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The relationship between the structure of autonomous finite automata and their 
operation-preserving functions is considered. The results imply some ideas in the 
study of operation-preserving functions of arbitrary finite automata, because with each 
finite automaton the set of its autonomous factors is associated. Basing on the method 
of the investigation of operation-preserving functions of finite automaton A and by 
studying autonomous factors of .d, the algorithm for determining operation- 
preserving functions of A is given. 

INTRODUCTION 

In  this paper, the method of studying operation-preserving functions of the finite 
automaton is based on the investigation of its autonomous factors, i.e., autonomous 
automata. 

The  research of operation-preserving functions of autonomous automata is much 
easier than that of arbitrary automata, and it is possible to obtain more information on 
the structure of operation-preserving functions of such automata. 

On the other hand, the knowledge of the structure of operation-preserving functions 
of autonomous factors of the finite automaton implies the knowledge of the structure 
of its operation-preserving functions. In  fact, it implies an easy algorithm for deter- 
mining the set of all its operation-preserving functions. 

PRELIMINARY DEFINITIONS AND RESULTS 

An automaton is a triple A = (S, 27, M),  where S is a nonempty state set, 2;' is a 
nonempty  input set, and M is the next state function, M has the domain S • Z' and 
the range S. An automaton is finite if its state set is finite. The  te rm "monadic  algebra" 
is being reserved for unnecessary finite automata; furthermore, by "au tomaton"  a 
finite automaton is meant. 
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A set of all possible, finite sequences from 27 will be denoted by I.  S e t / ,  together 
with the operation of concatenation, forms a free semigroup. We assume that 

M(s, ax) --  M(M(s ,  ~), x) 

for each s ~ S, a ~ 27 and x E L 
Throughout  this paper, it will be assumed that 

= {~0, ~i  ,..., ~ , - , } ,  

where n is a natural number.  Moreover,  B denotes the automaton (T, Z', N) ,  where T 
denotes the state set of  B and N the next state function of B. 

T h e  following definitions are taken from [1]: 
T h e  automaton generated by s, denoted by A(s), is a triple (S' ,  Z', M' ) ,  where 

S'  = {M(s, x) : x e I}, and M '  is M restricted to S '  • E. 
The  set of generators of A(s) ..... (S',  Z, M' ) ,  denoted by gen A(s), is a set {r ~ S '  : 

A(~)  = A(s)}. 
A subset R of S is a generating set of  A, denoted by gen A, if and only if for each 

s e S there exists r E R such that s is in the state set of A(r). In  the family of generating 
sets of  A all the generating sets with minimal cardinality will be called minimal 
generating sets. 

By f u n c t i o n f  : A --+ B is meant  a function from S into T. 
A function f : A(s) --~ B is said to be transition-generated if and only if there exist 

s' e gen A(s) and t ~ T, and for each state r of .//(s) there exists x ~ I such that 

r = M(s',  x) and f ( r )  ---- N(t ,  x). 

An (s, t)-transition generated function of A(s) into B is a transition generated 
function of A(s) into B with s and t specified. 

A function f : A --+ B is said to be transition generated if and only if there exist 
an ordered minimal generating set P =~ (s o , sl ,..., sin-l) of A and an ordered m-tuple 
Q = (to, t 1 .... , t,,_l) of  states of  B, and for each state r of  A there exist h E {0, 1,..., m - 1} 
and x E I such that  

r = 3I(.%, x) and f ( r )  = N( t~ ,  x). 

Bavel and Muller have defined in [2] the monadic algebra "on to" .  A monadic 
algebra (S, Z, M )  is onto if and only if {M(s, a) : s E S} == S for each a E 27. 

LEMMA 1. Let A and B be automata and let B be onto. Then for each s in S and each 
t in T there exists a transition generatedfunctionf  : A ~ B such tha t f ( s )  = t. 

