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Phonon plays essential roles in dynamical behaviors and thermal properties, which are central topics in
fundamental issues of materials science. The importance of first principles phonon calculations cannot be
overly emphasized. Phonopy is an open source code for such calculations launched by the present
authors, which has been world-widely used. Here we demonstrate phonon properties with fundamental
equations and show examples how the phonon calculations are applied in materials science.
� 2015 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Application of first principles calculations in condensed matter
physics and materials science has greatly expanded when phonon
calculations became routine in the last decade. Thanks to the pro-
gress of high performance computers and development of accurate
and efficient density functional theory (DFT) codes, a large set of
first principles calculations are now practical with the accuracy
comparable to experiments using ordinary PC clusters. In addition
to electronic structure information, a DFT calculation for solids
provides energy and stress of the system as well as the force on
each atom. Equilibrium crystal structures can be obtained by min-
imizing residual forces and optimizing stress tensors. When an
atom in a crystal is displaced from its equilibrium position, the
forces on all atoms in the crystal raise. Analysis of the forces asso-
ciated with a systematic set of displacements provides a series of
phonon frequencies. First principles phonon calculations with a
finite displacement method (FDM) [1,2] can be made in this way.
An alternative approach for phonon calculations is the density
functional perturbation theory (DFPT) [3,4]. The present authors
have launched a robust and easy-to-use open-source code for first
principles phonon calculations, phonopy [5–20]. This can handle
force constants obtained both by FDM and DFPT. The number of
users is rapidly growing world-wide, since the information of
phonon is very useful for accounting variety of properties and
behavior of crystalline materials, such as thermal properties,
mechanical properties, phase transition, and superconductivity.
In this article, we show examples of applications of the first princi-
ples phonon calculations.

In Sections 2–4, we take FCC-Al as examples of applications of
first principles phonon calculations. For the electronic structure
calculations, we employed the plane-wave basis projector aug-
mented wave method [21] in the framework of DFT within the
generalized gradient approximation in the Perdew–Burke–Ernzer
hof form [22] as implemented in the VASP code [23–25]. A
plane-wave energy cutoff of 300 eV and an energy convergence cri-
teria of 10�8 eV were used. A 30� 30� 30 k-point sampling mesh
was used for the unit cell and the equivalent density mesh was
used for the supercells together with a 0.2 eV smearing width of
the Methfessel–Paxton scheme [26]. For the phonon calculations,
supercell and finite displacement approaches were used with
3� 3� 3 supercell of the conventional unit cell (108 atoms) and
the atomic displacement distance of 0.01 Å.
2. Harmonic approximation

In crystals, it is presumed that atoms move around their equi-
librium positions rðljÞ with displacements uðljÞ, where l and j
are the labels of unit cells and atoms in each unit cell, respectively.
Crystal potential energy U is presumed to be an analytic function of
the displacements of the atoms, and U is expanded as
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Fig. 1. Phonon band structure and DOS of Al.
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where a; b; � � � are the Cartesian indices. The coefficients of the ser-
ies expansion, U0; UaðljÞ; Uabðlj; l0j0Þ, and, Uabcðlj; l0j0; l00j00Þ, are
the zeroth, first, second, and third order force constants, respec-
tively. With small displacements at constant volume, the problem
of atomic vibrations is solved with the second-order terms as the
harmonic approximation, and the higher order terms are treated
by the perturbation theory.

With a force FaðljÞ ¼ � @U
@uaðljÞ, an element of second-order force

constants Uabðlj; l0j0Þ is obtained by

@2U
@uaðljÞ@ubðl0j0Þ

¼ � @Fbðl0j0Þ
@uaðljÞ

: ð2Þ

Crystal symmetry is utilized to improve the numerical accuracy
of the force constants and to reduce the computational cost. The
more details on the calculation of force constants are found in
Refs. [8,9].

