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Abstract

It is shown for an n x n symmetric positive definite matrix 7 = (7, ;) with negative ofl-
diagonal elements, positive row sums and satisfying certain bounding conditions that its
inverse is well approximated, uniformly to order 1/n*. by a matrix S = (s,,). where
sy = 0./t + 1/1... d,, being the Kronecker delta function, and r.. being the sum of
the elements of T. An explicit bound on the approximation error is provided. © 1998
Elsevier Science Inc. All rights reserved.

1. Introduction

We are concerned here with n x n symmetric matrices T = (¢;;) which have
negative off-diagonal elements and positive row (and column) sums, i.e.,

Such matrices must be positive definite and hence fall into the class of M-ma-
trices. (See, e.g., [1] for the definition and properties of M-matrices.)

It is convenient to introduce an array {u,_r,}:,"i , of positive numbers defined
in terms of T as follows: ’
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n
U; = —t,'_j for 17/—'_] and U, = Zti.kv l,j =1,... y N
k=1

Then we have

U, > 0, Ui; = U, ti.j = —U;; fori :;ﬁj, and

Moreover, it is convenient ¢9o introduce the notation

n

n
m = mln U, M= max u; ;, t. = E L= E Upy > 0, (2)
i - iy “ -
. - ij=1 k-

l4)| = max;; | a;; | for a general matrix 4 = (a,;), and the n x n symmetric
positive definiie matrix § = (s, ), with
o 1

B ti; L.

Si.j )

where J;; denotes the Kronecker delta function.

Theorem.

C(m,
I - s) < <M

where

Cm M) = (l +M —A:I;
m ) m’

The authors [2] use this theorem while establishing the asymptotic normality
of a vector-valued estimator arising in a study of the Bradley-Terry model for
paired comparisons. Depending on », which goes to infinity in the asymptotic
limit, we need to consider the inverse T~' of a matrix T satisfying Eq. (1) with
m and M being bounded away from 0 and infinity. Since it is impossible to ob-
tain this inverse explicitly, except for a few special cases, we show that the ap-
proximate inverse S is a workable substitute, with the attendant errors going to
zero at the rate | /n® as n — oc.

Computing and estimating the inverse of a matrix has been extensively
studied and described in the literature. See [3-5] and references therein. In
[4]. the characterization of inverses of symmetric tridiagonal and block tridi-
agonal matrices is discussed, which gives rise to stable algorithms for comput-
ing their inverses. [3] and [5] derive, among other things, upper and lower
bounds for the elements of the inverse of a symmetric positive definite matrix.
In particular, for a symmetric positive definite matrix 4 = (a;;) of dimension
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n, the following bounds on the diagonal elements of A~' are given in [3] and

[5]):

1 (2 —a;)° N B e )
o * a(aai,i - 'k':] alz_k) < (A )i'i g ﬁ ﬁ(Zk 1 lk Bau

where o > 4, and 0 < < 4), 4, and Z, being the smallest and largest eigenval-
ues of A, respectively.

The next section contains the proof of the theorem, and some remarks are
given in Section 3.

2. Proof of the theorem

Note that
T'-S=(T"-8),-T1S)+S(I, - TS).
where [, is the n x n identity matrix. Letting V = I, — TS and W = SV, we have
T'—S=(T"-S)V+W.

Thus the task is to show that ||F||<C(m,M), where the matrices
F =n*(T"' = 5) and G = n*W satisfy the recursion

F=FV+G. (3)

By the definitions of S, V = (v,;) and W = (w, ), it follows from Egs. (1) and
(2) that

n
U,J == (S,J - Zthl‘sl‘J
n
O J oy
\I Ztl k( “ ) (4)

t~ u
._6,\,-—--'-1——'-'
tj.j L.
ui‘i Ui
=(1-0,) ———
oot

and

(S:k 1 )( . Uy ; uk.k)
= DSkl = +— (1 -8kt - 2
Z ok Z( ti.i I. ( ks (/,_,‘ t..
LTy TP VR T I ol |~s.-i‘ﬂ-f“—-“) (5)
—;fi.i ((l ()kt,) t_,'.j L. ) +Zt (( ‘l“’) . t..

k=10 Ly

_ (l - 5,»‘j)u,~‘,- _ U, _ Uj;
t,'jtj\i tiif.. tj_jt..
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Again by Egs. (1) and (2), we have

so that
a
)

1} a . .
IW,'Jlgn—z and |W1J—W[.[(I< forl,_],k= ],.. . n,

n

where a = 2M /m?. Equivalently, in terms of the elements of G = (g;;):

lgij|<a and |gi; —gix|<a, i, jk=1,...,n (6)

We now turn our attention to Eq. (3), expressed in terms of the matrix ele-
ments f;; and g;; in F and G, respectively, and the formula for v;; in Eq. (4):

kal—aﬁ, ka S gy bj=hon (7)

The task is to show | f;; | <C(m,M) for all i and j.

Two things are readily apparent in Eq. (7). To begin with, apart from the
factor (1 — d;;) in the first sum, which equals one except when & = j, the first
and second sums are weighted averages of fi,, k =1,...,n; the positive
weights u; ;/t;; and uy 4 /t.. each add to unity in the index k. Secondly, the index
i plays no essential role in the relationship; it can be viewed as fixed. If we take i
to be fixed and notationally suppress it in Eq. (7), then Eq. (7) assumes the
form of n linear equations in the n unknowns f....,/,:

R u u .
./,/':ka(l"ol\; S ka-ﬂ-i—g,. Jj=1....n (8)
k=1

Instead of solving these equations, we will show that under the bounding con-
ditions

lgil <a, |g-&l<a jk=1,..., n,

(see Eq. (6)) any solution of Eq. (8) must satisfy the inequalities

: l M
Il < ;(l +;;)a. i=1h.. n, (9)

4

so that | f; | <C(m,M), j=1,...,n, thereby completing the proof.

