Two algebraic numbers a and p are called equivalent if 

(1) 
ala+a2 p=------- 
a3a+a4 

, al,a2,a3,a4EZ, ala4-a2a3= +1 

and Z-equivalent if /3- aE Z or /?+ aE Z. We observe that Z-equivalent 
numbers are equivalent and have the same denominator, but the converse does 
not hold in general. Further, we see from (1) that if a and p are equivalent, then 

deg(8) = deg(aW*(P) =D*@), Q(P) = Q(a). 
The purpose of this paper is to study the denominators of equivalent algebraic 
numbers. Let 8 be an equivalence class of algebraic numbers of degree n 2 3 
and we fix a representative a of 8. In $2, we shall give effective and 
quantitative lower bounds, in terms of max (la31, la4j), for the denominator, 
the greatest prime factor and the greatest square free factor of the denominator 
of an arbitrary element p of 8 (cf. Theorems 1,3). Further, we shall derive 

’ Research supported in part by Hungarian National Foundation for Scientific Research grant 273. 
2 Research supported in part by NSF Grant # DMS-8610730(l) and by the Netherlands 
Organization for the Advancement of Pure Research (Z.W.O.). 

29 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82286561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


effictive and quantitative lower bounds for ds and for the greatest prime 
factor of dP in terms of the height of an appropriate element of 8 which is Z- 
equivalent to p (cf. Theorems 2,4). These bounds imply, in an effective way, 
that g contains only finitely many Z-equivalence classes of algebraic numbers 
whose denominators are divisible only by finitely many fixed primes (cf. 
Corollary 2). We shall also obtain explicit upper bounds for the number of such 
Z-equivalence classes of 8 (cf. Theorems 5,6). Further, our results will provide 
some information on the arithmetical structure of denominators of elements of 
Q (cf. Corollary 1 and (15)). We shall point out an ineffective improvement of 
Corollary 2. Theorem 4, together with some results of Birch and Merriman [l] 
and Gyory [5], implies that, for given D*#O, there are only finitely many Z- 
equivalent classes of algebraic numbers /3 with D*(p) =D* and with 
denominators divisible only by finitely many fixed primes. We note that D*(p) 
does not coincide, in general, (cf. (17)) with the discriminant 0(/3) of /3 with 
respect to Q(P)/Q. This is the reason that our results cannot be deduced from 
effective finiteness theorems (cf. [5], [6], [8], [9]) concerning algebraic numbers 
of given discriminant. Next, we shall apply our results to derive lower bounds 
for the denominators of the complete quotients in the continued fraction 
expansions of algebraic numbers (cf. (19), (20), (21)). 

Our results will be proved in $3. First, we shall reduce the investigation of 
denominators of elements of 0 to the study of Thue equations and Thue- 
Mahler equations. Then we shall apply certain finiteness theorems on Thue- 
equations and Thue-Mahler equations to establish our results. We shall also 
need an effective finiteness result of [6] on algebraic numbers of given degree, 
given discriminant and given denominator. 

2.RESULTS 

We shall keep the notation of $1. Further, K will denote the algebraic number 
field generated by the elements of the equivalence class %. Denote by L the 
normal closure of K/Q and by 1, R, and hL the degree, regulator and class 
number of L, respectively. Clearly 11 n ! . For an algebraic number p, let H(/3) 
denote the height of fi, i.e. the maximum absolute value of the coefficients of 
the minimal defining polynomial of p over Z. We recall that if /I is of degree 
n> 1 then the discriminant of /3 with respect to Q(P)/Q is defined by 

D(P)= II (Pi-Pj)' 
lricjan 

where P1=8,B2,...,P,, are the conjugates of 8. Throughout the paper, 
cl, c2, . . . (resp. C,, C2, . . . ) denote positive numbers which are monotonically 
decreasing (resp. increasing) in each of their parameters. 

