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Abstract 

It is shown for an n x n symmetric positive definite matrix T = (t, j) with negative off- 
diagonal  elements, positive row sums and satisfying certain bounding  conditions that its 
inverse is well approximated,  unifornaly to order l / n  2, by a matr ix S = (s,,,). where 
s, i --- 6,.i/t,, + l / t . . .  6,~ being the Kronecker delta function, and t.. being i.he sum of  
the elements of  T. An explicit bound on the approxmaation error is provided. © 1998 
Elsevier Science Inc. All rights reserved. 

I. Introduction 

We are concerned here with n × n symmetric matrices T = (ti , i)  which have 
negative off-diagonal elements and positive row (and column) sums, i.e., 

!1 

t i . j = t / , , , t c i < O  f o r i C - j  and Z t " ~  > 0  for i , j  = 1 . . . . .  :1. 

Such matrices must be positive definite and hence fall into the class of M-ma- 
trices. (See, e.g., [1] for the definition and properties of M-matrices.) 

t l  

It is convenient to introduce an array { u;. i };,i~ ~ of positive numbers defined 
in terms of T as follows: 
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I! 

u i j = - t i . j  for i T~ j  and u~,~=~-~j~.~., i , j =  I . . . .  ,n .  

Then we have 

ui,j > 0, ui.j = uj,,, ti.j = -u , . j  for i ~- j,  and 
t! 

tci = E U c k ,  i , j  = 1 . . . .  ,n.  
k=! 

Moreover, it is convenient ',o introduce the notation 

( t )  

I I  I !  

m = min . . . .  ui,,, M = max ,i,j, '.. = ~"}i,j = ~-'~u~.,, > 0, (2) 
I ,.I t ,.! 

i , j=:  I k : . : '  

Ilall = m a x ; j  I a , j  I for a general matrix A -  (ai.j), and the n x n symmetric 
positive definite matrix S = (s,j), with 

6; i 1 
Si4 --- ' + ~ , 

ti. i l . .  

where 6,,j denotes the Kronecker delta function. 

Theorem. 

C(m, M) 
l iT- '  - all 

n 2 

where 

( M) M C ( m , M ) =  ! + - - -  ---~. 
I l l  m -  

The authors [2] use this theorem while establishing the asymptotic normality 
of a vector-valued estimator arising in a study of the Bradley-Terry model for 
paired comparisons. Depending on n, which goes to infinity in the asymptotic 
limit, we need to consider the inverse T-' of a matrix T satisfying Eq. (1) with 
m and M being bounded away from 0 and infinity. Since it is impossible to ob- 
tain this inverse explicitly, except for a few special cases, we show that the ap- 
proximate inverse S is a workable substitute, with the attendant errors going to 
zero at the rate l / n  2 as n ~ ~ .  

Computing and estimating the inverse of a matrix has been extensively 
studied and described in the literature. See [3-5] and references therein. In 
[4], the characterization of inverses of symmetric tridiagonal and block tridi- 
agonal matrices is discussed, which gives rise to stable algorithms for comput- 
ing their inverses. [3] and [5] derive, among other things, upper and lower 
bounds for the elements of the inverse of a symmetric positive definite matrix. 
In particular, for a symmetric positive definite matrix A = (a,,j) of dimension 
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n, the following bounds on the diagonal elements of A -~ are given in [3] and 
[51: 

(~x - ai.i) 2 1 (au - fl)2 
) ~ (~ , . ,  - E L ,  ,,f.,,) ~ (A-'),., ~< /~ /~(EL, '~,., -/~,,,. ,) ' 

where • >i 2, and 0 < fl ~< At, 2t and 2,, being the smallest and largest eigenval- 
ues of  A, respectively. 

The next section contains the proof  of  the theorem, and some remarks are 
given in Section 3. 

2. Proof of the theorem 

Note that 

r - t  - S = ( r  -I - S ) ( l , , - -  TS) + S ( I , -  TS), 

where L, is the n x n identity matrix. Letting V -- !,, - TS and W = S V ,  we have 

T -~ - S  = ( T  - t  - S ) V  + W.  

Thus the task is to show that I I F I I < . C ( m , M ) ,  where the matrices 
F = n 2 ( T  - '  - S )  and G = n 2 W  satisfy the recursion 

F = F V  + G. (3) 

By the definitions of S, V = (v,,/) and W = (w,,/), it follows from Eqs. (I) and 
(2) that 

t l  

Vi..t = t'ii,j - E t i , k S k . /  

'£ (0 ,  4 l )  
= 6 , . , / -  ti.k ~ + -  

~= l t/,/ t . .  