As found in text books [27–30], dynamical property of atoms in
the harmonic approximation is obtained by solving eigenvalue
problem of dynamical matrix DðqÞ,

DðqÞeqj ¼ x2
qjeqj; or

X
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qje
aj
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where mj is the mass of the atom j; q is the wave vector, and j is
the band index. xqj and eqj give the phonon frequency and polariza-
tion vector of the phonon mode labeled by a set fq; jg, respectively.
Since DðqÞ is an Hermitian matrix, its eigenvalues, x2

qj, are real.
Usually DðqÞ is arranged to be a 3na � 3na matrix [30], where 3
comes from the freedom of the Cartesian indices for crystal and
na is the number of atoms in a unit cell. Then eqj becomes a complex
column vector with 3na elements, and usually eqj is normalized to

be 1, i.e.,
P

ajjeaj
qj j

2 ¼ 1. eqj contains information of collective
motion of atoms. This may be understood as a set of atomic dis-
placement vectors,
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where A is the complex constant undetermined by Eq. (3), and

ej
qj

T ¼ exj
qj ; e
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.

As a typical example, the phonon band structure and phonon
density of states (DOS) of Al are shown in Fig. 1. The phonon
DOS is defined as

gðxÞ ¼ 1
N

X
qj

dðx�xqjÞ; ð6Þ

where N is the number of unit cells in crystal. Divided by N, gðxÞ is
normalized so that the integral over frequency becomes 3na. The
phonon band structure can be directly comparable with experimen-
tal data by neutron or X-ray inelastic scattering. They often show
reasonable agreements [20,31,32]. Frequency data by Raman and
infrared (IR) spectroscopy can also be well reproduced [12,33].
Irreducible representations of phonon modes, which can be used
to assign Raman or IR active modes, are calculated from polarization
vectors [12,34]. Atom specific phonon DOS projected along a unit
direction vector n̂ is defined as

gjðx; n̂Þ ¼
1
N

X
qj

dðx�xqjÞ n̂ � ej
qj

��� ���2: ð7Þ

This gjðx; n̂Þ can be directly compared with that measured by
means of nuclear-resonant inelastic scattering using synchrotron
radiation. In Ref. [17], phonon calculations of L10-type FePt pro-
jected along the c-axis and basal plane are well comparable to
experimental 57Fe nuclear-resonant inelastic scattering spectra
measured at 10 K in the parallel and perpendicular geometries,
respectively.

Once phonon frequencies over Brillouin zone are known, from
the canonical distribution in statistical mechanics for phonons
under the harmonic approximation, the energy E of phonon system
is given as

E ¼
X

qj

�hxqj
1
2
þ 1

expð�hxqj=kBTÞ � 1

� �
; ð8Þ

where T; kB, and �h are the temperature, the Boltzmann constant,
and the reduced Planck constant, respectively. Using the thermody-
namic relations, a number of thermal properties, such as constant
volume heat capacity CV , Helmholtz free energy F, and entropy S,
can be computed as functions of temperature [30]:

CV ¼
X
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and
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The calculated F; CV , and S for Al are shown in Fig. 2.

3. Mean square atomic displacements

With the phase factor convention of the dynamical matrix used
in Eq. (4), an atomic displacement operator is written as,

ûaðljÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2Nmj

s X
qj

âqj þ ây�qjffiffiffiffiffiffiffiffixqj
p eaj

qj eiq�rðljÞ; ð12Þ



Fig. 2. Thermal properties of Al. Entropy, CV , and Helmholtz free energy were
calculated with harmonic approximation (Section 2). QHA was employed to obtain
CP (Section 4). Physical units are shown with labels of the physical properties, and
the value of the vertical axis is shared by them. Dotted curve depicts the experiment
of CP [35].