THEOREM 1. Let /?E Q be given by (1). Then 

(2) cl(m=4a31, hlNC2~+(~+ lW2(WWIa31, la41))" 

where cl > 0 is an effectively computable number depending only on H(a), 1, RL 
and c2 > 0 is an effectively computable number depending only on 1, RL . 
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The upper bound for da is easy to deduce. The proof of the lower bound for 
dP is based on an effective result of Gyory and Papp [lo] on Thue equations 
which was proved by Baker’s method concerning linear forms in logarithms of 
algebraic numbers. By using Roth’s theorem on the approximations of 
algebraic numbers by ratio&s, the lower estimate can be improved (cf. $3) to 

(3) c3(max(la31, la4j))1-2’“-EsdS 

where E> 0 and c3 = c3(e, n, H(a)) >O. The constant c3 is, however, not 
effective. 

For every /3~ 8, D*(/3) has the same value which will be denoted by &. 
Further, we put 

Observe that d$ 1 and dg= 1 if and only if B contains algebraic integers. It 
is easy to see (cf. (22)) that 

and that H(p) can be arbitrarily large with respect to ds. On the other hand, 
by a result of Gyory ([6], Theorem 3; cf. Lemma 4 in the present paper), every 
p E 8 is Z-equivalent to a /?’ E @? such that 

(4) ds> c,(log H)C5, H= max(H(j3’), 4) 

where c4 = c4(n, I&/) > 0 and c, = c,(n) >O are effectively computable 
numbers. Estimate (4) can be considerably improved in terms of H by using the 
lower estimate in (2) together with the above mentioned result of Gyory [6]. 

THEOREM 2. Every BE Q is Z-equivalent to a p’ E B for which 

where c6 = c6( IDgI, dg) > 0 and cl = c,( lDQl) > 0 are effectively computable 
numbers. 

We note that (3) leads to 

(6) da>cs(H(p’))1”-2’“2-E 

instead of (5), where cs = cs( IDI I, dg, E) > 0 is, however, ineffective. This lower 
bound is not far from being best possible, as is shown by the example 
p= B/d, d E N odd, where da5 (H(/3’))“” for every p’ which is Z-equivalent 
to 8. 

Unlike (4), the constants c6 and cs in (5) and (6) depend also on d@. It 
follows from a theorem of Birch and Merriman [I] that, for given n 13 and 
D* E Z \ {0}, there are only finitely many equivalence classes 8 of algebraic 
numbers of degree n with Dg= D*. This implies that there is a Cl(n, IDgI)>O 
such that 
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which, together with 

2 
(7) n13+ - loi3 I& I 

log 3 

(Gyory ([5], Theorem l)), implies that 

(8) de?< C2w3l). 

The results in [l] are, however, ineffective and therefore, C, is ineffective. 
Thus, if we do not care for the effective nature of c6, we see from (8) that 
Theorem 2 is valid with c6 depending only on [Del . We conjecture that dRI can 
be estimated from above by an effectively computable number depending only 
on ID@. Further, together with (5), this conjecture would yield that every 
equivalence class 8 with given II@ would contain a representative with height 
bounded by an effectively computable number depending only on II&). 

We denote by P(d), Q(d) and o(d), respectively, the greatest prime factor, 
the greatest square free factor and the number of distinct prime factors of a 
non-zero rational integer d with Id I > 1 and we put P( +I 1) = Q( + 1) = 1 and 
o( + 1) = 0. Clearly Q(d) 1 P(d). By applying a result of Gyory [7] on Thue- 
Mahler equations, we shall prove the following result. 

THEOREM 3. Let p E 0 with d,+ 1 be given by (1). Then 

(9) log W$) + 4$&dddg) + 1) > c&g log m=( Ia3 1, Ia4 I, 4), 

(10) p(d,d > cl0 log log m&la3 I 9 l4,4) 
and 

(11) Q(d& > (log m&la3 1, Iad9 4))“’ 

where c9, cl0 and cl1 are effectively computable positive numbers depending 
only on H(a), I, RL and hL. 