= ~i,i ti.j tti.i 
t j . j  t . .  

= (1 - 6i4) ui,/ ui., 
tj.j t.. 

and 

14,'ij = 
.. . ) ( . , . . . . . )  

y ~ : ~ . . k t ' k , j  = ~ + ( 1 - -  6 , . j  ) " 
k=-I ,=t tu ~ t/./ t.. 

(4)  

( ! - 6,. j )u,. j  u,..~ u / j  

t i , i t j ,  i t i f f . ,  t j j t . .  

) £ ' (  ,,,, k--, ~ (1 - a~.,.) uk,/ uk.~. .. (5) = t,.j T.: + ~ ( I - , ~ . j )  - T T . .  k :  ! t i4 
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Again by Eqs. (1) and (2), we have 

ui4 M u~ M 
0 < ti,itj.j <~ 0 < ' <~ m2R 2 ' ti,it., m2/'/2 

so that 
a a 

[w~ji <~ - -  and [w~j - w~.k[ <~ ~ for i , j , k  = I . . .  ,n, 
it 2 ~ 

where a = 2 M / m  2. Equivalently, in terms of the elements of  G = (gij)" 

Ig~jI ~< a and Ig~.j - gi.,l <~ a, i , j , k  = 1, . . .  ,n. (6) 

We now turn our attention to Eq. (3), expressed in terms of the matrix ele- 
ments J;.j and gi,, in F and G, respectively, and the formula for vi,j in Eq. (4): 

t i  t! 

Z E "" f j =  f . , ( l - f k j )  ukJ f . , -~. .  + g i j ,  i , j =  l , . . . , n .  (7) 
, :!  tjj , : l  

The task is to show If, j I <~ C ( m , M )  for all i and j. 
Two things are readily apparent in Eq. (7). To begin with,  apart from the 

factor (I - / ik j )  in the first sum, which equals one except when k = j, the first 
and second sums are weighted averages of .f,.k, k = 1, . . . .  n: the positive 
weights u,.j/tj.j and uk.,/t., each add to unity in the index k. Secondly, the index 
i plays no essential role in the relationship; it can be viewed as fixed. If we take i 
to be fixed and notationally suppress it in Eq. (7), then Eq. (7) assumes the 
form of n linear equations in the n unknowns .li . . . . .  .I;,: 

t l  t !  

f ;  = l - "*"  t , , .k *::::l t/./ ~k~l "~ ~ + g/' j = I , . . . ,  n. (8) 

Instead of solving these equations, we will show that under the bounding con- 
ditions 

Ig i l  <<. a, I g , - g , I  <~ a, j , k =  1, . . . .  n, 

(see Eq. (6)) any solution of Eq. (8) must satisfy the inequalities 

I.I) 1 <~ 5 I + - -  a, . / = 1  . . . . .  n, (9) 
. n l  

so that I J i l  ~ C ( m , M ) ,  j = I, . . . .  n, thereby completing the proof. 
Let ~ and [I be such that .I; = maxl ~, <,,f, and Ji~ = mini ~.~, ~,,.A. With no 

loss of  generality, assume fl;, f> I./}J I • (Otherwise, we may reverse the signs 
of the ./~'s and proceed analogously.) There are two cases to consider: 

Case !." ./is >t O. Then 
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n n 
Uk.k .f,=~(1-~,,)"'.', ZA~.. +g, 

k - 1 - ~ ' ~  k :-: I 

I i  l1 
Uk.~ llk,k ~ ~  ~ T . . + g  • , 

k = I - ~ ' ~  k = ! 

( Uk'~t llk.k ) 
= A 

k = ! t~,~ t.. 
+ g~ 

z(",., u,.,) 
<~ f~ t ~  t.. kEA " 

+ g:~, 

where A = {k" u~,.,/t,., > Uk.k/t..}. Let p denote the cardinality of A, and ob- 
serve that 

z( ) " '  m, . - m  u~.~ U k , k  ~<  _ ~ (10) 
k~.4 t~.~ t.. M p  + m(n - p) mp + M(n  - p)  <~ M + m'  

the first inequality being an immediate consequence of the constraints 
m<~ucj <~ M (see Eq. (2)) and the sum formulas in Eqs. (1) and (2), the second 
inequality taking into account that the middle expression in Eq. (10) is a con- 
cave function of p (when viewed as a continuous variable between 0 and n), 
with its maximum occurring at p = n/2 .  Thus, 