Fig. 3. (a) Phonon frequencies of Al at X and L points with respect to unit cell
volume are shown by filled and open circles, respectively. The solid and dotted lines
are guides to the eye. (b) Uel þ Fph of Al with respect to volume at temperatures
from 0 to 800 K with 100 K step are depicted by filled circles and the values are fit
by the solid curves. Cross symbols show the energy bottoms of the respective
curves and simultaneously the equilibrium volumes. Lines connecting the cross
symbols are guides to the eye. (c) Volumetric thermal expansion coefficient of Al.
Calculation is shown with solid curve and experiments are depicted by filled circle
symbols [36] and dotted curve [37].

A. Togo, I. Tanaka / Scripta Materialia 108 (2015) 1–5 3
where ây and â are the creation and annihilation operators, respec-
tively. Distributions of atoms around their equilibrium positions are
then obtained as the expectation values of Eq. (12). The mean
square atomic displacement projected along n̂ is obtained as

jbun̂ðjÞj2
D E

¼
�h

2Nmj

X
qj

1þ 2nqj

xqj
jbn � ej

qjj
2
; ð13Þ

where nqj ¼ expð�hxqj=kBTÞ � 1

 ��1 is the phonon occupation num-

ber. Eq. (13) is lattice-point (l) independent since the phase factor
disappears. Anisotropic atomic displacement parameters (ADPs) to
estimate the atom positions during thermal motion can also be
computed and compared with experimental neutron diffraction
data. Thermal ellipsoids may be discussed using mean square dis-
placement matrix BðjÞ defined by

BðjÞ ¼
�h

2Nmj

X
qj

1þ 2nqj

xqj
ej

qj � ej�
qj : ð14Þ

The shape and orientation of an ellipsoid is obtained solving eigen-
value problem of this matrix. The method has been applied to show
the ORTEP (Oak Ridge Thermal Ellipsoid Plot)-style drawing of ADPs
[18]. Ref. [11] shows an example for a ternary carbide Ti3SiC2 having
a layered structure known as MAX phases, in which we can see
good agreement between calculated and experimental ADPs.

4. Quasi-harmonic approximation

By changing volume, phonon properties vary since the crystal
potential is an anharmonic function of volume. In this article, the
term ‘‘quasi-harmonic approximation (QHA)’’ means this volume
dependence of phonon properties, but the harmonic approxima-
tion is simply applied at each volume. Fig. 3a shows calculated
phonon frequencies of Al at X and L points with respect to ten dif-
ferent unit-cell volumes. Typically phonon frequency decreases by
increasing volume, and the slope of each phonon mode is nearly
constant in the wide volume range. The normalized slope is called
mode-Grüneisen parameter that is defined as

cqjðVÞ ¼ �
V

xqjðVÞ
@xqjðVÞ
@V

: ð15Þ

Once dynamical matrix is known, cqj is easily calculated from
the volume derivative of the dynamical matrix [29],

cqjðVÞ ¼ �
V

2ðxqjÞ2
X
abjj0

eaj�
qj

@Dab
jj0 ðV ;qÞ
@V

ebj0
qj : ð16Þ
The quantity can be related to macroscopic Grüneisen parameter c
using mode contributions to the heat capacity Cqj found in Eq. (9),
c ¼

P
qjcqjCqj=CV [28,30].

Silicon is known as a famous exception to have large negative
mode-Grüneisen parameters. Mode-Grüneisen parameter is a
measure of anharmonicity of phonon modes and is related to
third-order force constants directly [29]. Therefore crystals that
possess large anharmonic terms beyond third-order terms in
Eq. (1) can show non-linear change of phonon frequency with
respect to volume. This is often observed in crystals that exhibit
second- or higher-order structural phase transitions [6].

