
Theoretical Computer Science 411 (2010) 410–444

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Strong normalization property for second order linear logic
Michele Pagani a,∗, Lorenzo Tortora de Falco b
a Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, 10149 Torino, Italy
b Dipartimento di Filosofia, Università Roma Tre, Via Ostiense 234, 00144 Roma, Italy

a r t i c l e i n f o

Article history:
Received 18 June 2007
Received in revised form 17 June 2009
Accepted 15 July 2009
Communicated by P.-L. Curien

Keywords:
(Weak, strong) normalization
Confluence
Standardization
Linear logic
Proof-nets
Additive connectives
Sliced pure structures

a b s t r a c t

The paper contains the first complete proof of strong normalization (SN) for full second
order linear logic (LL): Girard’s original proof uses a standardization theorem which is not
proven. We introduce sliced pure structures (sps), a very general version of Girard’s proof-
nets, and we apply to sps Gandy’s method to infer SN from weak normalization (WN). We
prove a standardization theorem for sps: if WNwithout erasing steps holds for an sps, then
it enjoys SN. A key step in our proof of standardization is a confluence theorem for sps
obtained by using only a very weak form of correctness, namely acyclicity slice by slice.
We conclude by showing how standardization for sps allows to prove SN of LL, using as
usual Girard’s reducibility candidates.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In every abstract approach to computation, the distinction between terminating andnon-terminating processes is crucial.
A rewriting system enjoysweak normalization (WN) if every term of the system can be evaluated in a finite number of steps.
In the λ-calculus, non terminating computations start from λ-terms that strongly exploit self-application: every λ-term

can be applied to itself (see, for example, [13]). Termination fails for the λ-calculus (even in its weak form WN), but holds
for some of its most remarkable subsystems: the simply typed λ-calculus and its extension Girard’s system F [6]. The
proofs of WN for these calculi have a deep logical content: they correspond to proofs of consistency in the logical sense,
as highlighted by the proofs-as-programs paradigm. This paradigm is also called Curry–Howard isomorphism and establishes
a correspondence between a fragment of intuitionistic natural deduction and the typed λ-calculus, so that basically: (i) a
type can be seen as a formula (and vice versa); (ii) a λ-term can be seen as a proof (and vice versa); and (iii) the β-reduction
of a λ-term can be seen as the application of the cut-elimination procedure to the corresponding proof (and vice versa).
The β-redexes correspond to the cuts of the natural deduction (i.e. to the pairs of an introduction rule and an elimination
rule of the same connective [19]), hence the β-reduction to a normal form is equivalent to eliminating the cuts in a proof:
WN corresponds exactly to cut-elimination. In traditional proof-theory (dating back to Gentzen) cut-elimination is a key
property of a logical system, from which the consistency of the system immediately follows1: WN of the simply typed λ-
calculus (resp. of system F) corresponds then to a consistency proof for the implicational fragment of intuitionistic natural
deduction NJ (resp. second order natural deduction NJ2).
The proofs-as-programs approach is a way to put constraints on the possibility of building λ-terms, and more precisely

on self-application: from the logical point of view, these constraints are sufficient conditions to prove the consistency of

∗ Corresponding author. Tel.: +39 6 54 57 77 537; fax: +39 6 54 57 73 40.
E-mail addresses: pagani@di.unito.it, michpag@gmail.com (M. Pagani), tortora@uniroma3.it (L. Tortora de Falco).

1 Things went actually the other way round: cut-elimination was proven by Gentzen in order to prove consistency of Peano Arithmetic PA.

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.07.053

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:pagani@di.unito.it
mailto:michpag@gmail.com
mailto:tortora@uniroma3.it
http://dx.doi.org/10.1016/j.tcs.2009.07.053

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 411

the corresponding logical system.2 While in the simply typed λ-calculus self-application is simply forbidden, in system F a
(weak) form of self-application is accepted. System F combines then computational strength and termination (here is the
remarkable interest of WN for F). Gödel’s second incompleteness theorem sheds then a new light on the ‘‘difficulty’’ (and
the deep meaning) of the termination property. Indeed, Peano Arithmetic PA can be translated into NJ2, so that WN for F
cannot be proven within NJ2 (and of course this holds for any subsystem of the λ-calculus whose corresponding logical
system contains PA).
The terms of system F actually enjoy strong normalization (SN), amuch stronger termination property thanWN:whatever

evaluation strategy one applies to F’s terms one eventually reaches a normal form. SN corresponds to saying that the tree
of the computations starting from a term is well-founded. Several techniques to infer SN from WN have been proposed
(see for example [21]). In [8] (p.150–159), the author adapted Gandy’s proof for Gödel’s system T (see [5]) to NJ. The general
method proposed by Gandy can be applied to any logical system S as follows:

1. modify S in such a way that ‘‘nothing is lost’’ during normalization3 (rewriting steps never erase pieces of proofs): let’s
denote by

¬e
−→ the rewriting rule of S ‘‘without erasing steps’’;

2. prove WN for
¬e
−→ (we ’ll often write in the sequel that S enjoys WN¬e) and confluence4 for

¬e
−→;

3. define on the proofs of S a size function | · | strictly increasing with respect to
¬e
−→, and deduce that

¬e
−→ enjoys SN;

4. conclude that the starting system S enjoys SN.

Notice that the size function | · | ‘‘computes’’ an upper bound for the length of the
¬e
−→ reduction sequences starting from

any proof π of S: it is the value of | · | on the ¬e-normal form of π .
Linear Logic (LL [7]) is a refinement of intuitionistic logic and of classical logic, which gives a logical status to the

operations of erasing and copying (corresponding to the structural rules of intuitionistic logic and of classical logic). This
change of viewpoint on structural operations has striking consequences: one of the most important is the introduction of
proof-nets (simply called nets in this paper). Proof-nets yield a graph-theoretical representation of computation, where
the strict distinction between inputs and outputs completely vanishes (this is a sharp difference between nets and λ-
terms). In LL, cut-elimination is defined directly for proof-structures (general graphs which are not necessarily proofs),
and nets are the ‘‘correct’’ proof-structures (the ones satisfying a correctness condition). The presence of proof-structures as
new computational objects widens the space of possible interactions between logical agents: this makes the system much
richer and more complicated. We’ll show how, for the termination property of LL proof-structures, not only the distinction
typed/untyped is relevant (this was already the case for λ-terms), but also the one correct/incorrect (which is independent
from the typed/untyped one). Indeed this idea underlies much of Girard’s work, since [7]: the correspondence between
logical correctness and termination property.
We present the first complete proof of SN for full second order LL: we prove SN for Girard’s nets as presented in [24].

Because SN of full second order LL entails the consistency of (second order) PA, its proof cannot be carried out within PA:
it uses Girard’s reducibility candidates (introduced in [6] and already used for LL in [7]). However, by applying Gandy’s
method to LL, we show that strong principles are needed only to prove WN (more precisely WN¬e).
Some readers might be surprised that so many years after the discovery of LL (and after so many papers on the subject)

no complete proof of SN for LL has been given. In [7] Girard gives a ‘‘proof’’ of SN based on a theorem called standardization
theorem (theorem 4.25 p.72 of [7]), which is not proven in the paper.5 Intuitively, the theorem states that if a net can
be transformed into a ¬e-normal form ‘‘without applying erasing steps’’, then it enjoys SN. This basically corresponds to
achieving all the tasks of Gandy’s method, except the proof of WN¬e.
In LL, the absence of a unique output (actually the vanishing of the distinction between inputs and outputs) entails the

absence of a distinguished cut (something like a ‘‘head cut’’). There still exists some kind of hierarchy on cuts in LL nets
(namely the so-called exponential depth), but no difference can be made between two cuts with the same depth. Worse, the
reduction of a cut may seriously affect the status (and thus the potential reduction) of other cuts at the same exponential
depth. There is no analogue of such a meddling of cuts in the life of their fellows with the same exponential depth in the
λ-calculus: the β-reduction of a redex may affect other redexes only if these last ones are deeper than the former one
(in LL terminology: the affected redexes must have a greater exponential depth than that of the reduced one). The reader
can refer to Section 3.2 (where the notion of exponential dependence is introduced to overcome this difficulty) for a more
precise discussion. All this makes the standardization theorem an essential ingredient of the SN proof for second order LL,
which is not a straightforward adaptation of the WN proof. This is in sharp contrast with what happens for Girard’s system

2 A term associated with a proof in a logical system is often said to be typed, the conclusion of the proof is a type of the term.
3 Thanks to the Curry–Howard isomorphism one can use the language of λ-terms for proofs, and vice versa.
4 A rewriting system enjoys the confluence property when if t

∗
−→ t1 and t

∗
−→ t2 , there always exists t ′ such that t1

∗
−→ t ′ and t2

∗
−→ t ′ , where t, t1, t2, t ′

are terms and
∗
−→ is the reflexive and transitive closure of the rewriting rule of the system, see Section 2.2.

5 Let us point out here that theword ‘‘standardization’’ used byGirardmight bemisleadingw.r.t. theλ-calculus literature: the ‘‘standardization property’’
of the λ-calculus refers to a different well-known theorem, while Girard’s standardization theorem is called conservation theorem (see e.g. [1]); moreover,
Girard’s standardization is called ‘‘propriété de striction’’ by Danos in [2] (théorème 8.31 p.64). In the present paper we will adopt Girard’s terminology,
however.

412 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

F (see [6]). The presence of a head redex in F’s terms makes it easy to turn the proof of WN into a proof of SN (by a slight
modification of the definition of reducibility candidate): the proof of SN is an easy variant of the proof of WN in system F.
One might find more elegant (following Gandy) to distinguish the logical part of the SN proof (the proof of WN) from the
purely combinatorial part (the proof of the standardization theorem) but in F it is still possible to mix them without losing
control on the combinatorial part of the proof. This becomes very difficult in LL, where a subtle theorem of standardization
is needed to turn WN into SN. Something similar to what we have in LL can be found in λ-calculi with explicit substitution
(see for example [4]).
In [2], Danos proves standardization (théorème 8.31 p.64) for second order multiplicative and exponential LL (MELL2), a

significant fragment of LL containing system F: Danos’ result achieved the proof of SN forMELL2. Later on, SN of several other
classical and linear systems has been proven thanks to appropriate embeddings inMELL2 (see for example [3] and [15]). But
up to now, no proof of SN was available for the full system, essentially because of the presence of the additive connectives,
whose computational behavior is difficult to handle (for example, cut-elimination is not confluent in presence of the
additives, at least in the traditional syntax). The main goal of the paper is to finally fill this (rather big) gap in LL’s literature.
For the sake of completeness, we mention here two previous attempts to prove this result: annexe A of [23] and [18]. In
annexe A of [23] a proof of a variant of the standardization theorem is given but, as explained in that paper, it is not sufficient
to prove SN for full LL. In [18], a nice approach to termination using phase semantics is proposed, which is suitable for WN
(at least in the fragmentMELL2) but not for SN: on the one hand the proof of standardization forMELL2 is not convincing (it
is only ‘‘sketched’’ as the author writes) and on the other hand in presence of the additives the considered cut-elimination
procedure is not the full one (see Section 5.2 for a detailed discussion on [18]).
Our approach is to start from scratch, having in mind the two following guidelines:

• as soon as the system is powerful enough, the combinatorial part of the SN proof (standardization or any of its variants)
should be split from the part involving logically strong principles (WN or any of its variants);
• it should be stressed where logic (more precisely types and correctness) comes into the picture: to which extent is it
possible to compute with untyped proof-structures?

Our main contribution is actually a standardization theorem (Theorem 4.2), proven for ‘‘sliced pure structures’’ (sps) —
a notion of proof-structure which yields a better account of additive cut-elimination than the nets of [7]. Section 5 studies
the translation from nets to sps, proving in particular that a net is SN whenever its translation into sps is SN. The notion
of ‘‘slice’’ was introduced in [7] in order to reduce the difficulty of dealing with the additive connectives. In the polarized
framework, its variant ‘‘sliced proof-structure’’ is proven to enjoy nice properties [16]. The main reason why we use slices
in this paper is that we need to prove a confluence property (remember it is part of Gandy’s method), and it is the only
known syntax of LL for which one can hope to prove such a property. Our sps are an extension of sliced proof-structures
to full untyped LL. Indeed, following the idea that types and correctness should be used only when necessary, we start our
analysis with the most general kind of graph we have: untyped and incorrect. We show in Section 2 how one can always
compute with such general structures. This is a first novelty of our paper: both in [7] and [24], in presence of the additives,
computations are defined only for nets (typed and correct proof-structures). However, without any kind of correctness,
computation behaves very badly (and this is not related to the presence/absence of types): we give a counterexample
to both WN and confluence for such general (incorrect) sps (see Fig. 12). We then introduce the correctness condition
‘‘acyclicity slice by slice’’ (AC condition, Definition 2.15). It is well-known that this condition is far too weak to characterize
proofs (see [10]), and there is a wealth of papers presenting criteria stronger than the correctness slice by slice in order to
characterize logical correctness (see for instance [10,11]). What we show here is that, despite its weakness, the AC condition
is sufficient to prove confluence (Theorem 4.18) and standardization (Theorem 4.2): from the computational point of view
only a very weak form of correctness is needed.
Let us now describe more precisely the structure of the paper. As the connection between the different results is rather

delicate and complex, we conclude the introduction by a graphical representation of the logical structure of the paper (see
Fig. 1). Also, the whole paper is scattered with examples and figures: we hope this will help the reader.
Section 2 is devoted to sps. In Section 2.1 we define sps (Definition 2.2) and their cut-elimination (Definition 2.12).