Proof. Let  {So, s 1 ..... s~_l} be a minimal generating set of A and let s be in the 
state set of  A(So), i.e., for s o and s there exists x in I with M(s  o , x) = s. For  such x in 
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I and for t in T there exists t o in T with N(t  o , x) = t, since B is onto; i.e., for each a 
in X and t' in T there exists t" in T such that N(t", ~) = t'. 

For (s0,s 1 ..... S~_l) and the ordered m-tuple ( to , t  1,...,tin_l), where t 1 .... , 
tr~-I are arbitrary states from T, there exists a transition generated function 
which maps sk to t k for each k~{0,  1 ..... m - -  I} and maps s to t, by Lemma 9 

of [11. 
A funct ionf  : A --~ B is operation-preserving [1, 3, 6, 10] if 

f (M(s ,  a)) = N(f (s) ,  ~) 

for each s in S and a in 2:. 
Note, that if the function is operation-preserving, then 

f(M(s,  x)) ---- N(f(s) ,  x)) 

for each s in S and x in I. 
An operation-preserving function is called a homomorphism if it is from A into B, 

endomorphism if it is from A into A, isomorphism if it is from A onto B and one to 
one, automorphism if it is from A onto A and one to one. 

We denote the set of all homomorphisms of A into B by H(A --~ B), the set of all 
endomorphisms of A by E(A), the set of all isomorphisms of A onto B by Is(A -+ B), 
and the set of all automorphisms of A by G(A). 

AUTONOMOUS FACTORS OF A 

An autonomous factor Ai ,  i ~ {0, 1 .... , n - -  1}, of the automaton A ----- (S, 27, M) 
is a triple (S, ai,  Mi), where M i is the restriction of M to S • ai.  

The definition of the factor of the automaton was introduced by Hotz [7, 8]. Our 
definition slightly differs from that of Hotz and it corresponds to "einfacher Faktor" 
of Hotz. 

We quote the next definitions from [4-6]. 
The graph (state diagram) F(Ai) of the autonomous factor Ai = (S, (ri, M,) of A 

is defined as follows: to each state s of S corresponds a vertex of F(Ai) denoted by s, 
and to each ordered pair of vertices (s, s') with Mi(s, a,) = s' there corresponds a 
branch of F(Ai) oriented from s to s' and denoted by a i .  

The graph F(Ai) of Ai can be partitioned into subgraphs such that, viewing F(Ai) 
as undirected, each subgraph is a connected subgraph, but no subgraph is connected to 
any other snbgraph. These subgraphs will be called components of / ' (Ai) .  

A finite sequence of not necessarily distinct branches of a graph P(Ai), such that 
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the k-th branch ends at the vertex from the (k + 1)-th branch is coming out, will be 
called a path. 

A cycle is a path which comes back to its first vertex. 
I f  the branches of a path or cycle are all distinct, the path or cycle is said to be simple. 

For any path or cycle there exists uniquely a simple path or cycle which passes through 
the same vertices, respectively. 

The  length of a path or cycle is the number  of branches in the corresponding simple 
path or cycle. 

Each component  of F(Ai) contains only one cycle. 
The  set of all the paths reaching any vertex of the cycle of the component  of F(Ai), 

and such that there are no branches from the cycle in these paths, shall be called a tail 
of the component.  

T h e  set L of all vertices of the tail of the component  of l"(Ai) such that the length of 
a path, formed from branches of this tail, f rom any vertex in L to the first vertex of the 
cycle is equal to v constitutes the v-th level of the component  of F(Ai). We assume, 
that  any vertex of the cycle is in O-level. 

A finite, connected sequence of branches of F(Ai), which can be traced on F(Ai), 
will be called a chain. 

The  length of a chain between the vertices of an ordered pair (s, s'), and constituting 
one branch, will be equal to + 1 when the branch is oriented from s to s' and - -  1 when 
the branch is oriented from s' to s. The  length of an arbitrary chain between the vertices 
of an ordered pair (s, s') is the difference between the number  of consistent and 
opposite branches examined along the chain from s to s'. 