The phonon frequency influences the phonon energy through
Eq. (8). The thermal properties are thereby affected. Using thermo-
dynamics definition, thermodynamic variables at constant volume
is transformed to those at constant pressure that is often more
easily measurable in experiments. Gibbs free energy GðT; pÞ at
given temperature T and pressure p is obtained from Helmholtz
free energy FðT; VÞ through the transformation,

GðT;pÞ ¼min
V

FðT; VÞ þ pV½ �; ð17Þ

where the right hand side of this equation means finding a mini-
mum value in the square bracket by changing volume V. We may
approximate FðT; VÞ by the sum of electronic internal energy
UelðVÞ and phonon Helmholtz free energy FphðT; VÞ, i.e.,
FðT; VÞ ’ UelðVÞ þ FphðT; VÞ. UelðVÞ is obtained as total energy of
electronic structure from the first principles calculation, and the
first principles phonon calculation at T and V gives FphðT; VÞ. The
calculated UelðVÞ þ FphðT; VÞ are depicted by the filled circle sym-
bols in Fig. 3b, where the ten volume points chosen are the same
as those in Fig. 3a. The nine curves are the fits to equation of states
(EOS) at temperatures from 0 to 800 K with 100 K step. Here the
Vinet EOS [38] was used to fit the points to the curves though
any other functions can be used for the fitting. The minimum values
at the temperatures are depicted by the cross symbols in Fig. 3b and
are the Gibbs free energies at the temperatures and the respective
equilibrium volumes are simultaneously given. Volumetric thermal
expansion coefficient, bðTÞ ¼ 1

VðTÞ
@VðTÞ
@T , is obtained from the calcu-

lated equilibrium volumes VðTÞ at dense temperature points. bðTÞ
for Al is shown in Fig. 3c, where we can see that the calculation
shows reasonable agreements with the experiments. In thermody-
namics, heat capacity at constant pressure CP is given by
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CPðT;pÞ¼�T
@2GðT;pÞ
@T2 ¼CV ðT;VðT;pÞÞþT

@VðT;pÞ
@T

@SðT;VÞ
@V

����
V¼VðT;pÞ

:

ð18Þ

In Eq. (18), the second term of the second equation is understood as
the contribution to heat capacity from thermal expansion. CP for Al
is shown in Fig. 2. The agreement of the calculation with the exper-
iment is excellent. At high temperatures, the difference between CP

and CV is not negligible in Al. Therefore it is essential to consider
thermal expansion for heat capacity.

QHA is known as a reasonable approximation in a wide temper-
ature range below melting point except for temperatures very
close to melting point where higher-order terms in Eq. (1) become
evident [39].
5. Stability condition and imaginary mode

At equilibrium, @U
@raðljÞ ¼ 0, a crystal is dynamically (mechani-

cally) stable if its potential energy always increases against any
combinations of atomic displacements. In the harmonic approxi-
mation, this is equivalent to the condition that all phonons have
real and positive frequencies [29]. However under virtual thermo-
dynamic conditions, imaginary frequency or negative eigenvalue
can appear in the solution of Eq. (3). This indicates dynamical
instability of the system, which means that the corrective atomic
displacements of Eq. (5) reduce the potential energy in the vicinity
of the equilibrium atomic positions.

Imaginary mode provides useful information to study displacive
phase transition. A typical example is shown in Fig. 4a to c [16].
Imaginary modes can be found only for b-Ti, that has BCC structure,
at both P and N points. This indicates that b-Ti is unstable at low
temperature. Such imaginary modes cannot be seen for either
x-Ti whose crystal structure is shown in Fig. 4d or a-Ti (HCP).
Experimentally b-Ti is known to occur above 1155 K. At such high
temperatures, large atomic displacements can stabilize the BCC
structure. In such a case, the perturbation approach is invalid.
Phonons with large atomic displacements may be treated by
self-consistent phonon method [29,40] or by a combination of
molecular dynamics and lattice dynamics calculation [41–43],
which is not discussed in this article.