Section 2.4 is entirely devoted tomotivating our results and choices by several examples and counterexamples. In Section 2.5
we introduce the weak form of correctness used in the paper and expressed by the AC condition of Definition 2.15.
Section 3 achieves a first essential step of our proof: Definition 3.1 splits the cut-elimination rewriting rule (denoted by

cut
−→) into two strongly normalizing reductions, the logical reduction (

log
−→, proven to enjoy SN in Proposition 3.4) and the

structural reduction (
str
−→, proven to enjoy SN in Proposition 3.10). These two reductions are disjoint and their union is

cut
−→;

they both enjoy SN on sps satisfying AC, even if their union
cut
−→ does not even enjoy WN (the untyped λ-calculus can be

embedded in sps satisfying AC, see in particular the example of Fig. 10). Propositions 3.4 and 3.10 are essential ingredients
in the proof of confluence (Theorem 4.18) of the next section.
In Section 4 we apply Gandy’s method to sps: we distinguish the erasing cuts from the non erasing ones and we

define the
¬e
−→ rewriting rule for sps (Definition 4.1). We then explain (Section 4.1) why SN of

¬e
−→ entails SN of

cut
−→:

a postponement lemma (Lemma 4.4) allows to ‘‘delay’’ erasing steps after any non-erasing one, from which the result
easily follows (Proposition 4.5). Section 4.2 shows that from WN of

¬e
−→ one can deduce SN of

¬e
−→: the key point here is

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 413

the confluence theorem (Theorem 4.18), proven for a labelled version of sps (see Definitions 4.6 and 4.7). We first prove
that labels allow to define an increasing size on (labelled) sps,6 and that (assuming confluence holds) this allows to prove
WN¬e = SN¬e for sps satisfying AC: from this equality and Section 4.1, our main result (standardization, Theorem 4.2)
immediately follows. The rest of Section 4 is devoted to the proof of confluence, based on the following results:

1. confluence of the labelled version of the logical reduction
log
−→ of Section 3: it follows from local confluence (Lemma 4.12)

and SN (immediate consequence of Proposition 3.4 of Section 3);
2. confluence of the labelled version of the structural reduction

str
−→ of Section 3: it follows from local confluence

(Lemma 4.14) and SN (immediate consequence of Proposition 3.10 of Section 3);
3. commutation of the labelled versions of

log
−→ and

str
−→ (Lemma 4.17);

4. Hindley–Rosen lemma (see [12]): a rewriting rule which is the union of two confluent rewriting rules which commute
is itself confluent.

It is important to stress the fact that confluence (so as the main result of the paper, Theorem 4.2) is far from being an
immediate consequence of the same result for MELL. It is only partially true that sps allow to work ‘‘slice by slice’’: the
additive commutative normalization step (the nightmare of normalization in presence of the additives, see Section 5 and
Fig. 19) is not explicitly present in our syntax, but it is hidden in other normalization steps (the (!/?d) and the (!/!) steps
of Definition 2.12). Indeed the exponential connectives are the bridge between the additive and the multiplicative worlds
through the isomorphism !(A&B) =!A⊗!B.
Last, Section 5 introduces the nets of [24] with units, and it turns a proof of WN¬e for sps into a proof of SN for the nets

of [24]. The syntax of [24] is described in Section 5.1 and it generalizes Girard’s notion of net, [7]. As already mentioned,
confluence (even local confluence) fails for nets, hence to apply Gandy’s method one must pass through a confluent syntax,
in our case the syntax of sps. Section 5.2 contains the motivations for our choice of sps and relates our results to previous
attempts (namely [7] and [18]). Section 5.3 gives a translation of nets into sps, called slicing, and it shows that the slicing of
a net β satisfies AC (Proposition 5.1), and that β enjoys SN whenever its slicing does (Proposition 5.6). Finally in Section 5.4
we prove that the slicing of any net enjoys WN¬e (Theorem 5.11). Standardization for sps (Theorem 4.2) allows then to
conclude SN for nets (Theorem 5.12). Actually, the proof of Theorem 5.11 is given in a terse and sketchy style (using a simple
variant of Girard’s reducibility candidates): this is because there is no doubt about this result, and no real point in giving
more details in the present paper.

Added in print. During the last revision of the paper, we realized that the proof of our main Theorem (Theorem 4.2) can
be simplified thanks to a result of Bezem and Klop. Indeed item (iii) of Theorem 1.2.3 p. 18 of [22] says that an abstract
rewriting system enjoying local confluence, WN and such that it is possible to define an increasing size, enjoys also SN. In
our framework, this means that in order to proveWN¬e = SN¬e (Proposition 4.10) we only need local confluence instead of
confluence. This essentiallymeans that in order to prove Theorem4.2 one can omit Section 3. Indeed Lemmata 4.12, 4.14 and
4.16 suffice to prove the local confluence of the labelled cut-elimination. By the way, notice that this holds for the fragment
MELL2 too, so that Danos’ standardization theorem (théorème 8.31 p.64 of [2]), and thus SN forMELL2, can be proven using
local confluence instead of confluence.
However, we decided to keep the present version of the paper since we believe that confluence for sps (Theorem 4.18

and Remark 4.19), so as confluence for Danos’ nets, are interesting results by themselves. Furthermore, the str-measure
defined in Section 3 is rather sharp and can be generalized to other notions of net (like for example differential nets [25,26]);
it should be a useful tool also for λ-calculus with explicit substitutions.
Let us also mention that correctness is used in our proof of SN in three points: under the form of the AC condition,

(i) to prove the SN of structural reduction (Proposition 3.10), (ii) to prove the local confluence of structural reduction
(Lemma 4.14), hence confluence of cut-elimination (Theorem 4.18); under the form of sequentialization, (iii) to proveWN¬e
(Theorem 5.11). The simplified proof just mentioned uses only (ii) and (iii).

2. Definitions

In this section, we introduce themain tools used in the sequel of the paper. In Section 2.1we define sliced pure structures
(sps), Section 2.2 is devoted to recall some standard results in rewriting theory that will be applied to cut-elimination of sps,
and in Section 2.3 we define cut-elimination for sps. After the main definitions, we illustrate by means of several examples
the notions previously introduced (Section 2.4); we then conclude by presenting the AC condition (Section 2.5).

2.1. Sliced pure structures

We start by extending to full LL the definition of ‘‘sliced proof-structure’’ given in [16] for the polarized fragment. In the
style of [17], we work in an untyped framework.

6 Notice that the AC condition is not needed here.

414 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 1. Dependencies between the results of this paper.

Fig. 2. Sps links.

Definition 2.1 (Flat). A flat is a finite (possibly empty) labelled directed graph whose nodes (also called links) are defined
together with an arity and a coarity, that is a given number of incident edges called the premises of the node and a given
number of emergent edges called the conclusions of the node. The valid nodes are pictured in Fig. 2.
The !-links and the >-links have a distinguished conclusion (denoted in Fig. 2 by a bold arrow) called main conclusion

of the link; the other conclusions, if any, are the auxiliary conclusions. We allow edges with a source but no target, they are
called conclusions of the flat.
Links will be denoted by Latin letters l,m, . . . Flats will be denoted by initial Greek letters α, β, . . .

Notice that every edgemust be conclusion of a link, but it needs not be conclusion of a flat.When drawing flatswe represent
edges oriented downwards and we will omit to write explicitly the orientation of the edges. Moreover, we speak of moving
‘‘downwards’’ or ‘‘upwards’’ in the graph, and of nodes or edges ‘‘above’’ or ‘‘under’’ a given node/edge.
Sliced pure structures are, basically, multisets of slices, and slices are flats having the !-links parameterized by sliced pure

structures. Thismeans that slices and sliced pure structuresmust be defined simultaneously by induction on the exponential
depth, i.e. on the number d of nesting of !-links.

Definition 2.2 (Sliced Pure Structure). A slice of depth at most 0 is a flat without !-links. A slice of depth at most d+1 is a flat
α such that with every !-link o of α with no + 1 conclusions is associated a sliced pure structure of depth at most d, called
the box of o and denoted by π o, with no auxiliary conclusions corresponding to the no auxiliary conclusions of o and another
conclusion, themain conclusion of the box, corresponding to the main conclusion of o.
A sliced pure structure, sps for short, of depth at most d is a finite (possibly empty)multiset of slices of depth atmost dwith

the same conclusions: we mean that an sps comes equipped with an equivalence relation on the conclusions of its slices s.t.
every equivalence class contains exactly one conclusion for each slice. The conclusions of the sps are the equivalence classes
of the conclusions of its slices.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 415

Fig. 3. An example of sps.

We denote slices by initial Greek letters α, β, . . . , sps by final Greek letters π, σ , . . .
The depth of a slice α (resp. an sps π) is the least d such that α (resp. π) is of depth at most d. A flat α at depth d in an sps

π is a flat at depth d in a slice β of π ; α is at depth d in β if d = 0 and α is β (considered as a flat), or d > 0 and α is a flat at
depth d− 1 in a box associated with a !-link of β (considered as a flat). A link l at depth d in π is a link l of a flat α at depth
d in π . We denote by depthπ (l) the depth d of l in π . We refer more generally to a link/flat of π meaning a link/flat at some
depth in π . We use the same terminology for the edges of π . We denote by !0(π) the set of !-links at depth 0 in π . The size
of π , denoted size(π), is the number of links (at any depth) of π .

Given a link l of an spsπ , wewill often speak of ‘‘the flat of l’’ alwaysmeaning the flat at some depth inπ containing l. The
reader should notice that our sps are multisets of slices, and not simply sets, as it is in [16]: this quibble is needed to avoid
an unnatural erasing of slices during cut-elimination. We refer to Section 2.4 for examples of this phenomenon. We use the
additive notation for multisets: 0 is the empty multiset, π + σ is the disjoint union of π and σ (repetitions do matter); an
sps π can also be written as

∑
α∈π α. As a consequence, when we write α ∈ π , we are considering an occurence of α in the

multiset π , and when that expression binds an operator, as for example in
∑

α∈π , we mean that
∑

α∈π varies on the set of
occurrences of π ’s slices.
Fig. 3 is an example of sps of depth 1; the correspondence between the conclusions of every slice in the box of a !-link

and the conclusions of the !-link is given in the figure by the order of the edges (from left to right).

Remark 2.3. Notice that, by definition, the boxes of an sps satisfy a nesting condition: two boxes are either disjoint or
contained one in the other.

Remark 2.4. Once the decision to work without types has been taken, the question arising is: to which extent? A possibility
was to use recursive types (like in [2,20]), another one to type only ?-edges (like in [17]). In the general LL case that we
consider here, none of the answers is completely satisfactory and we decided to work in a strongly untyped framework.
There are little surprises following this choice: the main one is that a clash (Definition 2.10) might become reducible after
some cut-elimination steps (Definition 2.12): for example, the cut s of Fig. 3 is a clash, but it becomes reducible after the
reduction of the cut r (see Section 2.4). However such oddities cause no problem w.r.t. our purposes.

Remark 2.5. In order to have a very general result we had to use all the links of [7], including >. A possible (and rather
natural) choice was to rule out that link and to represent the> rule as empty sps (like in [14]). Indeed, such a choice would
realize a greater quotient on proofs: this notion of sps is ‘‘closer’’ to denotational semantics. However, the absence of > in
sps makes it more difficult to infer strong normalization of LL nets from strong normalization of sps (Proposition 5.6). More
precisely, we would lose Lemma 5.3: this is the reason for our choice.
Anyway, all the properties we prove for our sps still hold for>-free sps (in particular Theorem 4.2).

Remark 2.6. Concerning the presence of empty structures, notice that:

• the empty flat does exist (and so do the empty slice and sps containing the empty slice), and it has no conclusion. Its
presence is required by the cut-elimination procedure (Definition 2.12): the procedure applied (for example) to the sps
containing a unique flat consisting of a 1-link a cut and a⊥-link yields the empty graph;
• with a !-link o of an sps, it is never possible to associate an sps containing the empty slice: o has at least one conclusion
and this has also to be the case for the sps associated with o;
• empty sps (that is empty multisets of slices) do exist: there is one such sps for every set of conclusions. Empty sps all
have depth 0.

The reader should notice the difference between the empty slice, that is the empty graph, and empty sps, that is empty
multisets of slices. They are twodifferent kinds of emptiness: the first one ismultiplicative (it can be produced by eliminating
a multiplicative cut), while the second one is additive (it can be produced by eliminating an additive cut).

2.2. Compendium of rewriting theory

Before introducing the cut-elimination on sps, we give a short reminder of some standard terminology and results in
rewriting theory, which will be used in the sequel. Our references will be [12] and [22].

416 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

(a) local confl. (b) confluence (c) strong confl.

(d) commutation (e) postponement

Fig. 4. Diagrams for confluence, commutation and postponement.

Let
x
−→ be a binary relation on sps, then

x=
−→,

x+
−→ and

x∗
−→ denote, respectively, the reflexive, transitive and reflex-

ive/transitive closure of
x
−→.

Let π be a sps: π is a x-normal form whenever there is no sps π1 with π
x
−→ π1; π is weakly x-normalizable whenever

there is a x-normal form π1 s.t. π
x∗
−→ π1; π is strongly x-normalizable whenever there is no infinite sequence (πi)i∈N s.t.

π0 = π and πi
x
−→ πi+1. We denote by WNx and SNx the sets of, respectively, weakly and strongly x-normalizable sps.

Clearly we have SNx ⊆ WNx. We say that
x
−→ is weakly (resp. strongly) normalizing on a set S of sps, if S ⊆ WNx (resp.

S ⊆ SNx).
The relation

x
−→ is locally confluent if for every π, π1, π2 s.t. π1

x
←− π

x
−→ π2, there is π3 s.t. π1

x∗
−→ π3

x∗
←− π2 (see

Fig. 4(a));
x
−→ is confluent if for every π, π1, π2 s.t. π1

x∗
←− π

x∗
−→ π2, there is π3 s.t. π1

x∗
−→ π3

x∗
←− π2 (see Fig. 4(b));

x
−→ is strongly confluent if for every π, π1, π2 s.t. π1

x
←− π

x
−→ π2, there is π3 s.t. π1

x
−→ π3

x
←− π2 (see Fig. 4(c)). Strong

confluence implies confluence and confluence implies local confluence, and none of the converse implications holds (as it
is well-known).
Two relations

x
−→ and

y
−→ commute, if for every π, π1, π2 s.t. π1

x∗
←− π

y∗
−→ π2, there is π3 s.t. π1

y∗
−→ π3

x∗
←− π2 (see

Fig. 4(d)); the relation
x
−→ can be postponed w.r.t. the relation

y
−→, when for every π, π1, π2 s.t. π

x
−→ π1

y
−→ π2, there is π3

s.t. π
y
−→ π3

x∗
−→ π2 (see Fig. 4(e)).

Lemma 2.7 (Newman). A locally confluent and strongly normalizing relation is confluent.