Let  s and s' be vertices in the same component  C of F(Ai). By [ s, s' [a we shall 
denote the length modulo d of an arbitrary chain between s and s', where d is a divisor 
of the cycle length of C. Note, that I s, s' I~ is unique. 

In  the sequel, we shall identify a state of A with the corresponding vertex of A, 
since it does not cause ambiguity. 

OPERATION-PRESERVING FUNCTIONS OF AUTONOMOUS AUTOMATA 

We shall consider the operation-preserving functions of autonomous automata. 

We have 

LEMMA 2. Let A = (S, ~, M)  and B = (T, a, N)  be autonomous automata. Let f 
be a homomorphism of A into B. Let s belong to the component Cn o fF(A)  and let s be in 
v-level of CA. Let f ( s) belong to the component C B of F( B ) and let f ( s) be in/-level of CB . 
Thenv" ~ v .  

Proof. Let  us assume that v' > v. Let  the component  CA have a cycle length d. 
Then  M(s, a v) = M(s, e~+a), where e~ = aa  ' " ( r  denotes the v-fold concatenation 
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of a, and M(s, a ~ -~ s. Furthermore, N(f(s) ,  a ~) does not belong to the cycle of Cs ,  
since v' > v. It follows that N(f(s) ,  ~)  v/: N(f(s) ,  z~+a). But 

N(f(s) ,  a ~) = f(M(s,  ~r~)) = f(M(s,  cry+a)) = N(f(s) ,  (r~+a), 

a contradiction. 

LEMMA 3. Let A = (S, a, M)  and B = (T, a, N) be autonomous automata; let f 
be a homomorphisva o f A  into B; let s belong to the component CA ofF(A); let f ( s )  belong 
to the component CB of F(B). Then the length d' of the cycle of Ca is the divisor of the 
cycle length d of C4 �9 

Proof. Let s be in v-level of CA �9 Then M(s, cr ~') is in the cycle of Ca , and from 
Lemma 2 it follows, that N(f(s) ,  (r ~') is in the cycle of CB �9 Let d' be no divisor of d. 
Then N(f(s), ~)  ~ N(f(s), a~+a). But M(s, a ~) = M(s, g~+(t), and 

N(f(s), a") -~ f(M(s,  a~)) - - f (M(s ,  ~+a)) _~ N(f(s), o~+a), 

a contradiction. 

COROLLARY. Let A = (S, ~, M) and B = (T, ~r, N) be autonomous automata; 
let f be an isomorphism of A into B; let s belong to the component CA of P(A), and let s 
be in v-level of CA; let f(s) belong to the component CB of F(B), and let f(s) be in/- level  
Of CB �9 Then v' ~ v and the length of the cycle of CB is the same as the length of the cycle 
of C,. 

Lemmas 2, 3, and the Corollaw, in stronger forms, can be found in [6]. 

LEMMA 4. Let A ~- (S, a, M) and B ~= (T, a, N) be autonomous automata; let f 
be a homomorphism of A into B; let s, s' be states of A such that both s and s' belong to 
the cycle of the same component CA of F(A). Then 

(i) both f(s) and f(s') belong to the same component CB ofF(B),  

(ii) is, s' la" = If(s),f(s')la', where d' is the length of the cycle of CB. 

Proof. For A there exist nonnegative integers k and l such that M(s, a ~) = M(s', at). 
since s and s' belong to the same component CA of F(A). Then 

N(f(s), a k) - - f (M(s ,  a~)) -~ f(M(s' ,  #))  = N(f(s') ,  at), 

and thusf(s)  andf(s ' )  belong to the same component, say C8, of F(B). 
Let the length of the cycle of CA be equal to d, and let the length of the cycle of CB 

be equal to d'. By Lemma 3, d' is a divisor of d. Then 

[ s, s' [,~ ~ h - -  l ( m o d d )  
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and 

and hence 

]f(s),f(s')la" =- k - -  l ( m o d  d'), 

Is, s' la' = [f(s),f(s')[a'" 

LEMMA 5. Let A(s) = (S', a, M ' )  and B = (T, ~, N )  be autonomous automata. 
Let s be in S',  s be in v-level of F(A(s)), and let l'(A(s)) have a cycle length equal to d; 
let t be an arbitrary state in T; let t be in the component CB of / ' (B);  let CB have a cycle 
length equal to d', and let t be in v'-leveI of CB , where v' ~ v and d' is a divisor of d. 
Then a (s, t)-transition generated function f : A(s) --+ B is a homomorphism of A(s) into B. 