By (1) and (lo), we observe that 

(12) JW/p) > clolw log m4al I, I%, 4). 

Similarly, if dl,,+ 1, (1) and (11) give a lower bound for Q(d,,). We remark 
that H(p) can be arbitrarily large compared to P(d& and Q(ds). On the other 
hand, we derive from Theorem 3 and Gyory [6], Theorem 3 the following 
result. 

THEOREM 4. Every BE 0 is Z-equivalent to a PIE F? such that 

P(da) > cr210g log H, H= max(H(p’), 4), 

where c12> 0 is an effectively computable number depending only on lDerl and 
&. 

By (lo), (12) and a result of Gyory [6], we can deduce in a similar way that 

(13) mMW,d, W,,B)) > c&g log H, H= m=WW, 4), 
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where cl3 > 0 is an effectively computable number depending only on l&I and 
6 

We observe that p’ of Theorem 4 satisfies ds, = d, and dBf I H(p’). Hence, 
Theorem 4 yields the following interesting arithmetical property of denomi- 
nators of elements of g. 

CORROLARY 1. For every j3 E ‘8, we have 

(14) P(dB) > cl2 log log d, d = max(dS, 4). 

We can also deduce from (11) that if ds> 1 then 

(15) Q(d,) > (log d)C14, d = max(dD, 4) 

with an effectively computable number ci4> 0 depending only on IDI1 and dg. 
In view of (8), c,~ and cl4 can be replaced by ineffective constants depending 
only on l&l . 

Now, we turn to another consequence of Theorem 4. Let {pi,. . . ,p,} be a 
finite set of primes and we denote by S the set of all positive integers that are 
not divisible by primes different from pI, . . ..pS. We shall say that 8 is 
effectively given if a representative of @? is given effectively in the usual sense 
(cf. [17], p. 243). If this is the case, then Dg is also effectively given. 

COROLLARY 2. There are only finitely many pairwise Z-inequivalent /I E 8 with 
dPE S and, if 0 is effectively given, a full set of representatives of such 
elements j3 can be effectively determined. 

It follows from (13) in a similar way that there are only finitely many /3 E @ 
with d,E S, dlIgE S and, if % is effectively given, all these B’s can be 
effectively found. 

We remark that Theorem 4 and (8) imply that, for given D*#O, there are 
only finitely many pairwise Z-inequivalent algebraic numbers j? with D*(p) = 
D* and dsc S (independently of the equivalence class g). This finiteness 
assertion is, however, not effective. In the special case when both D*(/3) and 
d, are given, an effective version of this statement follows from (4) and (7). 

Now, we shall derive an explicit upper bound for the maximal number of 
pairwise Z-inequivalent /3 considered in Corollary 2. Put 

Ok= min o(d,). 
PE@ 

If 8 contains algebraic integers, then tug= 0. By using a result of Evertse [2] 
on the number of solutions of Thue-Mahler equations, we shall establish the 
following result. 

THEOREM 5. There are at most 

(16) 
2x 7n3(20~+Zs+3) 

pairwise Z-inequivalent /I E g with ds E S. 
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By means of a result of Evertse and Gyory [3] on Thue-Mahler equations, 
we can also derive the bound 

4 x 7/@Os+b+3) 

instead of (16). We recall that here n I I5 n !. One can see in a similar way that 
the number of j? E 8 with d, E S, d,,j E S is at most 

~x72~3~~~+2s+3) 

Under certain restriction made on D @, we can considerably improve the 
bound (16) by using a recent result of Evertse and Gyory [4] on Thue-Mahler 
equations. For a non-zero rational integer a, we denote by [aIs the S-free part 
of a, i.e. the largest positive divisor of a which is relatively prime to 
~1, ..- ,ps- 1 and ~8. 