Lemma 2.8 (Hindley–Rosen). If two relations x
−→,

y
−→ are confluent and commute, then their union

x
−→∪

y
−→ is confluent.

Lemma 2.9 (Di Cosmo–Piperno–Geser). Let x
−→,

y
−→ be two relations s.t.

x
−→ is strongly normalizing and for every π, π1, π2 s.t.

π1
y
←− π

x
−→ π2, there is π3 s.t. π1

x+
−→ π3 and π2

y∗
−→ π3, that is the following diagram holds

(1)

then
x
−→ and

y
−→ commute.

2.3. Cut-elimination

Wenow define the binary relation of cut-elimination
cut
−→ on sps. Before the details let us give an idea of how

cut
−→works:

to eliminate a cut at depth 0 in a slice αmeans in general to transform α in an spsπα =
∑
i∈I α

′

i , s.t. every slice α
′

i is obtained
fromα by substituting a specific subgraphβ ofαwith a subgraphβi having the same pending edges (i.e. edgeswith no target
or no source) as β , as pictured below:

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 417

The number n and the subgraphs β, β1, . . . , βn depend on the cut we want to reduce. Definition 2.11 formalizes the
notion of substituting a subgraph in a sps introducing the notion of module and one-hole context; Definition 2.12 and Fig. 5
give the substitutions which define the cut-elimination.
As mentioned in the introduction, our sps are very general structures: they are untyped and theymay be incorrect (w.r.t.

the proofs of LL). Even in such a general setting, cut-elimination can be defined and nice properties hold, as we will show
in the sequel of the paper. However, one has to handle carefully some strange phenomenons related to this rather ‘‘wild’’
situation, like the presence of cuts which are not reducible:

Definition 2.10 (Clash and Deadlock). The two edges premises of a cut link are dual when one of the following conditions
holds:

• they are conclusions of a⊗-node and of a

&

-node,
• they are conclusions of a⊕i-node and of a &j-node (for i, j ∈ {1, 2}),
• they are conclusions of a 1-node and of a⊥-node,
• one is the main conclusion of a !-node and the other one is either an auxiliary conclusion of a !-node, or the conclusion
of one of the following nodes: ?c , ?w, ?d.

A cut node of an sps is:

• a clash, when the premises of the cut node are not dual edges and none of the two is the conclusion of an ax-link nor an
auxiliary conclusion of a>-link;
• a deadlock, when the two premises of the cut link are conclusions of the same ax-link (resp. !-link,>-link);
• reducible, otherwise.

In Fig. 3, for example, t is a deadlock, s is a clash and the five other cuts are reducible.

Definition 2.11 (Module, Context Closure, Substitution). Amoduleµ is an spswhose slices at depth 0mayhave edgeswithout
source, called hypotheses. In addition to having the same conclusions, the slices of a module are required to have the same
hypotheses, i.e. a module comes equipped with an equivalence relation on the hypotheses of its slices at depth 0 s.t. every
equivalence class contains exactly one hypothesis for each slice at depth 0.7
A one-hole context ω[] is an sps having exactly one occurrence of a special cell, the hole, which has an arbitrary arity and

coarity. This formally means that ω[] = σ + α[], where σ is an sps and α[] is a slice having at depth 0 either exactly one
occurrence of the hole or a !-link o such that with o is associated a one-hole context ρ[].
Given a one-hole context ω[] = σ + α[] and a module µ equipped with a bijection between the hypotheses (resp.

conclusions) of µ and the premises (resp. conclusions) of the hole in ω[], we define the sps ω[µ] by induction on the depth
of the hole in ω[]:

• if the hole has depth 0 in α[], then ω[µ] = σ +
∑

β∈µ α[β], where α[β] is the slice obtained by substituting in α[]
the slice β for the hole, i.e. identifying the hypotheses (resp. conclusions) of β with the corresponding premises (resp.
conclusions) of the hole;
• if the hole is a cell of the one-hole context ρ[] associated with a !-link o at depth 0 in α, then ω[µ] is obtained by
associating with o the sps ρ[µ].

The context closure of a binary relation R between modules with the same hypotheses and the same conclusions is the
smallest relation containing R and such that for every one-hole context ω[], µRµ′ implies ω[µ]Rω[µ′]. We also say that
ω[µ′] is the result of substituting µ′ for µ in ω[µ].

Definition 2.12 (Types of Cut and Cut-elimination). We define the reduction steps as the following relations between a single
slice module β , the redex, containing a reducible cut t and a module

∑
i βi, the contractum. Apart from the cases (&i/⊕j),

(!/?d), the contractum is a single slice β ′, too. All reduction steps are pictured in Fig. 5.

(ax): β is made of t and two distinct links l,n, each of them having one premise of t as conclusion; moreover, one link
between l,n, say l, is an ax-link and if n is a>-link, then the edge shared by n and t is the main conclusion of n. In
this case the contractum β ′ is simply the link n.

(1/⊥): β is made of t , a 1-link and a⊥-link; a premise of t is the conclusion of the 1-link and the other is the conclusion
of the⊥-link. In this case the contractum β ′ is the empty graph.8

(⊗/

&

): β is made of t , a

&

-link and a⊗-link; a premise of t is the conclusion of the⊗-link and the other is the conclusion
of the

&

-link. In this case the contractum β ′ is obtained from β by erasing the

&

-link, the⊗-link and the cut link t
(and its premises) and by putting two new cut links between the two left (resp. right) premises of the

&

-link and
of the⊗-link.9

7 Of course since the slices at depth 0 of a module have the same conclusions, there is also an equivalence relation on the conclusions of the slices at
depth 0 of a module, as explained in Definition 2.2.
8 This case yields the singleton of the empty graph, that has not to be confused with the empty multiset, contractum of the (⊕i/&j) redex.
9 Notice that this means that the premises of the⊗/

&

-links are ordered; we shall see in the transformation associated with the (!/?c) cut link that this
is not the case of the premises of the ?c-links (nor of the premises of the cut links).

418 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 5. The reduction steps for cut-elimination.

(>/cc): β is made of t , a >-link l having one premise of t among its auxiliary conclusions and a slice γ (not containing l)
having the other premise of t among its conclusions. Let us call a (resp. b) the edge shared by t and l (resp. t and
γ). The contractum β ′ is a >-link, which we still call l, with conclusions the conclusions of l different from a and
the conclusions of γ different from b.

(&i/⊕j): β ismade of t , a⊕j-link, and a &i-link; a premise of t is the conclusion of the⊕j-link and the other is the conclusion
of the &i-link. If i = j, then the contractum β ′ is obtained from β by erasing the two links (and their conclusions)
and by moving up the cut link to their premises. If i 6= j, then the contractum is the empty multiset.

(!/?d): β is made of t , a !-link with main conclusion a premise of t and a ?d-link with conclusion the other premise of
t . Let ρ be the sps associated with the !-link. If ρ is the empty multiset, then so it is the contractum. Otherwise,

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 419

with each slice γ of ρ, we associate the slice γ ′ defined by cutting γ ’s main conclusion10 with the premise of the
?d-link: the contractum is then

∑
γ∈ρ γ

′.
(!/?w): β is made of t , a !-link with main conclusion a premise of t and a ?w-link with conclusion the other premise of t .

In this case, the contractum β ′ is made of as many ?w-links as the auxiliary conclusions of the !-link.11
(!/?c): β is made of t , a !-link l with main conclusion a premise of t and a ?c-link n with conclusion the other premise of

t . In this case, the contractum β ′ is obtained from β as follows: let’s call a1 and a2 the two edges premises of the
?c-link n. We create a new !-link l′ by copying the link l, and we pairwise contract the auxiliary conclusions of l
and l′: the conclusions of these new ?c-links substitute the auxiliary conclusions of l in β . We then erase n (and its
conclusion) and t , and we connect the main conclusion of l (resp. l′) with a1 (resp. a2) by means of a cut link. The
sps associated with l and l′ are the same.

(!/!): β is made of t , a !-link lwith main conclusion a premise of t and a !-link l′ having the other premise of t among its
auxiliary conclusions. Let us call a′ the edge shared by l′ and t , and ρ the sps associated with l′. The contractum β ′
is a !-link, which we still denote by l′, having as conclusions the conclusions of l′ different from a′ and the auxiliary
conclusions of l, and having as box the sps

∑
γ∈ρ γ

′, where γ ′ is obtained by cutting the auxiliary γ ’s conclusion
corresponding to a′ with the main conclusion of l (the sps associated with l remains unchanged).12

The cut-elimination
cut
−→ is the context closure of the union of the reduction steps. Given a sps π and a reducible cut t

in π , we denote by t(π) the sps13 obtained by replacing the redex associated with t by its contractum. We will also refer
to t(π) as a one step reduct of π . We say that x is the type of t whenever π

x
−→ t(π). In the sequel we will denote the set

WNcut (resp. SNcut) of weakly (resp. strongly) normalizable sps w.r.t.
cut
−→ simply by WN (resp. SN).

Remark 2.13.

• Notice that the cut-elimination procedure is defined without any reference to correctness.
• Observe the restriction imposed in the (ax) case: in order for a cut to be of type (ax), not only one premise of t must be
conclusion of an axiom, but also the other premise cannot be an auxiliary conclusion of a>-link. This restriction makes
every cut link of an sps of a unique type: in the absence of it, there would be a (unique) case in which a reducible cut
link t of an sps might have two different types ((ax) and (>/cc)). Notice that this little problem would not occur if >
were rejected from sps links (see Remark 2.5). Anyway, this constraint does not restrict the possible reductions starting
from a sps, because there is an obvious (>/cc) reduction step having exactly the same effect as the (ax) reduction step:
choose the axiom link as the γ in the redex of (>/cc) (see Fig. 5). Working with reducible cut links having a unique type
is simpler and useful in Section 4, when we define the notion of erasing cut (Definition 4.1).
• Notice that the (>/cc) step gives rise to non deterministic (and non confluent) reductions: for example, a cut whose
premises are auxiliary conclusions of two distinct >-links l, l′ can be reduced by erasing either l or l′. Anyway such
phenomena disappear when one considers only non erasing reductions (see Definition 4.1).

We now give a precise definition of the notions of ancestor and residue of a node: the point is to know whether a node
of t(π) has been created by the cut-elimination procedure or was already a node of π .

Definition 2.14 (Ancestor, Residue). Let π be an sps, t be a cut link of π and t(π) be a one step reduct of π associated with
t . When a node l of t(π) comes from a (unique) node

←−
l of π , we say that

←−
l is the ancestor of l in π and that l is a residue

of
←−
l in t(π). If this is not the case, then l has no ancestor in π , and we say it is a created node. We indicate, for every type

of cut node t of Definition 2.12, which links are created in t(π) (meaning that the other nodes of t(π) are residues of some
π ’s node). We use the notations of Definition 2.12 and Fig. 5:

(ax): there are no created nodes in t(π);
(1/⊥): there are no created nodes in t(π);
(⊗/

&

): the two new cut links between the two left (resp. right) premises of the

&

-link and of the⊗-link are created nodes;
(>/cc): there are no created nodes in t(π);
(&i/⊕j): if i = j, then the cut link between the two premises of the (&i/⊕j)-links is a created node. If i 6= j, there are no

created nodes in t(π);
(!/?d): every cut link between γ ’s main conclusion and the premise of the ?d-link is a created node;
(!/?w): all the ?w-links added during this step are created links;
(!/?c): the new ?c-links having as premises the auxiliary conclusions of l and l′ are created nodes. The two cut links having

among their premises the main conclusions of l and l′ are created nodes;14

10 We extend here the notion of ‘‘main conclusion of a box’’ to every slice of the box.
11 In case the !-link has no auxiliary conclusion, the contractum is the singleton of the empty graph, like in the (1/⊥) case.
12 Notice that if ρ is the empty multiset, so is the box associated with l′ .
13 The fact that t(π) is indeed an sps can be easlily checked.
14 Notice that l and l′ are both residues of l.

420 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 6. The result of applying cut-elimination to the sps of Fig. 3.

Fig. 7. The result of applying cut-elimination to the sps of Fig. 6.

Fig. 8. The result of applying cut-elimination to the sps of Fig. 7.

(!/!): every cut link between the auxiliary γ ’s conclusion corresponding to a′ and l’s main conclusion is a created link.
(Notice that the ‘‘new’’ !-link l′ is considered a residue of the corresponding !-link of π , even though it might have
different conclusions).

2.4. Examples of reductions

After so many definitions, some examples might be useful. . . . Let us apply cut-elimination to the sps π of Fig. 3. If one
reduces the (&1/⊕1) cut p, the (&2/⊕2) cut q, and then the two created cuts of type ax, one obtains the spsπ ′ of Fig. 6. Notice
that the sps πm associated with the !-linkm has now two occurrences of the same slice (consisting of an ax-link): if we had
defined the sps as sets of slices, we would have missed one occurrence of the slice in πm, so giving an ‘‘erasing’’ feature to
the (&i/⊕i) step which is quite unnatural. As already mentioned in the Introduction, it is crucial in order to apply Gandy’s
method to have a good notion of erasing cut-elimination step: this will appear clear in Section 4, where we split

cut
−→ into

the erasing and the non-easing reduction (see Definition 4.1).
Let us go on in the elimination of the cuts in the sps π ′ of Fig. 6. If one reduces the (!/?d) cut r , then one gets the sps π ′′ of

Fig. 7. Notice that this reduction duplicates the unique slice of π ′, since it opens a box containing two slices. This is a tricky
feature of sps (due to the presence of additive slices): the reduction of a cut of type (!/?d) (like r) may duplicate other cuts
at the same exponential depth (like the cuts t and s in π ′). We tame this kind of duplication in Section 3, where we prove
that the ‘‘logical’’ subreduction of

cut
−→ (Definition 3.1) is strongly normalizing (Proposition 3.4).