Proof. Let  f : A ( s ) - - ~  B be an (s, t)-transition generated function; let r be an 
arbitrary state in S' .  Then  for r there exists a nonnegative integer k, k ~ v + d - -  1, 
such that r = M(s, ak). Furthermore,  

f (M(s ,  crk)) = N(t,  ~k) 

f o r k : 0 , 1 , . . . , v + d - -  1, and 

f (M(s ,  av+a)) : f (M(s ,  ~v)) = B(t, a v) = N(t ,  av+a), 

since v' ~ v and d' is a divisor of d. Moreover, 

f (M(r ,  a)) = f ( M ( M ( s ,  ak), a)) 

= f (M(s ,  ak+*)) 

: N(t ,  ~k+l) 

= N(N( t ,  ak), a) 

---- N ( f (M(s ,  a~)), a) 

= N( f ( r ) ,  a), 

i.e., f is a homomorphism of A(s) into B. 
Lemmas  2-4 give some restrictions for homomorphisms of autonomous automata. 

We shall compare it with the restriction for homomorphism,  which results from 
L e m m a  5 of Bavel [1]. 

Let  x e I ,  where x =- aoa, "'" a t - , ,  ake27  for each k e { 0 ,  1 ..... l - -  1}. The  length 
of x is the number  l, which will be denoted by ] x ]. 

Le t  s be a state of A ---- (S, 27, M).  Let  s e S and A(s) ---- (S', 2,, M') .  The  length 
of s is equal to 

max{min{[ x ] : M(s, x) = r}}, 
reS" xe I  

and it will be denoted by ] s ]. 



FUNCTIONS AND FACTORS OF AUTOMATA 471 

Let  A = (S, a, M)  and B = (T, a, N)  be autonomous automata, and let the state s 
of A belong to the component  C A of F(A).  Let  d be a cycle length of Q~,  and let s 
be in v-level of CA �9 Then  for a h o m o m o r p h i s m f  : A --+ B we have tha t f ( s )  belongs 
to the component  CB of F(B) such that the cycle length of CB is equal to d '  and f ( s )  
is in v'-level of CB, where d '  is a divisor of d and v' ~< v. I t  implies that I s ] >~ [f(s)[, 
since I s ] = v + d and IN(s)] = v' -t- d' .  Obviously, if the state t of T i s  in the com- 
ponent CB' of _P(B) with the cycle length of CB' equal to d", if t is in : - l eve l  of CB', 
and if ] t [ ~ ] s 1, then it does not imply that v" ~ v and d" is a divisor of d. 

Let  A(s) = (S',  ~, M')  and B = (T, a, N )  be autonomous automata. A function 
f : A(s) ~ B is regular transition generated if and only if for f (s)  = t and for each 
ke{o, L...,,, + a} 

f (M(s ,  ak)) = N(t,  ak), 

where d is the cycle length of F(A(s)), and s is in the v-level of l~(A(s)). 
Let  A = (S, a, M )  and B = (T, a, N)  be autonomous automata. A regular transi- 

tion generated function of A into B is a function f : A -+ B, for which there exists 
a generating set {s o , s 1 ,..., s,,_l} of A such that anyfv : A(s~) -+ B is regular transition- 
generated for eachp  E {0, 1,..., m - -  1}, wheref~ i s f res t r ic ted  to A(s~). 

If, for f ,  this definition is performed for a certain generating set of A, then it is 
satisfied for any generating set of A. 

Note, that for autonomous automata A = (S, a, M )  and B = (T, ~, N),  function 
f : A ~ B is regular transition-generated if and only i f f  is a homomorphism.  