THEOREM 6. There is a number C3 > 0, depending only on K and S, such that 
if [Der]s > C3 then the number of pairwise Z-inequivalent j? E Q with ds E S is at 
most 2. 

In particular, this implies that if lDBl is large enough then Q contains at 
most two Z-inequivalent algebraic integers. 

Next, we point out an interesting reformulation of Corollary 2, Theorem 5 
and their consequences mentioned above. Let Zs denote the ring of rational 
numbers whose denominators are contained in S, and let 9s denote the set of 
all algebraic numbers /? with ds E S. Then A$ is an extension ring of Zs and 9, 
consists precisely of those algebraic numbers which are integral over Zs. 
Further, dP E S and d,,gE S if and only if j? E 2: where 9; is the unit group of 
gs. In our statements above, the condition BE ‘8 with ds E S is equivalent to 
BE gsn 8, and BE K? with dsES, d,,PES to 8~ .%?$tl Q. Further, it follows 
that there are only finitely many pairwise Z-inequivalent /3~ =5’S with given 
non-zero D*(b). This assertion should be compared with an effective result of 
Gyory ([9], Theorem 16) which asserts that up to the obvious translation by 
elements of Z,, there are only finitely many /3 E ?2s with given degree and with 
given non-zero discriminant D(B) (and a full set of representatives of such B 
can be effectively determined). These two last finiteness assertions are not 
contained in each other. The reason is that D*(p) and D(B) are related by 

(17) D*@)~)=b;‘“-~)D(jl) 

where n =deg(&, b0 is the leading coefficient of the minimal defining 
polynomial 0f.a over Z and b0 1 di (cf. (22)). Consequently, the heights of 
D*(p) and D(B) cannot be estimated from above by the other and D*(B) is not 
invariant under translation by elements of Zs. 

Finally, we apply our results to denominators of complete quotients of the 
continued fraction expansion of an algebraic number. For an account on 
continued fractions, one may refer to Schmidt [13], Chapter 1. Let 

a=[aO,al,...] 
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be the simple continued fraction expansion of a real algebraic number a of 
degree 13. We put p-i = 1 and q-t = 0. For m ~0, we write 

and 

- = t&j, al, . . ..%?I1 
4m 

for the m-th convergent and the m-th complete quotient, respectively, in the 
continued fraction expansion of a. Observe that a= ao. For mr0, we have 

aEPmam+l+Pm-l 
qmam+l+qm-1 

and 

(18) 
9m-la-Pm-1 

%+i= 
-4ma+Pm ' 

Now, since 

4mPm-1-Pm4m-1=(-1)m9 

we see that the complete quotients of a are elements of 0, the equivalence class 
represented by a. For m > 1, we derive from (2), (lo), (11) and (18) that 

(19) da,,,=&", 

(20) Q(dum)Tmc16 

and 

(21) JW,) 2 ~17 log m 

where c15, c16, cl7 and C4> 1 are effectively computable positive numbers 
depending only on a. 

3. PROOFS 

Let a be an algebraic number of degree nz 3 with minimal defining 
polynomial f(x) over Z and let a0 be the leading coefficient of f(x). It is 
important to note that 

The first relation follows at once by observing that if a0 = d,u + u with U, o E Z, 
01 u < d,, then aoa, d,cr and hence oa are algebraic integers, i.e. u = 0. The 
second relation follows from the fact that the polynomial (d,"/uo)f(x) which 
has coefficients in Z has a as a root and therefore, it is divisible byf(x) in Z[x]. 

Let F(x, y) =y”f(x/y). Then F is an irreducible binary form in Z[x, r] with 
degree n. Let 0 be the equivalence class of a. The following lemma makes it 
possible to reduce the investigation of denominators of elements of 8 to Thue 
equations and Thue-Mahler equations. 
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LEMMA 1. Let p E @? be given by (1). Then 

PROOF. By (l), we obtain 

(24) d,(a3a+a4)8=(a,(d,a)+d,az). 