A given structure having imaginary phonon modes can be led to
alternative structures through continuous atomic displacements
Fig. 4. Phonon band structures of (a) a-Ti (HCP), (b) b-Ti (BCC), and (c) x-Ti. The
figure (d) shows the hexagonal crystal structure of x-Ti.
and lattice deformations. The present authors systematically inves-
tigated the evolution of crystal structures from the simple cubic
(SC) structure [10]. The inset of Fig. 5 shows the phonon band
structure of SC-Cu (Pm�3m). Imaginary modes can be found at
Mð1=2;1=2;0Þ and Xð1=2;0;0Þ points. Then the SC structure is
deformed along these directions. In order to accommodate the
deformation in the calculation model with the periodic boundary
condition, the unit cells are expanded by 2� 2� 1 for the M point
and 2� 1� 1 for the X point. The M point deformation breaks the
crystal symmetry of SC (Pm�3m) to P4=nmm. The doubly degener-
ated instability at the X point leads to Pmma and Cmcm as highest
possible symmetries. The deformed crystal structures are relaxed
by first principles calculations imposing the corresponding
space-group operations. After these procedures, body-centered
tetragonal (BCT), simple hexagonal (SH), and FCC are respectively
formed. The whole procedure finishes when all crystal structures
at the end-points are found to be dynamically stable. Finally a tree-
like structure of crystal structure relationships was drawn as
shown in Fig. 5, where thick lines indicate phase transition path-
ways (PTPs). The space-group type written near a line is a common
subgroup of initial and final structures. The presence of the line
indicates that the energy decreases monotonically with the phase
transition. In other words, the transition can take place sponta-
neously without any energy barrier. The line is terminated when
the final structure is dynamically stable.

In the line diagram, x is located at the junction of two path-
ways, i.e., x! BCC! HCP and x! FCC. The instability of x at
the C point leads to BCC, which is still dynamically unstable and
eventually leads to HCP. Another instability at the M point leads
to FCC. The other instability at the K point, which is doubly degen-
erate, leads to FCC. On the path from x to BCC, the crystal symme-
try of x having the space-group type of P6=mmm is once lowered
to P�3m1 and then becomes Im�3m (BCC) after the geometry opti-
mization. Both x- and BCC-Cu are dynamically unstable, which
can be formed only under crystal symmetry constraints. FCC-Cu
is, of course, dynamically stable. Several PTPs between BCC and
FCC have been proposed in literature. However, they are mostly
based only upon investigation of continuous lattice deformation.
For example in the classical Bain path, formation of BCT in between
BCC and FCC is considered. Formation of SC is taken into account in
the ‘‘trigonal Bain path’’. Normal modes of phonon, which should
be most adequate to describe the collective atomic displacements,
have not been considered. The presence of x as the lowest energy
Fig. 5. Line diagram of structural transition pathways in Cu. The inset shows
phonon band structure of simple cubic (SC) Cu. Open and filled symbols represent
dynamically unstable and stable crystal structures, respectively. Lines connecting
these symbols are the phase transition pathways for which space-group types are
shown near the lines.
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barrier in the BCC–FCC pathway had not been reported before Ref.
[10]. The situation is the same for the BCC–HCP transition, known
as the Burgers path. The Burgers path was thought to be quite com-
plicated from the viewpoint of the lattice continuity. On the basis
of the present study, it can be easily pointed out that the BCC–
HCP transition pathway is along the space-group type of Cmcm.

Evolution diagram was constructed in the same way for
NaRTiO4 (R: rare-earth metal) with Ruddlesden–Popper type struc-
ture [13]. Inversion symmetry breaking by oxygen octahedral rota-
tions was unambiguously demonstrated. The mechanism is
expected to lead to many more families of acentric oxides.

6. Interactions among phonons and lattice thermal conductivity

Using the harmonic phonon coordinates, anharmonic terms in
Eq. (1) are transformed to a picture of phonon–phonon interactions
[8,28]. Lattice thermal conductivity can be accurately calculated by
solving linearized Boltzmann transport equation with the phonon–
phonon interaction strength obtained using first principles
calculation [9,44,45]. Although the computational cost for such cal-
culations is many orders of magnitudes higher than the ordinary
DFT calculations of primitive cells, such calculations have already
been applied for many simple compounds and computed lattice
thermal conductivities show good agreements with experimental
data [9,45]. Calculations with special focus on searching thermo-
electric materials have also been made [14,20,45].
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