Yet another remark on the reduction of r: notice that the residues of the clash s of Fig. 6 are reducible cuts of Fig. 7. Thus,
let us reduce these residues of s, the (1/⊥) cuts so obtained and the two (&i/⊕j) (i 6= j) cuts u and v in the box associated
with o: we obtain the sps π ′′′ of Fig. 8. Notice that the two reduction steps of type (&i/⊕j) (i 6= j) have erased both the slices
of the sps associated with o, transforming it in the empty multiset of slices. This is really different from the reduction of the
cut of type (1/⊥), which has transformed the subgraph consisting in the 1-link, the⊥-link and the cut in the empty graph:
pay attention not to confuse empty sps (i.e. empty multiset of slices) with the empty slice (see also Remark 2.6). The sps π ′′′
of Fig. 8 is a cut-normal form. Notice however that π ′′′ contains the deadlock t: in general cut-normal forms may contain
non-reducible cuts, i.e. clashes or deadlocks.
Let us come now to the problem of normalization. The cut-elimination procedure applied to an sps π may lead to infinite

reduction sequences basically in two distinct cases: (i) either because π is not typable (by LL formulas, see the grammar in
Fig. 17) or (ii) because π is not correct (w.r.t. a notion of correctness which will be introduced in the following Section 2.5).
We give an example of (i) in Fig. 9, and examples of (ii) are in Fig. 11 and in Fig. 12. Let us comment a bit each of them.
The sps δδ of Fig. 9 is taken from [18]: it is a simplification in the setting of nets of the most famous λ-term which is not

normalizable,∆∆, with∆ = λx.xx. Fig. 10 shows that δδ reduces to itself. The sps δδ is not even weakly normalizable, and
it is not typable by LL formulas, even if it is correct in the sense that it satisfies the AC condition of Definition 2.15.
Let us now consider the sliceα of Fig. 11:α is typable by LL formulas, but it is not switching acyclic (Definition 2.15) owing

to the cycle crossing the cut, the !-link and the ?c-link. Such a cycle is the actual reason for the loop pictured in Fig. 11.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 421

Fig. 9. The slice δδ which is not WN.

Fig. 10. A proof that δδ cut+
−−→ δδ.

Fig. 11. An example of slice α s.t. α cut+
−−→ α. The slice α is typable by LL formulas.

We can use the slice α of Fig. 11 to show a last intriguing example of cut-elimination. Let γ be the slice obtained from
α by erasing the cut link, then consider the slice β defined in Fig. 12: β is a counter-example both to the confluence and to
the normalization of cut-elimination for sps which are not correct (they don’t satisfy the AC condition of Definition 2.15).
On the one hand, if one reduces the (!/!) cut t , then the created cut (!/?d) and last the created (⊗/

&

) cut, one obtains the
slice β1 of Fig. 12, which is not weakly normalizable since reducing the cut t ′ leads to a looping cut-elimination, similar to
the one described in Fig. 11. On the other hand, if one reduces the (!/!) cut u in β , then one obtains the slice β2 of Fig. 12,
which is even strongly normalizable: its (unique) normal form is β3 (notice that the cut t has become a deadlock, so it is not
reducible anymore). This example clearly shows that if we drop the AC condition, we loose both confluence and weak (thus
strong) normalization even for typable sps.
The main result of this paper is the standardization theorem for correct sps (i.e. for sps satisfying AC, Definition 2.15): for

correct sps WN¬e implies SN (Theorem 4.2). One crucial step in the proof of Theorem 4.2 is Proposition 4.10: for correct sps
non-erasing weak normalization coincides with non-erasing strong normalization. Observe that the slice β of Fig. 12 gives a
counter-example to this equivalence for spswhich are not correct (which don’t satisfy the AC condition of Definition 2.15):β
can be normalized without applying erasing steps (in the precise sense of Definition 4.1), but it is not strongly normalizable.
More in detail, this counter-example is due to (i) the presence of deadlocks (the cut t is not erased by one reduction step of β ,
but it becomes a deadlock), (ii) the failure of the local confluence of

cut
−→ for general sps (indeed one of the main ingredients

in the proof of Proposition 4.10 is the confluence of (a labelled variant of) cut-elimination on correct sps, Theorem 4.18).

2.5. Switching acyclicity

Cut-elimination can be performed without any reference to correctness. However we noticed in the previous subsection
that in presence of cyclic sps there are ‘‘bad’’ computations (evenwithout additives and even for typable sps): the weak (and
the strong) normalization property fails, so as the confluence property (recall the example of Fig. 12).

422 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 12. A counter-example to normalization and confluence of cut-elimination. The slice γ is obtained by removing the cut from the slice α pictured in
Fig. 11.

Wewill then use in this paper the weakest (standard) notion of correctness known in the literature, requiring to our sps
to be ‘‘switching acyclic’’. Switching acyclicity is required ‘‘slice by slice’’ (Definition 2.15). We use this condition to avoid
cyclic sps (not enjoying WN), and to prove Theorem 4.18.

Definition 2.15 (AC Condition). A switching of a flat α is an undirected subgraph of α obtained by forgetting the orientation
of α’s edges and by deleting one of the two premises of each

&

-node and ?c-node of α.
We say that an sps π is switching acyclic, or, equivalently, that π satisfies AC, if every switching of every flat of π is an

acyclic graph.

Examples of sps satisfying AC are the sps of Figs. 9 and 10 and all sps pictured in Section 5.
The following proposition is an important property of sps, which will be used in this paper to prove SN and confluence

of the str-reduction (Propositions 3.10 and 4.15):

Proposition 2.16. Let π be an sps and t be a cut link of π which is not of type (>/cc).15 If π satisfies AC then t(π) satisfies AC.

Proof. Standard (see [2]). �

3. Two results of strong normalization

In this section we define two notable subreductions of
cut
−→: the logical reduction

log
−→ and the structural reduction

str
−→

(Definition 3.1), whose union is
cut
−→. A basic fact, crucial in the next Section 4, is that both

log
−→ and

str
−→ are SN on sps

satisfying AC (Propositions 3.4 and 3.10), even if their union
cut
−→ is not evenWN (see the example of Fig. 10). More precisely,

we define two measures on sps, |π |log and |π |str (Definitions 3.3 and 3.8), and we prove that |π |log (resp. |π |str) shrinks
after every logical (resp. structural) reduction step. In addition, we briefly discuss how the structural reduction increases
|π |log and conversely how the logical reduction increases |π |str, in accordancewith the fact that cut-elimination is notWN.
Let us stress that the str-measure is really sharp and it can be generalized to other notions of net (like for example

differential nets [25,26]).

Definition 3.1. The logical reduction, denoted by
log
−→, is the context closure of the reduction steps (ax), (1/⊥), (⊗/

&

),
(>/cc), (⊕i/&j), and (!/?d). The structural reduction, denoted by

str
−→, is the context closure of the reduction steps (!/?w),

(!/?c) and (!/!).

Notice that
log
−→ and

str
−→ have no reduction step in common and their union is

cut
−→.

15 One has to refuse (>/cc) steps, essentially because they are not ‘‘local’’; for the same reason (>/cc) and (ccad) steps of [7] and [24] can be performed
only in presence of correctness, and of a much stronger notion of correctness then AC.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 423

Fig. 13. The multiset sgth(π), where π is the sps of Fig. 3, consists of four single-threaded slices, given by the above picture taking i, h, j ∈ {1, 2}, h 6= j.

3.1. The strong normalization of
log
−→

We now prove that
log
−→ enjoys strong normalization: indeed SNlog contains every sps, regardless its correctness. This is

a sharp difference with the case of
str
−→, where strong str-normalization holds only for sps satisfying AC: for example the

slice α of Fig. 11 does not satisfy AC, and it is not strongly str-normalizable (actually not even weakly str-normalizable).
Consider an sps π which has at most one slice, and recursively s.t. every box of π has at most one slice. For such a π , the

proof that
log
−→ is SN is immediate: every reduction step of

log
−→ strictly decreases the number of links of π and keeps the

property of having at most one slice in each box. However, in the general case the links of an sps might increase after a
log
−→

reduction: if π has a box π o associated with a !-link o and containingmore than one slice, then a (!/?d) step ‘‘opening’’ owill
(additively) duplicate the links at the same depth as o, as many times as the number of slices of π o. This means we need to

find a sharpermeasure on sps than their sizes, in order to point outwhat is decreasing under
log
−→. In some sense, the previous

remark concerning a very special case of sps can also be used in the general case, thanks to the notion of single-threaded slice
introduced in [16].

Definition 3.2 (Single-Threaded Slice, [16]).16 A single-threaded slice, sgth for short, of depth at most d is a slice α of depth
at most d s.t. with every !-link at depth 0 of α is associated either the empty sps (with the appropriate conclusions) or a
single-threaded slice of depth at most d− 1.
Given an sps π we define sgth(π), the multiset of sgth of π , by induction on the depth of π . In case π has depth 0, then

sgth(π) = [π]; in case π has depth d+ 1, then α ∈ sgth(π) iff α is obtained from a slice α′ of π by choosing for every !-link
o at depth 0 of α′:

• the empty sps (with the appropriate conclusions), in case this sps is associated with o in π ,
• a sgth of the sps associated with o, otherwise.

For an example see Fig. 13, which shows the sgth of the sps π of Fig. 3.

Definition 3.3 (log-Measure). The log-measure of an sps π is a natural number, denoted by |π |log and defined as follows:

|π |log :=
∑

α∈sgth(π)

size(α).

For example, consider the sps π of Fig. 3: it has four sgth and each of them has 18 links (see Fig. 13), so |π |log = 18×4 =
72. Notice that for every sps π , the log-measure of π is the sum of the log-measures of the slices of π , i.e. |π |log =∑

α∈π |α|log.

Proposition 3.4. The reduction
log
−→ is SN on the sps.

Proof. We prove that π
log
−→ π implies |π |log > |π |log. First, let us restrict to the case where π has exactly one slice α,

from which the general case follows, as showed at the end of the proof.

Let α
log
−→ πα , we prove |α|log > |πα|log. The proof splits in the six cases associated with the types of the

log
−→ steps: we

treat in detail only the case of a (!/?d) cut at depth 0 inα, the other cases being immediate. Remember Fig. 5 and the notation
of Definition 2.12 in the (!/?d) step. Let Σi≤nγi (n ≥ 0) be the sps associated with the !-link l of α, so that πα = Σi≤nγ ′i . If
n = 0, thenπα is empty (α is erased) and clearly |α|log > |πα|log.17 Otherwise, let i ∈ {1, . . . , n} and let sgth(α)i be themul-
tiset of sgth of α choosing the slice γi for l (thus sgth(α)i ⊆ sgth(α)). Notice that sgth(α) =

∑
i≤n sgth(α)i, so in particular

16 There are actually two differences w.r.t. [16]: in that paper the authors define the set of sgth of a proof-net, we are instead interested in themultiset of
sgth of an sps (this difference is due to the fact that our sps are multisets of slices and not simply sets, as it is in [16]); the other difference is that while in
[16] there is exactly one slice associated with every !-link, we have here at most one slice (this difference is necessary to deal with the case of !-links having
an empty sps inside in Proposition 3.4).
17 This case motivates our variant Definition 3.2 of sgth: if exactly one slice were associated with every !-link, in this case we would have sgth(π) =
sgth(π) = ∅ and nothing would decrease.

424 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 14. Behavior of an exponential pathmeeting structural links (i.e. !-, ?w-, ?c-links) and cuts (it stops on all the other links); on ?c-links a path can choose
which premise to follow.

|α|log =
∑
i≤n |sgth(α)i|log; moreover to every i and every β ∈ sgth(α)i it corresponds exactly one element β

′
∈ sgth(γ ′i)

and size(β) = size(β ′) + 2 (in β ′ the !-link l and the ?d-link above t have been erased), so |sgth(α)i|log > |γ ′i |log. Since
|πα|log =

∑
i≤n |γ

′

i |log, we conclude |α|log > |πα|log.

Let’s consider now the general case of an sps π : suppose π
log
−→ π , then there is a slice α ∈ π and a multiset πα ⊆ π s.t.

α
log
−→ πα and π\[α] = π\πα .18We have already proved that |α|log > |πα|log, so:

|π |log = |π\[α]|log + |α|log

= |π\πα|log + |α|log

> |π\πα|log + |πα|log

= |π |log. �

Notice that the proof above uses the property that after a
log
−→ step the number of elements of the multiset of sgth of

an sps cannot increase: if π
log
−→ π , then sgth(π) has at most the same cardinality as sgth(π). It is remarkable that this

property fails under
str
−→: for example, if π

str
−→ π is obtained by a (!/?c) step then sgth(π)might have more elements than

sgth(π), since we have duplicated the possible choices one has to do on the duplicated !-link in order to obtain sgth(π).
The increase of the number of sgth in π entails the increase of the log-measure: in the (!/?c) case, we can very well have
|π |log < |π |log.

3.2. The strong normalization of
str
−→

We now want to prove that
str
−→ enjoys SN on sps satisfying AC (Proposition 3.10). As already mentioned in the

Introduction, the delicate point behind Proposition 3.10 is that the reduction of a cut t may affect the reduction of other
cuts, even at the same exponential depth as t . The critical pairs presented in the proof of Lemma 4.14 of Section 4 are
examples of this ‘‘meddling’’ of a str-reduction step in another str-reduction step, the most evident example being the
slice α of case 2 of the mentioned proof: in that case the reduction of the cut t even changes the type of the cut r from (!/!)
to (!/?c).
The key ingredient we found to tame this meddling of cuts in the life of their fellows with the same exponential depth is

the following notion of exponential dependence (Definition 3.5), enjoying the following properties:

• given two cuts at the same exponential depth t and r , the str-reduction of t affects the str-reduction of r only if the
premises of r ‘‘depend exponentially’’ on the premises of t;
• exponential dependence is (in some sense) stable under str-reduction.

Definition 3.5 (Exponential Dependence). Let π be an sps, and let φ be an oriented path in a flat of π . We say that φ is
exponentialwhen (see Fig. 14):

• φ crosses only structural links (i.e. links of type !, ?w or ?c) and cuts;
• if φ crosses an edge c upwards, then c is an edge (conclusion or premise) of a structural ?-link (i.e. a link of type ?w or
?c) or an auxiliary conclusion of a !-link;
• if φ crosses an edge c downwards, then c is the main conclusion of a !-link which is also premise of a cut link.

Given two edges a and b, we say that a exponentially depends on b, whenever there is an exponential path from a to b.
Given an edge a, we denote by pred(a) the set of the immediate predecessors of a, i.e. the set of those edges b such that there
is an exponential path from a to b crossing exactly one node.