It follows from a well-known lemma (see e.g. [17], Lemma 4.1 .l.) that 
F(a,, - a3)/(a30 + a4) is an algebraic integer. Multiplying both sides of (24) by 
this integer, we deduce that d,F(a4, -a,)/? is an algebraic integer, i.e. 
d,z#aF(a,, -~3). 

To prove the second assertion in (23), we observe that 

-a4B+a2 
Cl= 

a3P-3 

whence, by (l), 

(a3(r+a4)(a3/3-al)=1 or -1 
i.e. 

(t73a + a4)(a3(ds/3) - dSal) = ds or - ds. 

By taking norms with respect to Q((r)/Q and multiplying by ao, we see that 
F(a,, -a3) divides aod,$’ in Z. This, together with (22), proves the lemma. 0 

Let A be a non-zero rational integer. Denote by H(F) the height of F, i.e. 
the maximum absolute value of the coefficients of F. We note that H(F) = H(a) 
and, by (22), d,rH(F). Let L, 1, RL and hL be as in $2. Then L is the splitting 
field of F over Q. Theorem 1 follows from Lemma 1 and the following lemma 
which depends on the theory of linear forms in logarithms of algebraic 
numbers. 

LEMMA 2. All solutions of the Thue equation 

F(x,y)=A in X, YEZ 

satisfy 

where C, > 0 and C, > 0 are effectively computable numbers depending only on 
landRL. 

This lemma is an immediate consequence of Corollary 1.1 of Gyory and 
Papp [lo]. Explicit values for Cs and C, can be deduced from the result 
mentioned in [lo]. 

PROOF of Theorem 1. For every x, y E Z, we have 

1 FCC Y)I 5 (n + 1MF) (m=( IA, I Y IN” 

which, together with (23), implies the upper bound for ds in (2). The lower 
bound in (2) follows from Lemmas 1 and 2. 0 
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The lower estimate (3) for ds follows at once from Lemma 1 and the 
following lemma which is an immediate consequence of Roth’s theorem on the 
approximations of algebraic numbers by rationals (cf. e.g. [12], p. III. 20, 
Corollary 1). 

LEMMA 3. For every &>O, there eXiStS a non-t?ffeCtiVt? number cl8 = 
c&t, H(F), &)>O such that 

IF(x,Y)I~c,,(max(Ixl, lYlN”-2-” 

for every x, YEZ with max(lxl, (yl)>O. 
In the proof of Theorem 2, we shall need the following two lemmas. 

LEMMA 4. Let a be an algebraic number of degree n 13 with discriminant 
satisfying ID(a)/ ID. Then a is Z-equivalent to an a’ for which 

H(a’) < exp(C,(d,“‘D)‘“‘) 

where C, = C,(n) > 0 is an effectively computable number. 
This is Theorem 3 of Gyory [6]. Its proof involves, among other things, 

Baker’s method. 
Denote by DL the discriminant of L. We have 

LEMMA 5(a). There exists an effectively computable number C, = C,(t) > 0 
such that 

hLRL<C81DL1”2(10gIDLI)‘-1. 

(b) RL10.056. 

The first inequality is due to Siegel [15] and the second inequality was proved 
by Zimmert [18]. 

We shall denote by m the maximum absolute value of the conjugates of an 
algebraic number y. 

PROOF of Theorem 2. Let a E 8 with d, = dg. Then, by (17), ID(a)1 I IDgl and, 
by Lemma 4 and (7), a can be chosen in 8 to satisfy 

(25) ff@d<WI&I, &) 
with an effectively computable number C,(IDgI, dg). Fix now such an a. Let 
p be an arbitrary element of 8and consider the representation of the form (1) 
of p. Then, we have 

a,a4-a2a3=1 or -1. 