.f~ <~.f~Z ( u~ u~.k ) + g, ~.[~M - m + g~ <~./~ M - m 
~,~.4 l~,~ t.. M + m M + m 

ka,  

so that 

,( ,,) 
.1;~ ~ I+--m a = C ( m , M ) ,  

thereby estabi!ishing Eq. (9) and completing the proof. 
Case IL" ./~ < 0. Let h~ = ./~. -./}~ >_- 0, k = 1 , . . . ,  n. Then 

h2t = . f ,  - .fl~ 
I I  t l  

ttk.l~ ~Z.r, "~~ ~.r,.~+~,-~,,  
k = l  / ' z . z  /,':: I ' 

n I i  

Z l!~ .~ l.tk./t 
= hk + g.~ - -  g/I 

k: I l~.:~ l/I./I 

• + g~ - g l ~ ,  
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where A = {k" uk,,/t~,~ > uk,t~/tt~,l~}. The argument from this point proceeds 
analogously to that for Case I. Letting p denote the cardinality of A, one ob- 
tains 

) Mp mp M - m Z uk,~ uk,, <~ 
k~A t~.~ tt~,~ Mp  + m(n - p) mp + M(n - p) <~ M + m 

which leads to 

M - m  M - m  
~- g ,  - g~ <~ h ,  ~ + a ,  h~ <~ h~ M + m M + m 

so that 

,( 1 + - -  a, 
m 

thereby establishing Eq. (9) and completing the proof. [] 

3. Remarks 

While our proof of the theorem is somewhat long, we do not see how to sim- 
plify it by using any of the well-known properties of M-matrices. 

The bound C(m,M)/n" on the approximation error is a product of two fac- 
tors, one depending on m and M, the other on n. For large n, with m and M 
held bounded away from 0 and infinity, the elements of S (and hence of T -~) 
are all of order 1 In, and the errors (i.e., the elements of T-~ - S) are uniformly 
O(l/n-') as n ~ c~. This fact is crucially used in Ref. [2]. 

A particular case of the matrix T, described below, shows that the factor 
l /n  2 is best possible in the sense that any bound of the for C(m,M)]?(n) re- 
quires ?(n) = O(n z) as n ~ ~ ;  no faster growth rate than n 2 is allowed. On 
the other hand, it is natural to ask whether the factor C(m,M) is best possible. 
To clarify the issue, for given integer n and given m and M, 0 < m ~< M < ~ ,  
let Q,,(m,M) denote the set of n x n symmetric positive definite matrices satis- 
fying (1) with m ~< uij ~< M, i , j  = 1 , . . . ,  n, and define 

C,,(m,M) = sup{.- llT -' - Sll: T ~ Q,(m,M),  n = 1,2, . . .}.  

It follows from the theorem that Co(m,M) <~ C(m,M) = (1 + M / m ) M / m  z. But 
for the special matrix T satisfying Eq. (1) with u~,~ = M and u,j = m for all oth- 
er (i, j ) ,  we find that 
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S o  

(T- J)i.j = 

2 
2 M + ( n -  i )m 

! 
2 M + ( n -  ! )m 

3 M + ( 2 n -  I )m 
(t1+ I im(2M+(n-  ! )m) 

M q- mn 
(n+ I )m(2M+ (n -  i )m) 

f o r / = j =  1, 

f o r / =  l , j -¢  1 or i ¢  l , j =  1, 

f o r / = j  ¢ 1, 

fo r l  ¢ i ¢ j ¢  1. 

- 2 M  
(T-'  - S),.. (M + (n - 1)m)(2M + ( n -  i)m) 

from which it follows that C,,(m,M) >>. 2M/m ~-. The same matrix T justifies the 
constraint on 7(n) described above. 

The gap between 2M/m 2 and (1 + M / m ) M / m  2 suggests that there might be 
room for improvement in our bound. Indeed, by computer, we have numerical- 
ly inverted ~. very large number of matrices of various dimensions (some as 
large as 300 x 300) and found that the inequality nZllT -~ - all <~ 2M/m2 holds 
in all cases. It would therefore be interesting to see whether 
C,,(m,M) = 2M/m 2. 

We finish with one final observation. Surprisingly, it is possible to evaluate 
the second sum in Eq. (7) explicitly: 

tl 
Z ,~ lli. i 

.ti,k Uk,k = __il-  

k= I t.. tc~t.. 

which is identical to, and permits a cancellation with, one of the three terms 
defining g;j (cf., Eq. (5)). To obtain this, one multiplies both sides of Eq. (7) 
by t/,,;, adds over j (j = 1, . . . .  n), and carries out the suggested algebra. While 
we have not found much use for this identity, it does show that./~, appearing in 
the proof of the theorem, is strictly negative. Since, as it turns out, .f~ can be 
positive or negative, neither case described in the prnof is superfluous. 
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