The following fact allows tomake induction on themaximal length of the exponential paths starting from a given edge19:

18 We use here the standard set notation for multisets of slices: for example π\[α] is the multiset π of slices without one occurrence of the slice α.
19 One could also make induction on the following well-founded partial order on the edges of an sps satisfying AC: a ≥exp b whenever there is an
exponential path from a to b. However, the proof that≥exp is indeed a partial order is not immediate, and this paper does not lack delicate proofs...

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 425

Fact 3.6. If π satisfies AC, then every exponential path of π is finite.

Proof. Immediate consequence of the fact that every exponential path of π is a path of some switching of π (remember
Definition 2.15): hence if π satisfies AC, then π has no exponential cycle. �

Given an sps π satisfying AC, we define two functions (wdπ and lnπ) associating an integer with every edge a (resp. !-link
o) ofπ . What happens (as the readerwill see during the proof of Proposition 3.10), is that for every !-link o at depth 0 ofπ , on
the one hand wdπ (o) is an upper bound for the number of times o can be copied during a str-reduction sequence starting
from π , and on the other hand lnπ (o) is an upper bound for the depth of o’s residues during a str-reduction sequence
starting from π . A first evidence that the length of the str-reduction sequences starting from an sps π is bounded, is the
existence of these two functions: the function wdπ ‘‘measures’’ the maximal ‘‘width’’ of π ’s reducts while the function lnπ
‘‘measures’’ the maximal depth of π ’s reducts.

Definition 3.7. Let π be an sps satisfying AC and let a be an edge of π , at any depth. We define wdπ (a), the width of a in π ,
and lnπ (a), the length of a in π , by double induction: the first parameter is depth(π), the second one is the maximal length
of the exponential paths of π starting from a.

lnπ (a) :=

1+ sup

γ∈ρ

(
lnγ (aγ)

)
+ lnπ (b) if a is an auxiliary conclusion of a !-link

with main conclusion b, box ρ and aγ is the
conclusion corresponding to a of the slice
γ ∈ ρ,

1+ sup
b∈pred(a)

(
lnπ (b)

)
otherwise.

wdπ (a) :=

1 if pred(a) = ∅,(
1+

∑
γ∈ρ

wdγ (aγ)

)
wdπ (b) if a is an auxiliary conclusion of a !-link

with main conclusion b, box ρ and aγ is the
conclusion corresponding to a of the slice
γ ∈ ρ,∑

b∈pred(a)

wdπ (b) otherwise.

We extend wdπ and lnπ to the !-links of π , by setting for a !-link owith main conclusion b: lnπ (o) = lnπ (b) and wdπ (o)
= wdπ (b).
We will often simply write ln(a) or wd(a) (resp. ln(o) or wd(o)), when there is no ambiguity on the sps π we refer to.

If a is an auxiliary conclusion of a !-link o of an sps satisfying AC, then o’s main conclusion is the unique immediate
predecessor of a, so that pred(a) 6= ∅: this is used in the previous definition of wd. Notice also that by definition the two
functions ln, wd have strictly positive values. Finally the long-awaited definition of str-measure:

Definition 3.8 (str-Measure). The str-measure of an sps π satisfying AC is a natural number, denoted by |π |str and
defined by induction on depth(π), as follows:

|π |str :=
∑
o∈!0(π)

(
wdπ (o)(lnπ (o)+ |π o|str)

)
where !0(π) denotes the set of !-links at depth 0 ofπ , andπ0 denotes the sps associatedwith the !-link o (see Definition 2.2).

Consider for example the slice δ of Fig. 9, we have lnδ(b) = 1, lnδ(a) = 1+ 1+ 1 = 3 and lnδ(d) = 1+ sup{1, 3} = 4;
as for the width, wdδ(b) = 1, wdδ(a) = 2, wdδ(d) = 3. Thus |δ|str = wdδ(b) ·

(
lnδ(b) + 0

)
= 1. Then consider the

slice δδ of Fig. 9, we have lnδδ(e) = 1 + lnδδ(d) = 1 + lnδ(d) = 5 and wdδδ(e) = wdδδ(d) = wdδ(d) = 3. So that
|δδ|str = 1 + wdδδ(e)

(
lnδδ(e) + |δ|str

)
= 1 + 3(5 + 1) = 19. The reader can check that the str-reducts of δδ (i.e. the

slices pictured in the above line of Fig. 10) have a str-measure striclty less than |δδ|str. Moreover, notice that the reduction
δδ

cut+
−−→ δδ contains log-steps (the 3 ones represented in the lower part of Fig. 10).
The following fact shows some kind of ‘‘modularity’’ and of ‘‘monotonicity’’ of the functions ln and wd, two ingredients

of Proposition 3.10. Recall the notion of module of Definition 2.11.

Fact 3.9 (Modularity). Let α = ω[β] and α′ = ω[β ′] be two switching acyclic slices, where the module β ′ replaces the module
β in α′. For every pending edge (i.e. conclusion or hypothesis) b of β , denote by b′ the corresponding pending edge of β ′. The
following properties hold:

1. let b be a pending edge of β and suppose that b exponentially depends in ω[β] only on edges of ω[], i.e. if b depends on c 6= b,
then c is not an edge of β . Then lnα(b) = lnα

′

(b′) andwdα(b) = wdα
′

(b′);
2. if d is an edge of α which is not an edge of β and if for every pending edge b of β we have lnα(b) = lnα

′

(b′) (resp. lnα(b)
≥ lnα

′

(b′)), then lnα(d) = lnα
′

(d) (resp. lnα(d) ≥ lnα
′

(d)); the same holds forwd.

426 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Proof. It is a consequence of Definition 3.7. �

As for the log-measure, the str-measure of π is the sum of the str-measures of the slices of π , i.e. |π |str =∑
α∈π |α|str.

Proposition 3.10. The reduction str
−→ is SN on the sps satisfying AC.

Proof. For π satisfying AC, we prove that π str
−→ π implies |π |str > |π |str. We restrict to the case π has exactly one slice

α: the extension to the general case is obtained exactly as in the proof of Proposition 3.4.
So let α be a switching acyclic slice and α

str
−→ πα . First remark that πα contains a unique slice (a glance at Fig. 5 will

convince the reader). Let then πα = {α′} and let t be the cut link of α reduced during the
str
−→ step under consideration. Our

goal is to show |α|str > |α′|str. Actually we prove a stronger statement, by induction on the depth of t:
(1) |α|str > |α′|str,
(2) for every conclusion d of α, let

−→
d be the conclusion of α′ corresponding to d, one has lnα(d) ≥ lnα

′

(
−→
d) and

wdα(d) ≥ wdα
′

(
−→
d).

Base of induction. If t has depth 0, then we have three cases, depending on the type of t .
Case (!/?c). If t is a cut of type (!/?c), then (see Fig. 15) let l (resp. o) be the ?c-link (resp. !-link) whose conclusion a

(resp. whose main conclusion b) is a premise of t , let a1, a2 be the premises of l, and let
−→o1 ,
−→o2 be the two copies of o in α′:

−→
bi and

−→ai , i ∈ {1, 2}, are premises of a cut link ti.
Let S be the set of !-links at depth 0 of α different from o, i.e. !0(α) = {o} ∪ S (and the union is actually a disjoint union).

Observe that every !-link v ∈ S has a unique residue −→v in α′: we have !0(α′) = {−→o1 ,
−→o2 } ∪

−→
S . We use in the sequel the

notation πv for the box associated with the !-link v (see Definition 2.2). Let us define:

|S|str :=
∑
v∈S

(
wdα(v)(lnα(v)+ |πv|str)

)
|
−→
S |str :=

∑
−→v ∈
−→
S

(
wdα

′

(−→v)(lnα
′

(−→v)+ |π
−→v
|str)

)
.

Then by definition we have:

|α|str = wdα(o)(lnα(o)+ |π o|str)+ |S|str

|α′|str = wdα
′

(
−→o1)

(
lnα
′

(
−→o1)+ π

−→o1
)
+wdα

′

(
−→o2)

(
lnα
′

(
−→o2)+ π

−→o2
)
+ |
−→
S |str.

Consider any conclusion d of o in α different from b, denote as
−→
d the conclusion of the ?c-link created in α′ and correspond-

ing to d, and denote as
−→
d1 ,
−→
d2 the two premises of this ?c-link, one being an auxiliary conclusion of

−→o1 , the other one being
an auxiliary conclusion of−→o2 (see Fig. 15). We prove lnα(d) = lnα

′

(
−→
d) and wdα(d) = wdα

′

(
−→
d).

Since α satisfies AC, the edge ai, i ∈ {1, 2}, does not exponentially depend on any edge involved in the reduction of t , so
by Fact 3.9-1, one has ln(−→ai) = ln(ai) and wd(

−→ai) = wd(ai). Then the following equalities hold, where for γ ∈ π o (resp.
γ ∈ π

−→oi) we denote by dγ the conclusion of γ corresponding to the auxiliary conclusion d of o (resp. of−→oi):

lnα(d) = 1+ sup
γ∈πo

(
lnγ (dγ)

)
+ lnα(b)

= 2+ sup
γ∈πo

(
lnγ (dγ)

)
+ lnα(a)

= 3+ sup
γ∈πo

(
lnγ (dγ)

)
+ sup{ln(a1), ln(a2)}

= 1+ sup

{(
sup

γ∈π
−→o1

(
lnγ (dγ)

)
+ ln(−→a1)+ 2

)
,(

sup
γ∈π

−→o2

(
lnγ (dγ)

)
+ ln(−→a2)+ 2

) }
= 1+ sup{lnα

′

(
−→
d1), lnα

′

(
−→
d2)}

= lnα
′

(
−→
d).

As for wdα(d) = wdα
′

(
−→
d):

wdα(d) =

(
1+

∑
γ∈πo

wdγ (dγ)

)
wdα(b)

=

(
1+

∑
γ∈πo

wdγ (dγ)

)
wdα(a)

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 427

Fig. 15. The (!/?c) case of the proof of Proposition 3.10.

=

(
1+

∑
γ∈πo

wdγ (dγ)

) (
wd(a1)+wd(a2)

)
=

1+ ∑
γ∈π

−→o1

wdγ (dγ)

wd(−→a1)+
1+ ∑

γ∈π
−→o2

wdγ (dγ)

wd(−→a2)
=

1+ ∑
γ∈π

−→o1

wdγ (dγ)

wd(−→b1)+
1+ ∑

γ∈π
−→o2

wdγ (dγ)

wd(−→b2)
= wd(

−→
d1)+wd(

−→
d2)

= wdα
′

(
−→
d).

This implies by Fact 3.9-2, that for every v ∈ S one has ln(v) = ln(−→v) and wd(v) = wd(−→v), and that for every
conclusion d of α, lnα(d) = lnα

′

(
−→
d) and wdα(d) = wdα

′

(
−→
d): in particular (2) holds.

As for (1), notice that ln(o) = 1 + sup
{
ln(−→o1), ln(

−→o2)
}
, so that ln(o) > ln(−→oi) (i ∈ {1, 2}). Notice also that wd(o)

= wd(−→o1)+wd(
−→o2), as well as π o = π

−→oi (i ∈ {1, 2}). We can then deduce20

wd(o)(ln(o)+ |π o|str) > wd(
−→o1)(ln(

−→o1)+ |π
−→o1 |str)+wd(

−→o2)(ln(
−→o2)+ |π

−→o2 |str).

On the other hand, for every v ∈ S the box associated with v in π is the same sps as the box associated with−→v in α′, so
that |πv|str = |π

−→v
|str. This means that |S|str = |

−→
S |str. This equality and the inequality above yield |α|str > |α′|str.

Case (!/!). If t is of type (!/!), then (see Fig. 16) let o (resp. u) be the !-link of which themain (resp. an auxiliary) conclusion
a (resp. b) is a premise of t , let c be the main conclusion of u, let −→u be the residue of u in α′ and for every slice

−→
β ∈ π

−→u

(if any) let o
−→
β be the copy of owhich ‘‘entered’’ the !-link u during the reduction of t and finally let t

−→
β be the cut created in

−→
β by the reduction of t .
We set !0(α) = {u, o} ∪ S, i.e. S is the set of !-links at depth 0 of α different from u and o. Observe that each !-link v ∈ S

has a unique residue−→v in α′, so that !0(α′) = {−→u } ∪
−→
S . Let us define:

|S|str :=

∑
v∈S

(
wdα(v)(lnα(v)+ |πv|str)

)
|
−→
S |str :=

∑
−→v ∈
−→
S

(
wdα

′

(−→v)(lnα
′

(−→v)+ |π
−→v
|str)

)
.

Then by definition we have:

|α|str = wd(u)
(
ln(u)+ |πu|str

)
+wd(o)

(
ln(o)+ |π o|str

)
+ |S|str

|α′|str = wd(
−→u)

(
ln(−→u)+ |π

−→u
|str

)
+ |
−→
S |str.

Consider any conclusion d of u in α different from b, and denote as
−→
d the conclusion of−→u in α′ corresponding to d. If d = c ,

then d does not exponentially depend on any edge involved in the reduction of t: so by Fact 3.9-1, one has lnα(d) = lnα
′

(
−→
d)

and wdα(d) = wdα
′

(
−→
d). If d 6= c , let πu (resp. π

−→u) be the box of u (resp.−→u). By Definition 3.7 (with the same notations),

20 We use here the fact that for every edge a of π , one has wd(a) > 0, as already mentioned after Definition 3.7.

428 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 16. The (!/!) case of the proof of Proposition 3.10.

one has:

lnα(d) := 1+ sup
β∈πu

(
lnβ(dβ)

)
+ lnα(c)

lnα
′

(
−→
d) := 1+ sup

−→
β ∈π

−→u

(
ln
−→
β (d
−→
β)
)
+ lnα

′

(
−→c).

Notice that every edge g conclusion of πu exponentially depends only on edges which are not involved in the reduction
of t , so by Fact 3.9-1 we have lnπ

u
(g) = lnπ

−→u
(
−→g).21 Since we already noticed that lnα(c) = lnα(−→c), we can eventually

conclude that for every conclusion d of u in π different from b one has ln(d) = ln(
−→
d), and in the same way one obtains the

equality wd(d) = wd(
−→
d). In particular, ln(u) = ln(−→u) and wd(u) = wd(−→u).