Let  {So, sl .... , Sm-~} be a generating set of A = (S, a, M )  and let s~ belong to the 
v : l eve l  of the component  Ci~ o f / ' ( A )  with the cycle length of Ci, equal to d~, for 
p e {0, I,..., m --  1}. I f  for an ordered set (So, s 1 ,..., s,,,_l) we choose the ordered set 
(to, ta ..... t,~_a), a subset of T, no matter  which ones, and if we define a relation p by 

p = ((M(s~, aq), N(t~ ,  aq)) :p 6 {0, 1,..., m - -  1} and q 6 {0, 1,..., v.~ + d~}}, 

then p is a homomorphism of A into B if and only if p is a function. For similar result, 
see [9]. 

OPERATION-PRESERVING FUNCTIONS OF AUTOMATA 

Let  A = (S, 27, M)  and B = (T, 27, N)  be arbitrary automata. A func t ionf  : A ~ B 
is said to be regular transition generated if and only i f f  is a regular transition generated 
function of Ai = (S, e i ,  M~) into B~ = (T, ai ,  N~) for each i e {0, 1 ..... n - -  1}, 
where Ai and Bi are autonomous factors of A and B, respectively. 

From previous Lemmas  and remarks follows: 

571/5/5-2 
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THEOREM. A function f : A -~ B is regular transition generated i f  and only i f  f is a 
homomorphism of A into B. 

From this theorem follows 

H(A --+ B) = ~ H(A,  --~ B,), 
i = 0  

or f e H(A  --,- B) if and only if there exist fo~  H(Ao --> Bo), f~ e H(A~ - - ~  B1) ..... 

f~_~ e H(A,~_~ --+ B._x) such thatfo = f~ ~ "'- ~ f . _ t ,  

and 

l E(A)I ~ min t E(A~)I, 
i=O,l,...,n--1 

[ G(A)I ~ min I G(A,)I, 
i = 0 , 1  . . . . .  n - I  

where [ X [ denotes the cardinality of set X. 
Now we can quote an algorithm for determining H(Ai--~ Bi), where i e  {0, I .... , n -  1}, 

and Ai  and B i are autonomous factors of A and B, respectively, since from it easily 
follows the algorithm for determining H(A --,. B). 

Let  I'(At) contain the components C~ C~ ,..., C "-IA~ with the cycle lengths 
eli ~ dil,..., d[ -1, respectively, and le t / ' (Bi )  contain the components C o ,  C~, ..... C~Tt 
with the cycle lengths 8i ~ 3il,..., 8~ -1, respectively. Any C~t~ determines automaton 
A j ,  where Ai  j = (S j ,  ai ,  MiS), Si t is the state set of C ~ ,  Mi ~ is M restricted to S j ,  
and j  = 0, 1,..., e~ --  1. By analogy, any C~ determines automaton Bi k = (T~ ~, ct~, NiZ~), 
with the corresponding changes, where k = 0, 1,...,/3 - -  1. Any homomorphism f i  
of A i into Bi is equal to the ordered set (fi~ wherefi~ isfi  restricted to Si~ , 
or f i  t ~ H(Ai  j ~ Bi), for j = 0, 1,..., oL -  1. Hence, our algorithm is reduced to 
finding all H(Ai  ~ --+ Bi), H(Ai  ~ ~ Bi),..., H(A~ -~ --+ B,). 

If  among di ~ di ~ ..... d~ -I there exists a number d such that in {3i ~ 8~,..., 8~ -1} there 
does not exist a divisor of d, then H(Ai  -+ Bi) is empty (by Lemma 3) and hence 
H(A -+ B) is empty, too. We assume that such number  d does not exist. 