There are rational integers a;, ai such that 

a; a4 - aia3 = 1 or - 1 as above, 

(26) m=4ail, l4l>~2 m=hl, Ial) 
and 

a,=a;+a$,a2=a;+a4t, tEZ. 

37 



Put 

(27) 
a;a+ai p=----- 
a,a+a4’ 

Then j3 - /3’ = t, that is p’ is Z-equivalent to p. 
Denote by a0 the leading coefficient of the minimal defining polynomial of 

a over Z. Using (29, (26), (27), (7) and the properties of heights and sizes of 
algebraic numbers (see e.g. [S], $1. l), we have 

(28) H(/3’)5(Ia;aoa+aoaJ + la3aoa+aoa41)” 

~W@)m~(la~I, k&l, Ia3l, l4OY 
G0(m=44, hl))” 

where Clo> 0 is an effectively computable number depending only on I& I and 
dg. Now, we combine (2), (7), (28) and Len! to conclude that 

ds> c19WB’N C20 

where c,~> 0 and czo >O are effectively computable numbers such that cl9 
depends only on I&l, dg, RL and czo depends only on /&I, RL . 

By Lemma 5 and 15 n!, we see that RL is bounded above by an effectively 
computable number depending only on n and l&l. If DK denotes the 
discriminant of K, we refer to Stark [16] to obtain ~10’~ and furthermore, 
by a well-known theorem (see [ll]), D,+~. Hence, by (7), we conclude that 
RL is bounded by an effectively computable number depending only on 
ID& q 

Let AeZ\{O} and let PI,..., pS be distinct primes not exceeding P. 
Theorem 3 will be deduced from Lemma 1 and the next lemma. 

LEMMA 6. All solutions of the Thue-Mahler equation 

(29) F(x,y)=Ap:l-.ap:inx,y,z, ,..., zseZ with (x,y)=l, z,rO ,..., z,rO, 

satisfy 
m=4xl, IYI)~ew(Gl(s+ 1) c1z(s+‘)P21(1 +log(IAIH(F)))) 

where C,, > 0 and C12> 0 are effectively computable numbers such that Cl1 
depends only on I, hL, RL and Cl2 depends only on I. 

This is a simplified form of a special case of Corollary 1 of Gyijry [7]. Its 
proof involves the theory of linear forms in logarithms and its p-adic analogue. 

PROOF of Theorem 3. Let pl, . . . , pS denote the distinct prime factors of da. 
Suppose that maxi Pi= P. By Lemma 1, we have 

(30) F(a4, - a3) = Ap:‘...p? 

where zl, . . . . z, are non-negative integers and A is a nonzero integer which 
divides d,“. But d,IH(F). Now, we apply Lemma 6 to (30) to obtain 

(31) max( la3/, ladI) c exp((C,,(s+ l))clz(” ‘)P2’(1 + log H(F))) 
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with the Crz specified in Lemma 6 and with an effectively computable Cl3 
depending only on I, hL and RL. Now, we observe that (31) with H(F) =H(a), 
P=P(d,) and s=o($) implies (9) which, by sr2P/logP (cf. [14], (3.6)) 
establishes (10). Further, we have Q(ds) =pI--.ps~ P. Hence (9), together with 

3s log@ + 1) < sth prime < 40 i log pi 
i=l 

(cf. [14], (3.12), (3.16)), implies (11). 0 

PROOF of Theorem 4. As in the proof of Theorem 2, let ac B be chosen to 
satisfy (25). Let /II be an arbitrary element of grepresented in the form (1). As 
we have seen in the proof of Theorem 2, j? is Z-equivalent to an element 8’ of 
8 satisfying (28) which, together with (25), (lo), (7) and Len!, implies that 

P(ds) > c21 log log H, H= max(H(j3’), 4), 

where c21 > 0 is an effectively computable number depending only on I& 1, dQ, 
hL and R,. Now, we apply Lemma 5 and an argument of the proof of 
Theorem 2 to conclude that max(hl, RL) is bounded above by an effectively 
computable number depending only on lDezI . •i 