Then, consider any auxiliary conclusion d of o in α, and denote by
−→
d the conclusion of −→u in α′ corresponding to d. In

this case we will prove lnα(d) = lnα
′

(
−→
d) and wdα(d) ≥ wdα

′

(
−→
d). Still by Fact 3.9-1 we have that lnβ(bβ) = ln

−→
β (b
−→
β) and

wdβ(bβ) = wd
−→
β (b
−→
β).22 The following equalities hold (where, like in the (!/?c)-case, dγ denotes the conclusion of the slice

γ corresponding to d):

lnα(d) = 1+ sup
γ∈πo

(
lnγ (dγ)

)
+ lnα(a)

= 2+ sup
γ∈πo

(
lnγ (dγ)

)
+ lnα(b)

= 3+ sup
γ∈πo

(
lnγ (dγ)

)
+ sup

β∈πu

(
lnβ(bβ)

)
+ lnα(c)

= 3+ sup
γ∈πo

(
lnγ (dγ)

)
+ sup
−→
β ∈π

−→u

(
ln
−→
β (b
−→
β)
)
+ lnα

′

(
−→c)

= 3+ sup
−→
β ∈π

−→u

 sup
γ∈πo

−→
β

(
lnγ (dγ)

)
+ ln

−→
β (b
−→
β)

+ lnα′(−→c)
= 2+ sup

−→
β ∈π

−→u

 sup
γ∈πo

−→
β

(
lnγ (dγ)

)
+ ln

−→
β (a
−→
β)

+ lnα′(−→c)
= 1+ sup

−→
β ∈π

−→u

(
ln
−→
β (d
−→
β)
)
+ lnα

′

(
−→c)

= lnα
′

(
−→
d).

In a similar way we prove that wdα(d) ≥ wdα
′

(
−→
d):

wdα(d) =

(
1+

∑
γ∈πo

wdγ (dγ)

)
wdα(a)

=

(
1+

∑
γ∈πo

wdγ (dγ)

)
wdα(b)

21 Notice that we are actually using a slight variant of Fact 3.9-1: with the notations of Fact 3.9, some pending edges of β and β ′ do not coincide. These
edges are conclusions of α and α′ and it is easy to check that Fact 3.9-1 holds in this case too.
22 See footnote 21.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 429

=

(
1+

∑
γ∈πo

wdγ (dγ)

)(
1+

∑
β∈πu

wdβ(bβ)

)
wdα(c)

=

(
1+

∑
γ∈πo

wdγ (dγ)

)1+ ∑
−→
β ∈π

−→u

wd
−→
β (b
−→
β)

wdα′(−→c)

=

1+∑
γ∈πo

wdγ (dγ)+
∑
−→
β ∈π

−→u

wd
−→
β (b
−→
β)+

∑
−→
β ∈π

−→u

γ∈πo

wdγ (dγ)wd
−→
β (b
−→
β)

wdα′(−→c)

≥

1+
∑
−→
β ∈π

−→u

wd
−→
β (b
−→
β)+

∑
−→
β ∈π

−→u

γ∈πo
−→
β

wdγ (dγ)wd
−→
β (b
−→
β)

wdα′(−→c)

=

1+ ∑
−→
β ∈π

−→u

(
1+

∑
γ∈πo

−→
β

wdγ (dγ)
)
wd
−→
β (b
−→
β)

wdα′(−→c)
=

1+ ∑
−→
β ∈π

−→u

wd
−→
β (d
−→
β)

wdα′(−→c)
= wdα

′

(
−→
d).

Like in the (!/?c)-case, all this implies by Fact 3.9-2, that for every v ∈ S one has ln(v) = ln(−→v) and wd(v) ≥ wd(−→v),
and that for every conclusion d of α, lnα(d) = lnα

′

(
−→
d) and wdα(d) ≥ wdα

′

(
−→
d): in particular (2) holds.

As for (1), we first prove that

wd(−→u)
(
ln(−→u)+ |π

−→u
|str

)
< wd(u)

(
ln(u)+ |πu|str

)
+wd(o)

(
ln(o)+ |π o|str

)
.

In case πu is the empty set of slices, the inequality holds: |π
−→u
|str = |π

u
|str = 0, so that wd(

−→u)
(
ln(−→u) + |π

−→u
|str

)
=

wd(u)
(
ln(u) + |πu|str

)
< wd(u)

(
ln(u) + |πu|str

)
+ wd(o)

(
ln(o) + |π o|str

)
(since wd(o), ln(o) > 0). In case πu is not

empty, for β ∈ πu (resp.
−→
β ∈ π

−→u), define Hβ = 2+ lnβ(bβ)+ |π o|str (resp. H−→β = 2+ ln
β(b
−→
β)+ |π o

−→
β
|str): notice that

Hβ = H−→β > 0 (we are using πu 6= 0), and this will be used in the following sequence of equalities and inequalities. By
definition ln(o) = 2+ ln(u)+ supβ∈πu

(
lnβ(bβ)

)
, so we have (using Fact 3.9):

wd(o)(ln(o)+ |π o|str) ≥ wd(o)

(
2+ sup

β∈πu

(
lnβ(bβ)

)
+ |π o|str

)

= wd(u)

(
1+

∑
β∈πu

wdβ(bβ)

)(
sup
β∈πu

Hβ

)

≥ wd(u)

(
sup
β∈πu

Hβ

)
+wd(u)

(∑
β∈πu

wdβ(bβ)Hβ

)

= wd(−→u)

(
sup
−→
β ∈π

−→u

H−→
β

)
+wd(−→u)

 ∑
−→
β ∈π

−→u

wd
−→
β (b
−→
β)H−→

β

= wd(−→u)

(
sup
−→
β ∈π

−→u

H−→
β

)
+wd(−→u)

 ∑
−→
β ∈π

−→u

wd
−→
β (o
−→
β)H−→

β

> wd(−→u)

 ∑
−→
β ∈π

−→u

wd
−→
β (o
−→
β)H−→

β

430 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

= wd(−→u)
∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)

(
2+ ln

−→
β (b
−→
β)+ |π o

−→
β
|str

))

=

wd(−→u) ∑
−→
β ∈π

−→u

wd
−→
β (o
−→
β)

+wd(−→u) ∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)

(
1+ ln

−→
β (b
−→
β)+ |π o

−→
β
|str

))

=

wd(−→u) ∑
−→
β ∈π

−→u

wd
−→
β (o
−→
β)

+wd(−→u) ∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)

(
ln
−→
β (o
−→
β)+ |π o

−→
β
|str

))

> wd(−→u)
∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)

(
ln
−→
β (o
−→
β)+ |π o

−→
β
|str

))
.

Moreover, since |πu|str =
∑

β∈πu |β|str, we have:

|π
−→u
|str =

∑
−→
β ∈π

−→u

(
|β|str +wd

−→
β (o
−→
β)
(
ln
−→
β (o
−→
β)+ |π o

−→
β
|str

))
= |πu|str +

∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)
(
ln
−→
β (o
−→
β)+ |π o

−→
β
|str

))
.

Now remember that wd(u) = wd(−→u) and ln(u) = ln(−→u). Thus:

wd(−→u)(ln(−→u)+ |π
−→u
|str) = wd(u)(ln(u)+ |π

−→u
|str)

= wd(u)

ln(u)+ |πu|str + ∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)
(
ln
−→
β (o
−→
β)+ |π o

−→
β
|str

))
= wd(u)

(
ln(u)+ |πu|str

)
+wd(−→u)

∑
−→
β ∈π

−→u

(
wd
−→
β (o
−→
β)(ln

−→
β (o
−→
β)+ |π o

−→
β
|str)

)
< wd(u)

(
ln(u)+ |πu|str

)
+wd(o)

(
ln(o)+ |π o|str

)
.

On the other hand, for every v ∈ S the box associated with v in α is the same sps as the box associated with−→v in α′, so
that |S|str = |

−→
S |str. The previous inequation allows then to conclude |α|str > |α′|str.

Case (!/?w). If t is of type (!/?w), then the case is simple and left to the reader. Notice that in this case the values of
length and width can decrease, since the reduction of t erases a !-link.

Inductive step. If t is a cut in a !-link o of α′, then α′ is obtained by replacing the box π o associated with o with a box
π o s.t. π o

str
−→ π o. By induction hypothesis we know that (1) |π o|str < |π o|str, and (2) for every conclusion d of π o,

lnπ
o
(d) ≥ lnπ

o
(
−→
d),wdπ

o
(d) ≥ wdπ

o
(
−→
d). By Fact 3.9-2, this implies both (1) and (2) for α, α′. �

We conclude the subsection by noting that (in a perfectly symmetric way w.r.t. the log-measure) the str-measure may

increase under
log
−→: indeed, the reduction

log
−→ can change the exponential paths of an sps and their lengths may increase

(think for example of the main conclusion of a !-link o which is the premise of a ?d-link itself cut with a !-link u: after the
reduction of the (!/?d) cut, some exponential paths disappear and some new ones starting from o and crossing edges of
u’s box might appear and might be longer than the erased ones: this is exactly what happens in the last reduction step of
Fig. 10). If the length of exponential paths grows, so do also the values of the functions ln and wd, and consequently the
str-measure.

4. Standardization for sliced pure structures

In this sectionweprove ourmain result: the standardization theorem for sps (Theorem4.2). Basically, the standardization
theorem reduces the problem of SN to a problem of WNw.r.t. a subreduction of

cut
−→, called non-erasing reduction. The non-

erasing reduction steps have a key property: they never erase cuts different from the reduced one. In fact, the notion of
non-erasing reduction has to be defined very carefully: not only a non-erasing reduction step does not erase cuts, but also it
does not erase (nor change the non-erasing nature of) ‘‘future cuts’’, that is of cutswhich can be created during any reduction
sequence.23

23 This might sound a bit mysterious by now, but it will appear in full light in Section 5.2.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 431

Definition 4.1 (Erasing Cut). The erasing reduction steps are the following:

• (&i/⊕j) for i 6= j, (!/?w) and (>/cc),
• (!/?d) (resp. (!/!)) when the empty sps is associated with the !-link whose main conclusion (resp. auxiliary conclusion)
is a premise of the cut to be reduced.

The other reduction steps are called non-erasing.

The erasing (resp. non-erasing) reduction, denoted by
e
−→ (resp. by

¬e
−→), is the context closure of the union of the erasing

(resp. non-erasing) reduction steps. A cut is erasing (resp. non-erasing) when so is its reduction.

Theorem 4.2 (Standardization for sps). Let π be an sps which satisfies AC. If π ∈ WN¬e, then π ∈ SN.

We split the proof of Theorem 4.2 in two parts: in Section 4.1we prove that SN is a consequence of SN¬e (Proposition 4.5),
in Section 4.2 we prove the equivalence between SN¬e andWN¬e (Proposition 4.10). This last step is the most delicate one,
and uses the key notion of labelled sps and labelled reduction (Definitions 4.6 and 4.7).

4.1. SN is a consequence of SN¬e

In this subsection, we prove Proposition 4.5: SN is a consequence of SN¬e. The proof is based on two simple facts:
(i) erasing steps can always be postponed after non-erasing ones (Lemma 4.4); (ii) there is no infinite sequence of erasing
steps (the

e
−→ reduction clearly decreases the size of an sps). Then suppose there exists an infinite sequence of

cut
−→ steps

starting from an sps π (i.e. suppose π /∈ SN). This sequence should contain an infinite number of non-erasing steps: by
iterating Lemma 4.4 we then obtain an arbitrarily long sequence of non-erasing steps starting from π , i.e. π /∈ SN¬e.

Lemma 4.3. Let π and π ′ be two sps. If π e
−→ π ′, then every cut link t ′ of π ′ has an ancestor

←−
t ′ in π . If t ′ is non erasing, the two

cuts t ′ and
←−
t ′ have the same type.

Proof. The only links which might be created by an erasing reduction step are ?w-links (see Definition 2.14): t ′ and
←−
t ′

might have a different type only if t ′ is erasing. �

Lemma 4.4 (Postponement of e
−→). The reduction

e
−→ can be postponed w.r.t. the reduction

¬e
−→ (see Fig. 4(e)).

Proof. Suppose π e
−→ π1

¬e
−→ π2. Let u (resp. t) be the cut reduced in π

e
−→ π1 (resp. in π1

¬e
−→ π2). By Lemma 4.3 and by the

hypothesis that u is erasing, we deduce that t has an ancestor←−t in π and that t and←−t have the same type: in particular
←−t is non-erasing.

We define π3 as the result of reducing
←−t in π (so π

¬e
−→ π3). By inspection of cases one can check that reducing the

residues of u (which are all still erasing) in π3 yields π2, i.e. π3
e∗
−→ π2. �

Proposition 4.5. Let π be an sps. If π ∈ SN¬e then π ∈ SN.

Proof. Suppose that π /∈ SN and consider an infinite reduction sequence starting from π : R := π
cut
−→ π1

cut
−→ π2

cut
−→

Observe first that R has no infinite suffix of erasing steps, since the number of links strictly decreases at each erasing step.

We will define for any number n a sequence Q of
¬e
−→ steps of length n starting from π , hence proving that π /∈ SN¬e. Let

k be the least number (if any) s.t. πk
e
−→ πk+1. We define Q by induction on n− k.

If k ≥ n or k does not exist, then simply take Q as the prefix of R of length n. If k < n, let m be the least integer s.t.
m > k and πm

¬e
−→ πm+1 (thism does exist since R has no infinite suffix of erasing steps). Applym− k times Lemma 4.4, for

obtaining an (infinite) sequence of reductions R′ which has a prefix of length k + 1 of
¬e
−→ steps. We obtain Q by applying

the induction hypothesis to R′. �

4.2. SN¬e is a consequence ofWN¬e

This subsection is devoted to prove Proposition 4.10: the weak and strong normalization of
¬e
−→ are the same property

for sps satisfying AC. Our proof is quite delicate and it is based on a confluence theorem (Theorem 4.18), following a method
proposed by Gandy in the framework of Gödel’s system T [5].
The basic idea is to find a measure |π |` on sps which is a natural number and to prove that:

(i) |π |` strictly increases under
¬e
−→,

(ii)
¬e
−→ is confluent.