First, we shall determine the members of H(Ai  ~ ~ Bi). 
Among the components of F(Bi) we choose all the components Cn~, C~  ..... C~- I  

such that ~ko ~h -t , ~i ,"., 8~-~ are divisors of di ~ 
We calculate a member of H(Ai ~ -+ B~o). Therefore, we determine the minimal 

generating set {so, s 1 ,..., s~_l} of Ai ~ For s o we choose an arbitrary state t o in T~o, 
with v o ~ Vo', where s o is in vo-leveI of C% and t o is in Vo'-level of C ~ .  Now, for 
s x ..... s~_ 1 we determine t 1 ,..., t~_ t in T~o, respectively; t I ,..., t~-i are arbitrary but  

r t such that v 1 > /v  1 ,..., v~_ 1 >/V,_x, and 

I so, s~ {,~o = t to, t~ i~,o .... , I So, s,_t t~o = { to,  t,-1 i,,~o, 
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where Sl is in vl-level of C~ ,..., s~_l is in ~_~-level of C ~ , t l is  in vx'-level of C~  .... , t~_~ 
is in v'~_x-level of C ~ .  

Next we define a relation p~c. .~_~,  

PtO~l,**r x 

=--- {(Mi~ aiq), N~~ aiq)) : p e {0, I,..., e --  1} and q e {0, 1 .... , v,  -~ d/~ 

If  p,otl...~_l is a function then it is a member  of H(Ai  ~ --+ B~io). 
For any other possible ordered e-tuple of states from T~0, satisfying the due condi- 

tions with regard to levels of C~  and corresponding lengths modulo $~0, we check 
whether a relation p is a function. If  it is, it is also a member of H(Ai  ~ --~ B)'o). 

By analogy, we calculate the members of I t (Ai~ B~I) ..... H(Ato--~ B~v-1). 
Obviously, 

kv-1 

H(A,  ~ -+ B~) --  (J  H(Ai  ~ --~ B,k). 
k=h" o 

Similarly, we calculate the members of H(Ai  1 -+ Bi),..., H(A~ .-1 -~  Bi). 
In the above algorithm for determining H ( A  i -+ Bi) checking of operation- 

preserving does not appear. 
Note, that to determine H ( A - +  B), we need not calculate H ( A  i --~ B~) for all 

i = O, 1 ..... n --  1. Really, let H(Ai  -~  Bi) be known for a certain i, say, for i -~ O. 
Then  H ( A  -+ B) can be determined by elimination of the members of H ( A  o -+ Bo). 
More specifically, we check the members of H ( A  o - ,  Bo) whether they are members 
of H ( A  1 -+ B1),..., H(An-1 -~  Bn-1). First, we check the members of H ( A  o -+ Bo) 
whether they are members of H ( A  1 -+ B1). For it, for any automaton, implied by 
a certain component CAt of F(A1), we determine the minimal generating set, say 
{So, s 1 ..... s~_l}. For {So, sl, . . .  , S~_l} and for any f ~ H ( A  o -+ Bo) we consider the set 
{f(so) , f (s l )  ..... f(s~_~)}. If  amongf(so) , f(sl) , . . . , f (s~_l) there exist states which belong 
to two different components of T'(B1) , then such f i s  eliminated (as not being a member 
of H ( A  1 -+ BI) according to Lemma 4). 

Let  all f(so) , f (s l) , . . . , f (se_l)  be in the same component CB1 of T'(B~). If  in the set 
{f(So),f(sl), . . . , f(sr } there exists a member f(s~); k E{0, 1,..., ~ -  1}; at a level 
higher than s k (Lemma 2), or if the cycle length of CB~ is not a divisor of the cycle 
length of CA1 (Lemma 3), or if the corresponding lengths modulo the cycle length 
of CB~ are not equal (Lemma 4), or if a relation p is not a function, t h e n f m u s t  also be 
eliminated. In this way, we check f for any other component of F(A1). Similarly, 
we check all other members of H ( A  o --+ Bo), whether they are members of H ( A  1 --+ B1) , 
and, then, whether they are members of H ( A  2 --> Ba) and so on. 

The  algorithms for determiningls(A -~  B), E(A),  and G(A) are simple modifications 
of the algorithm for determining H ( A  --+ B), and hence are omitted. 
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