PROOF of Corollary 2. The finiteness assertion is an immediate consequence of 
Theorem 4. Further, if a representative, say a, of ‘8 is given effectively in the 
usual sense (cf. [17]), then &=D*(a) and dgsd,, i.e. l&l and dB can be 
effectively bounded above in terms of n = deg(a) and H(a). Hence, it follows 
from Theorem 4 that if /3 E 0 with ds E S then there is a /3’ which is Z-equivalent 
to j? such that H(/3’)sC14 where C,,>O is an effectively computable number 
depending only on n, H(a) and the maximum P of the primes pl, . . ..ps 
involved. Since d#H(B’) and d,,br- <H(l//?‘)=H(/?‘), we see that d,+C,, 
and dl,Bss C14. Consequently, representing /I’ and l/p’ in the form (l), we 
apply Theorem 1 to derive that max Ili141ail is bounded by an effectively 
computable number depending only on n, H(a), P, hL and RL . Now, as in the 
proof of Theorem 2, we see that max(hl, RL) is bounded above by an 
effectively computable number depending only on I&l and hence, 
max(hl, RL) is bounded above by an effectively computable number 
depending only on n and H(a). Thus 

ma lai 15 %h H(a), PI 
ldiS4 

where C&z, H(a), P)>O is effectively computable. Finally, from among the 
algebraic numbers whose representations of the form (1) satisfy 

max jai) I Crs 
Isis4 

and which are equivalent to a, we can select a full set of representatives of 
pairwise Z-inequivalent elements in @? with denominators contained in S. 0 

Theorem 5 will be proved by means of Lemma 1 and the following result 
which is an immediate consequence of Corollary 2 of Evertse [2]. 
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LEMMA 7. Equation (29) has at most 

2 x +(~+h(A)+3) 

Solutions 
PROOF of Theorem 5. Choose a E 8such that CUE = o(d,). Further, let f(x) be 
the minimal defining polynomial of a over Z and let 

W,Y)=Y”~ z , n=deg(f). 
0 

If /3~ @? and /3 is represented in the form (1) then, by Lemma 1, F(a4, - a3) 
divides (c&$)“. If dSES, we apply Lemma 7 to derive that the number of 
pairs (ad, a3) under consideration is at most 

Fix now such a pair (ad, a3). If /3’, P”E ‘@ have representations of the form 

with a;, a;, a;, a;EZ and 

la;a4-aia31 = la,“a4-ala31 = 1, 

then 

a;-ap=a3t, ai-a;=a4t 

or 

with some tcZ and hence /I’-/l”=t or #l’+P”=t. q 
Consider equation (29) for A = 1, and denote by D(F) the discriminant of the 

binary form F. Theorem 6 will be deduced form Lemma 1 and the next lemma 
which is an immediate consequence of Corollary 1 of Evertse and Gyiiry [4]. 

LEMMA 8. There exists a number C16> 0 which depends only on K and S such 
that if [D(F)],> Cl6 then, for A = 1, equation (29) has at most two solutions 
(with (x, y) and ( -x, -y) regarded as the same). 

PROOF of Theorem 6. Suppose that ‘&? has at least one element with 
denominator contained in S. Choose such an a E 8, and let F(x, y) be as in the 
proof of Theorem 5. If p E 8 with ds E S and if /3 is represented in the form (l), 
then Lemma 1 implies that F(a,, -a,) E S. Since 

D(F) = D*(a) = Dg, 

it follows from Lemma 8 that the number of pairs (ad, a3) under consideration 
(with (a4, a3) and (- a4, -a,) regarded as the same) is at most 2. Following 
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now the argument of the proof of Theorem 5 and observing that 

a;a+a; a;a+ai 
=- 

- a3cx - a4 a3a+a4’ 

the assertion follows. 0 
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