Let « and f8 be such that f, = max, ¢, ,f; and f = min, ;. f;. With no
loss of generality, assume f, > | f; | . (Otherwise, we may reverse the signs
of the fi's and proceed analogously.) There are two cases to consider:

Case I: f; 20. Then
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Zﬁ (1-du) lf“ Zﬁ‘—‘ﬂ+g,

where 4 = {k: w,,/t,, > u;4/t..}. Let p denote the cardinality of 4, and ob-
serve that

/_‘i"_—l_l_‘ﬂ)< Mp mp <M—m (10)
k€4( Mp+mn—p) mp+Mmn—p) M+m

the first inequality being an immediate consequence of the constraints
m < u;; <M (see Eq. (2)) and the sum formulas in Egs. (1) and (2), the second
inequality taking into account that the middle expression in Eq. (10) is a con-
cave function of p (when viewed as a continuous variable between 0 and »n),
with its maximum occurring at p = n/2. Thus,

. . Uy Uy M —m M —-m
1< b3 - yXx Jx + 1$ ’;, +a
U Az:( Ly L. ) &< M+ n Ex s M+m

so that

f<3 (n +ﬂ) = Clm,M).

thereby estabiishing Eq. (9) and completing the proof.
Case II: f; <0. Lethy=fi —f3 20, k=1,....n Then

h :fx_f/i

n
Ui~ U p
<E E —L 4 — gy
ﬁ( fra o A l/;/f g 8

_Zmu“ Zlu—-—+g,—g',;

lpgp

Wy U Ui p
= Z + &~ &

lLyw  Ipp

. Uy, Upp
§hZZ( 1”_,')+g1—g/i*
kA Lyx ’/f.[i
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where 4 = {k: ua/tss > trp/tpp}- The argument from this point proceeds
analogously to that for Case I. Letting p denote the cardinality of 4, one ob-
tains

yl‘_gf__u_ké < Mp —_ mp <M—m
e\ trx tgp) Mp+mn—p) mp+Min-p)  M+m’

which leads to

m
+8 —gpShi—— +a,

<h —
hx\h“M%—m M+m

so that

1 M
< < - _—
fa\h,\z(l-l—m)a,

thereby establishing Eq. (9) and completing the proof. [

3. Remarks

While our proof of the theorem is somewhat long, we do not see how to sim-
plify it by using any of the well-known properties of M-matrices.

The bound C(m, M)/n? on the approximation error is a product of two fac-
tors, one depending on m and M, the other on n. For large n, with m and M
held bounded away from 0 and infinity, the elements of S (and hence of T~')
are all of order 1/n, and the errors (i.e., the elements of T-! — S) are uniformly
O(1/n*) as n — oo. This fact is crucially used in Ref. [2].

A particular case of the matrix T, described below, shows that the factor
1/n? is best possible in the sense that any bound of the for C(m,M)/y(n) re-
quires y(n) = O(n?) as n — oo; no faster growth rate than n® is allowed. On
the other hand, it is natural to ask whether the factor C(m, M) is best possible.
To clarify the issue, for given integer n and given m and M, 0 < m <M < oo,
let O,(m, M) denote the set of n x n symmetric positive definite matrices satis-
fying (1) with m<u,; <M, i,j=1,...,n, and define

C.(mM) = sup{n*||T"' =S||: T € Q,(m,M), n=1,2,...}.

It follows from the theorem that C,(m,M) < C(m,M) = (1 + M /m)M /m*. But
for the special matrix T satisfying Eq. (1) with u;; = M and u;; = m for all oth-
er (i,/), we find that
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( m fori=j =1,
(), = | m;:—)” fori=1,j#lori#l,j=1,
. DM+ (= Tm) fori=j#1,
| ettt anm for 1 #i#j# 1.

So

—2M
M+ (n—1)m)2M + (n — i)m)’

from which it follows that C,(m, M) > 2M /m?*. The same matrix T justifies the
constraint on y(r) described above.

The gap between 2M /m? and (1 + M /m)M /m* suggests that there might be
room for improvement in our bound. Indeed, by computer, we have numerical-
ly inverted z very large number of matrices of various dimensions (some as
large as 300 x 300) and found that the inequality #*||T~' — S| < 2M /m? holds
in all cases. It would therefore be interesting to see whether
C,(m,M) = 2M /m>.

We finish with one final observation. Surprisingly, it is possible to evaluate
the second sum in Eq. (7) explicitly:

(T =S =

n

. Uk k 5 Ui
— = —n" —,
Z‘/ e til..

k=1

which is identical to, and permits a cancellation with, one of the three terms
defining g;; (cf., Eq. (5)). To obtain this, one multiplies both sides of Eq. (7)
by ¢,,, adds over j (j = 1,....n), and carries out the suggested algebra. While
we have not found much use for this identity, it does show that f;. appearing in
the proof of the theorem, is strictly negative. Since, as it turns out, f, can be
positive or negative, neither case described in the proof is superfluous.
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