432 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Then if an sps π has a normal form π ′ (i.e. if π ∈ WN¬e), we can deduce that the number |π ′|` maximizes the length of
every

¬e
−→ reduction sequence starting from π (and thus π ∈ SN¬e).

In order to define this increasing measure, we change a bit the syntax of sps, defining the labelled sps (Definition 4.6)
and the labelled cut-elimination (Definition 4.7). The labelling plays the role of ‘‘counting’’ the number of steps applied to
an sps, thus allowing the definiton of an increasing measure (Definition 4.8).
Our guidelines in the definition of labelled sps and of their cut-elimination are the following:

(i) labels will be used to define the measure which has to increase under cut-elimination
(ii) to apply Gandy’s method we need confluence for labelled sps.

We then introduce ‘‘new’’ links (actually dummy links) whose unique role is to participate (by means of their labels) to the
measure of the sps: we call them ∗-links. These dummy links are the only labelled ones. The idea is to associate with every
flat of an sps a unique ∗-link, whose label is actually ‘‘the label of the flat’’.

Definition 4.6 (Labelled sps). The ∗-link is a link without premises nor conclusions. A labelled sliced pure structure, s`ps for
short, is a couple 〈π, `〉 s.t. π is an sps with exactly one occurrence of the ∗-link in every flat of π , and ` is a function from
the occurrences of ∗-links of π to the natural numbers, which is the labelling of 〈π, `〉.
The degree of the labelling of 〈π, `〉, denoted by |`|, is the sum of `’s values on the occurrences of ∗-links of π .24

Definition 4.7 (Cut Elimination for s`ps). Let t be a cut of 〈π, `〉.We allow to reduce t only in case it is non erasing. The result
of the reduction of t is the s`ps

〈
π ′, `′

〉
defined as follows:

1. π ′ is the result of the reduction of t in π defined as in Definition 2.12, except if t is of type (!/?d): in that case, first erase
the ∗-link of the flat of t and then proceed like in Definition 2.12; in such a way, every flat of π ′ contains exactly one
∗-link;

2. let r be a ∗-link of π ′, we define `′(r). Let←−r be the ancestor of r in π25. There are three possible cases:
(a) in case t is of type (ax), (1/⊥), (⊗/

&

) or (&i/⊕i), if the flat of
←−r is the same as the flat of t , set `′(r) = `(←−r) + 1;

otherwise set `′(r) = `(←−r);
(b) in case t is of type (!/?d), let v (resp. o) be the ∗-link (resp. !-link) of π erased by the reduction of t . If←−r has depth 0
in the sps associated with o, then set `′(r) = `(←−r)+ `(v)+ 2; otherwise set `′(r) = `(←−r);

(c) in case t is of type (!/?c) or (!/!), set `′(r) = `(←−r).

We introduce the notation t(〈π, `〉) and
`
−→, as usual.

Definition 4.8 (`-Measure). Let 〈π, `〉 be an s`ps, c be the number of !-links of π , d be the sum of the depths of the !-links
of 〈π, `〉. The `-measure of 〈π, `〉 is a natural number, denoted by |〈π, `〉|` and defined as follows:

|〈π, `〉|` := (|`| + c)2 + d.

We now prove the first key property of the reduction
`
−→, namely that it strictly increases the `-measure:

Lemma 4.9. Let 〈π, `〉 be an s`ps: if 〈π, `〉 `
−→
〈
π ′, `′

〉
, then |

〈
π ′, `′

〉
|` > | 〈π, `〉 |`.

Proof. In case
〈
π ′, `′

〉
is the result of an (ax), (1/⊥), (⊗/

&

) or (⊕i/&i) step, then |`′| = |`| + 1, c ′ = c , d′ = d, hence
|
〈
π ′, `′

〉
|` > | 〈π, `〉 |`.

In case
〈
π ′, `′

〉
is the result of a (!/?c) step, then |`′| ≥ |`|, c ′ ≥ c + 1, d′ ≥ d, hence |

〈
π ′, `′

〉
|` > | 〈π, `〉 |`.

In case
〈
π ′, `′

〉
is the result of a (!/!) step, then |`′| ≥ |`|, c ′ ≥ c , d′ ≥ d+ 1, hence |

〈
π ′, `′

〉
|` > | 〈π, `〉 |`.

In case
〈
π ′, `′

〉
is the result of a (!/?d) step, then |`′| ≥ |`| + 2, c ′ ≥ c − 1, d′ ≥ d − c + 1. We deduce:

|
〈
π ′, `′

〉
|` ≥ (|`| + c + 1)2 + d− c + 1 ≥ | 〈π, `〉 |` + c + 1. �

The second key property of the reduction
`
−→ is confluence (Theorem 4.18), which is proven in the next subsection. We

prove now that the two mentioned key properties of
`
−→ entail the equivalence of WN¬e and SN¬e for sps satisfying AC:

Proposition 4.10. Let π be an sps which satisfies AC. If π ∈ WN¬e then π ∈ SN¬e.

24 Notice thatwith twodifferent occurrences of the same flat of 〈π, `〉 are associated twodifferent occurrences of the∗-link: this entails that our definition
of |`| has taken into account the multiplicities of a given flat in the sps associated with a given !-link. We will as usual write in the sequel ‘‘a ∗-link’’ always
meaning ‘‘an occurrence of the ∗-link’’.
25 The definition of ancestor/residue of a ∗-link is straightforward, from the definition of π ′ given in step 1: every ∗-link of π ′ has exactly one ancestor
in π .

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 433

Proof. Suppose π is an sps satisfying AC and s.t. π ∈ WN¬e. For every `, 〈π, `〉 satisfies AC and 〈π, `〉 ∈ WN`. We prove
that 〈π, `〉 ∈ SN`, which clearly implies that π ∈ SN¬e.
Let

〈
π ′, `′

〉
be a normal form of 〈π, `〉: we prove that the length of every reduction sequence starting from 〈π, `〉 is

bounded by |
〈
π ′, `′

〉
|`.

Suppose 〈π, `〉
`
−→ 〈π1, `1〉

`
−→ · · ·

`
−→ 〈πn, `n〉. By Lemma 4.9 we have | 〈πn, `n〉 |` ≥ | 〈π, `〉 |`+ n. Since 〈π, `〉 satisfies

AC we deduce by confluence (Theorem 4.18) that 〈πn, `n〉
`∗
−→

〈
π ′, `′

〉
, hence by Lemma 4.9, |

〈
π ′, `′

〉
|` ≥ | 〈πn, `n〉 |`. We

then conclude that |
〈
π ′, `′

〉
|` ≥ n. �

4.2.1. Confluence of
`
−→

The rest of this section is devoted to the proof of confluence of `-reduction (Theorem 4.18). Our `-reduction (as well as
usual LL cut-reduction) is locally confluent but not strongly confluent (recall Fig. 4(c)). The reader can find counter-examples
to the strong confluence property in the proofs of Lemmas 4.12 and 4.14.
We thus prove the confluence of `-reduction (Theorem 4.18) by decomposing

`
−→ into its logical and structural

subreduction,
log`
−−→ and

str`
−−→, exactly as we did for

cut
−→ in Definition 3.1. Then we show that both

log`
−−→ and

str`
−−→ are

confluent (Propositions 4.13 and 4.15) and that they commute (Lemma 4.17). We conclude that
`
−→ is confluent since it

is the union of two confluent reductions which commute (Hindley–Rosen Lemma, here Lemma 2.8).

Definition 4.11. The `-logical reduction, denoted by
log`
−−→, is the context closure of the following `-reduction steps: (ax),

(⊗/

&

), (1/⊥), (&i/⊕i), (!/?d); the `-structural reduction, denoted by
str`
−−→, is the context closure of the following `-reduction

steps: (!/!) and (!/?c).

Of course we have
`
−→ =

log`
−−→∪

str`
−−→. Notice that

str`
−−→ is defined precisely by those `-steps which leave unchanged the

labels of the ∗-links.
In what follows we prove that

log`
−−→ and

str`
−−→ are confluent and commute. The difficult part of the proof is already

achieved: it consists in establishing that both
log`
−−→ and

str`
−−→ are SN, which is an immediate consequence of SN of

log
−→

(Proposition 3.4) and of
str
−→ (Proposition 4.13): the labelling of s`ps plays no role w.r.t. SN.

Confluence of
log`
−−→. Weprove the confluence of

log`
−−→ (Proposition 4.13) by applying the Newman Lemma (here Lemma 2.7):

a relation which is locally confluent and SN is confluent. The local confluence of
str`
−−→ is proven by Lemma 4.12, and the SN

of
log`
−−→ is an immediate consequence of Proposition 3.4.
Neither in the proof of Proposition 3.4 nor in the one of Lemma 4.12 the AC condition is used, so that the confluence of

log`
−−→ is established for the whole set of s`ps.

Lemma 4.12. The reduction
log`
−−→ is locally confluent on s`ps.

Proof. We prove that for every slice 〈α, `〉 the following diagram holds:

This immediately entails local confluence for general s`ps.
Establishing that the previous diagram holds is not immediate only when at least one reduction is of type (!/?d): in this

case26 the slice 〈α, `〉 is duplicated a number of times equal to the number of slices of the box opened by the (!/?d) reduction.

Let us consider for example the case 〈α, `〉
log
−→ 〈π1, `1〉 is a (!/?d) step and 〈α, `〉

log
−→ 〈π2, `2〉 is a (⊗/

&

) step (the other
cases are similar and left to the reader). We have, for some n > 0:

26 We can suppose without loss of generality that the reduced cut link has depth 0 in α.

434 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

the reduction of the cut t opens the box of the !-link o and duplicates the slice 〈α, `〉 n times, giving as result the following
s`ps (notice that the labelling of the ∗-links changes):

Instead, by reducting the cut r in 〈α, `〉, one obtains the following slice:

If we reduce the cut−→t in 〈π2, `2〉, we obtain the following s`ps (again notice that the labelling of the ∗-links changes):

The same s`ps can be obtained by reducing the residues −→r1 , . . . ,
−→rn of the cut r in 〈π1, `1〉. We conclude that 〈π1, `1〉

log`
−−→

∗

〈π3, `3〉 and 〈π2, `2〉
log`
−−→ 〈π3, `3〉. �

Notice that the critical pair analyzed in the proof of Lemma 4.12 is a counter-example to the strong confluence of
log`
−−→.

Proposition 4.13. The reduction
log`
−−→ is confluent on the s`ps.

Proof. Consequence of Lemma 4.12, Proposition 3.4 and the Newman Lemma (here Lemma 2.7). �

Confluence of
str`
−−→. As for

log`
−−→, the confluence of

str`
−−→ (Proposition 4.15) is obtained using the Newman Lemma. The

local confluence is deduced by Lemma 4.14, and the SN of
str`
−−→ is an immediate consequence of Proposition 3.10. In sharp

contrast with the case of the
log`
−−→ rewriting rule, the reader should remark that the AC condition plays a crucial role both

for Lemma 4.14 and Proposition 3.10: in Section 2.4 we have given counter-examples (see Figs. 11 and 12) both to the local
confluence and the SN of

str
−→ for sps which do not satisfy AC.

Remark that the labelling of the ∗-links does not play any role in the confluence of
str`
−−→, since the ` function is invariant

under
str`
−−→. We nevertheless picture explicitly the ∗-links in the figures illustrating the following lemma, in order to stress

that confluence holds for labelled sps.

Lemma 4.14. The reduction str`
−−→ is locally confluent on the s`ps satisfying AC.

Proof. The local confluence of str`
−−→ is quite a standard result, the proof is essentially the same as that of the local confluence

of the exponential reduction in MELL given by Danos in his PhD thesis [2]. The local confluence of
str`
−−→ can be reduced to

the following diagram:

This immediately entails local confluence for general s`ps.
The proof is by inspection of all possible cases, we treat in detail only the following two critical pairs (the considered cuts

have depth 0 in the slice α).

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 435

1. If 〈α, `〉
str`
−−→ 〈π1, `1〉 is the reduction of a cut t of type (!/!) and 〈α, `〉

str
−→ 〈π2, `2〉 is the reduction of a cut r of type

(!/!) and if the two cuts are in opposition as pictured below:

then the reduction of t will bring a copy of v in each slice β of the s`ps associated with o and it will transform the premise
c of the cut r in an auxiliary conclusion of the residue of the !-link o in 〈π1, `1〉. On the other hand the reduction of r in
〈α, `〉 will bring a copy of u in each slice γ of the s`ps associated with v. The s`ps 〈π3, `3〉 is obtained from 〈π2, `2〉 by
reducing the (unique) residue of t in 〈π2, `2〉, which results in bringing v, and hence u, in each slice of the s`ps associated
with o:

The s`ps 〈π3, `3〉 can also be obtained from 〈π1, `1〉 in two steps (recall we are proving only local confluence of
str`
−−→):

first, we reduce the residue of r in 〈π1, `1〉 thus obtaining for each slice β in the box of o a cut between an auxiliary
conclusion of a copy of v and a copy of u, and then we reduce every such cut, thus bringing a copy of u in every slice γ in
the boxes of the various copies of v, as sketched in the above figure.

2. If 〈α, `〉
str`
−−→ 〈π1, `1〉 is the reduction of a cut t of type (!/?c) and 〈α, `〉

str`
−−→ 〈π2, `2〉 is the reduction of a cut r of type

(!/!) and if the two cuts are in opposition as pictured below:

then the reduction of t will duplicate o in 〈π1, `1〉 and will transform the cut r in a cut of type (!/?c) between the residue
of the !-link u and a created ?c-link with premises the auxiliary conclusions corresponding to c of the two copies of o. On
the other hand, the reduction of r in 〈α, `〉 will bring a copy of u in each slice β of the s`ps associated with o. The s`ps
〈π3, `3〉 is obtained from 〈π2, `2〉 by reducing the (unique) residue of t in 〈π2, `2〉, which duplicates o, and hence u:

The s`ps 〈π3, `3〉 can also be obtained from 〈π1, `1〉 in three steps (also in this case we have only local confluence and
not strong confluence): first, we reduce the residue of r in 〈π1, `1〉, which is a cut of type (!/?c); this duplicates u and
creates two cuts of type (!/!), one between the first copies of o and u and the other one between the second copies of o
and u. We obtain 〈π3, `3〉 by further reducing the two (!/!) cuts. �

436 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

The critical pairs treated in the proof of Lemma 4.14 are counter-examples to the strong confluence of
str`
−−→.

Proposition 4.15. The reduction str`
−−→ is confluent on the s`ps satisfying AC.

Proof. Consequence of Lemma 4.14, Proposition 3.10 and the Newman Lemma (Lemma 2.7). �

Commutation of
log`
−−→ and

str`
−−→. The last step allows to merge

log`
−−→ and

str`
−−→ together, proving that the two reductions

commute (Lemma 4.17): this is achieved by applying a lemma by Di Cosmo, Piperno and Geser (here Lemma 2.9) which

reduces the commutation of
log`
−−→ and

str`
−−→ to the diagram (1) of Lemma 2.9.

Like in the proof of confluence for
log`
−−→ (and contrary to the proof of confluence for

str`
−−→) the AC condition is not needed in

this paragraph.

Lemma 4.16. For every s`ps the following diagram holds:

Proof. Also for this lemma we restrict ourselves to the case 〈π, `〉 is a slice 〈α, `〉: the general case follows immediately.

Let t (resp. r) be the cut link of α reduced in 〈α, `〉
str`
−−→ 〈π1, `1〉 (resp. in 〈α, `〉

log`
−−→ 〈π2, `2〉). The proof is by induction

on the depth of r . We split the proof in three cases.
Case (i). The cut r is at depth 0 in 〈α, `〉: this case is immediate, since the reduction of t does not affect r . The only slightly

delicate case is when r is of type (!/?d) (so that its reduction duplicates 〈α, `〉) and t is duplicated a number of times equal
to the number of slices, say n, of the opened exponential box: π2 =

∑n
i=1 αi. Since r is a non erasing cut link, we have

n ≥ 1. In particular, let −→t1 , . . . ,
−→tn be the n residues of t in 〈π2, `2〉. We first prove that the diagram holds without labels,

by distinguishing two subcases: (i) if t is of type (!/!) and one of the two premises of t is an auxiliary conclusion of the !-link
opened by the reduction of r , then we do not need to reduce the residues of t to close the diagram: π3 = π227; (ii) otherwise
the reduction of the residues of t in π2 gives as result the same sps as the one given by the reduction of the (unique) residue
of r in π1. Notice that π3 has exactly n slices: π3 =

∑n
i=1 βi.

Concerning the labels, let’s call vi the ∗-link at depth 0 of the slice αi of π2 and v the ∗-link of α. Similarly, let us call v′i
the ∗-link at depth 0 of the slice βi of π3. The computation of the label of v′i yields (for both the considered reductions from
π to π3) `(v)+ `(←−vi)+ 2. Since the label of every ∗-link of π3 different from v′i is the same as the one of its ancestor in π ,
the diagram holds also with labels.

Case (ii). Both t and r are cuts in boxes of α. Let o (resp. u) be the !-link at depth 0 of α containing t (resp. r). If o and u
are different !-links, then this case is immediate; if they are the same !-link o, let 〈π o, `o〉 be the box associated with o. We

have 〈π o, `o〉
str`
−−→

〈
π o1 , `

o
1

〉
and 〈π o, `o〉

log`
−−→

〈
π o2 , `

o
2

〉
. We apply the induction hypothesis and we obtain an s`ps

〈
π o3 , `

o
3

〉
s.t.
〈
π o1 , `

o
1

〉 log`+
−−−→

〈
π o3 , `

o
3

〉
and

〈
π o2 , `

o
2

〉 str`∗
−−−→

〈
π o3 , `

o
3

〉
. The s`ps 〈π3, `3〉 is then obtained from 〈π, `〉 by associating with o

the s`ps
〈
π o3 , `

o
3

〉
.

Case (iii). The cut t is at depth 0 and r is contained in a !-link o at depth 0 of α: then we can have two critical pairs, since
the !-link omay be involved in the reduction of t .
One critical pair is when t is of type (!/?c) and o is the !-link which is duplicated by the reduction of t:

The reduction of t duplicates o, hence r , in 〈π1, `1〉, but does not change the content of the box nor the labels of the ∗-links.
On the other hand, the reduction of r changes the s`ps associatedwith o, without affecting the cut t nor the label of the ∗-link
at depth 0 of α, but possibly changing the labels of the ∗-links inside o. Reducing the two residues of r in 〈π1, `1〉 gives the

same result 〈π3, `3〉 as reducing the residue of t in 〈π2, `2〉. By the way notice that the reduction 〈π1, `1〉
log`+
−−−→ 〈π3, `3〉

costs two steps, due to the duplication of r .

27 Notice that in this case (and only in this case) these t ’s residues might also be non reducible cuts.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 437

Fig. 17. Grammar of LL formulas.

The other critical pair is when t is of type (!/!) and o (the !-link whose box contains r) is one of the two !-links involved
in the reduction of t (i.e. in the figure below o = u or o = v):

The reduction of t brings one copy of u in each slice of the box associated with v (notice that v contains at least one slice,
since

str`
−−→ is a non-erasing reduction step): however, this reduction does not change the s`ps associated with u nor the

labels of the ∗-links. On the other hand the reduction of r in 〈α, `〉 changes the s`ps associated with u or that associated
with v, depending on whether o = u or o = v.
The case o = u is simple: let−→r 1, . . . ,

−→r n (where n ≥ 1, as we noticed above) be the residues of r in 〈π1, `1〉. Reducing
these n cuts gives the same result as reducing the unique residue of t in 〈π2, `2〉.
If o = v, then one has to notice that even if the reduction of t changes the box πv associated with v (bringing ‘‘inside v’’

the !-link u), cuts and ∗-links of πv are not affected by this reduction. In particular we can reduce the residue of r in 〈π1, `1〉

like the reduction step 〈α, `〉
log`
−−→ 〈π2, `2〉 does, thus obtaining the s`ps 〈π3, `3〉 which is also the result of reducing the

residue of t in 〈π2, `2〉. �

Lemma 4.17. The reductions str`
−−→ and

log`
−−→ commute (see Fig. 4(d)).

Proof. It is a consequence of Lemma 4.16, Proposition 3.4 and a Lemma by Di Cosmo, Piperno and Geser (here Lemma 2.9).
�

Theorem 4.18. The reduction `
−→ is confluent on s`ps satisfying AC.

Proof. Consequence of Proposition 4.13, 4.15, Lemma 4.17 and the Hindley–Rosen Lemma (Lemma 2.8). �

Remark 4.19. One can easily adapt Theorem 4.18 and prove the confluence of cut
−→ for >-free sps satisying AC: just check

that
log
−→ and

str
−→ are locally confluent (i.e. add the erasing steps to the proof of Lemma 4.12 and Lemma 4.14) and that they

commute.

5. Strong normalization for linear logic

We now want to apply our (rather general) main result (Theorem 4.2) in order to prove strong normalization for
full second order LL (Theorem 5.12). As proof-nets, we take here the most general currently used notion, obtained by
combining [7], [9] and [2], and by generalizing the (ccad) and the (>/cc) reduction steps (see below). These proof-nets
are defined in [24]: let’s call them simply nets, and denote them with initial Greek letters α, β . . .
This last section requires some knowledge on nets, mainly some acquaintance with the additive and second order cut-

elimination and the notion of sequentialization: all the precise definitions are in [24].

5.1. The syntax of nets

There are two main differences between nets and sps: (i) nets are typed by second order LL formulas (Fig. 17 recalls the
grammar of LL) and (ii) nets use additive boxes to handle the & rule. Let us comment this last feature.
In the framework of nets, &-links behave like !-links (see Fig. 18): they have 0 premises and n + 1 conclusions, a

distinguished one (themain conclusion, typed by a &-formula, say A&B) and possibly others (the auxiliary conclusions); with
every &-link with n+ 1 conclusions are associated two nets β1 and β2, called first (or left) and second (or right) component
of the &-link. The nets β1 and β2 have the same n conclusions as the auxiliary conclusions of the &-link (called the auxiliary
conclusions of the component of the &-link) and one distinguished conclusion (of type respectively A and B, and called the
main conclusion of the component of the &-link).
The presence of additive boxes has two main consequences in the definition of the cut-elimination steps: (1) there is a

unique additive step (&/⊕i) which combines an erasing feature (like the step (&i/⊕j) with i 6= j, in sps) and a non-erasing
feature (like the step (&i/⊕i) in sps); (2) it yields a new type of reduction step, called (ccad), which is the nightmare of this
way of representing proofs (the same holds for the (>/cc) step of Definition 2.12).

438 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 18. An example of additive box.

Fig. 19. The reduction steps associated with the additive box.

The step (&/⊕i). A redex of type (&/⊕i) is made of a cut t , a &-link and a ⊕i-link such that one premise of t is the main
conclusion of the &-link and the other premise of t is the conclusion of the⊕i-link (see Fig. 19). The contractum is defined
by erasing the⊕i-link, by substituting the &-link with its ith component and cutting the premise of the erased⊕i-link and
the main conclusion of the ith component of the &-link. As already mentioned, this reduction step is both erasing (it erases
one component of the &-link) and non-erasing (it modifies the cut formula like for example the (⊗/

&

) step). This mix is
critical with respect to standardization, as we will discuss in details in the next Section 5.2.
The step (ccad). A redex of type (ccad) is made of a cut t , a &-link l and a net α not containing l; moreover, one premise of t ,
call it a, is an auxiliary conclusion of l, and the other premise of t is conclusion of α (see Fig. 19). The contractum is defined
as follows. We substitute l, the cut link t and α by a new &-link (which we still call l), having the same conclusions as the
original l where we have substituted the edge a by the conclusions of α (different from t ’s premise). The ith component of
the new link l is obtained by cutting the conclusion corresponding to the edge a of the ith component of the original l and the
conclusion of α which is a premise of t . Notice that a cut of type (ccad) of a net β can be associated with different redexes,
since it is not clear which subnet α of β should be selected (for example, in [7] α is the empire of a, in [24] α is any subnet
having a among its conclusions). We take here the (more general) option of [24], which is also applied to the (>/cc) step.
Notice that, as for (>/cc) (Remark 2.13), the presence of (ccad)-reduction steps entails the failure of confluence.
Despite these differences, the cut-elimination procedure for sps is the key tool to prove SN for nets. We associate

(Section 5.3) with every net β its set of slices sl(β) (which is an sps), and we prove that β ∈ SN by proving that sl(β) ∈ SN.
More precisely, we prove that for every net β:

(i) sl(β) satisfies AC ,
(ii) β ∈ SN if sl(β) ∈ SN,
(iii) sl(β) ∈ SN if sl(β) ∈ WN¬e,
(iv) sl(β) ∈ WN¬e.

Point (i) is trivial (Proposition 5.1); point (ii) is Proposition 5.6; point (iii) is a consequence of point (i) and of our
standardization theorem (Theorem 4.2), this is the real missing point in Girard’s original proof; point (iv) is the ‘‘difficult’’
part of the SN proof (which is outside Peano arithmetic): one uses Girard’s reducibility candidates to prove sl(β) ∈ WN¬e. It
is well known that this kind of tool is very powerful and can be adapted to a lot of different situations. Indeed, Girard’s proof
of [7] works perfectly well if one substitutes ‘‘strong normalization’’ with ‘‘weak normalization’’, and the reader acquainted
with reducibility candidates is probably already convinced that the changes needed to prove sl(β) ∈ WN¬e (instead of
β ∈ WN) present no major difficulty. We nevertheless give the precise definition of reducibility candidate (Definition 5.10)
that we need in order to prove Theorem 5.11 (that is point (iv)), thus concluding with the strong normalization theorem for
second order LL nets (Theorem 5.12).
At first sight, an alternative solution was to use Theorem 4.2 in order to prove the original Girard’s standardization

theorem (Theorem 4.25 p.72 of [7]). We explain in the next Section 5.2 why this alternative fails.

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 439

(a) example inMELL (b) example with additive boxes

Fig. 20. Untyped nets which are WN but not SN (δ is defined in Fig. 9).

5.2. A digression on standardization

Before proving the points (i)–(iv) stated in Section 5.1, let us discuss the alternative solution mentioned, namely to
use Theorem 4.2 in order to prove the original standardization theorem (Theorem 4.25 p.72 of [7]). We claim that this
approach fails, since the original standardization is based on a ‘‘wrong’’ definition of standard reduction. To help the reader,
we reproduce verbatim Definition 4.24 and Theorem 4.25 p.72 of [7].

4.24. Definition. A contraction is standardwhen it does not erase any symbol CUT besides the one explicitly considered.
Concretely, this means that some parts of the configuration we replace have to be cut-free, namely:

– in (&/⊕1 −SC), β2 must be cut-free,
– in (&/⊕2 −SC), β1 must be cut-free,
– in (!/?w − SC), β1 must be cut-free,
– in (>− SC), eA⊥ must be cut-free.

A reduction is standard when made of standard contractions.
4.25 Theorem (Standardization Lemma). Let β be a proof-net and assume that there is a standard reduction from β to a
cut-free β ′. Then β is SN.

The problem with the above definition of standard reduction (contraction in the language of [7]) was already pointed
out in [2] in the restrictedMELL framework: recall the slice δδ of Fig. 9, which can be considered an ‘‘untypedMELL net’’.28

As we pictured in Fig. 10, we have δδ
cut+
−−→ δδ. Now consider the untyped net β of Fig. 20(a). By reducing the cut p of β

one obtains a strongly normalizing untyped net; however β is not strongly normalizing (reduce the cut q and you will get
a net having the net δδ of Fig. 9 as subnet), despite the fact that the reduction step associated with p is standard in Girard’s
sense (Definition 4.24 p.72 of [7]). From our point of view, this means that Theorem 4.25 p.72 of [7] is ‘‘morally wrong’’, even
though it is ‘‘technically correct’’ (it deals only with typed nets, so its conclusion is true...). The solution proposed in [2] was
to freeze the cut link p and consider ‘‘strict’’ reductions, that is the rewriting rule obtained by forbidding (!/?w) reduction
steps: this leads to Théorème 8.31 p.64 of [2], allowing to prove SN forMELL nets.
In presence of the additives, the same phenomenon occurs, but the solution cannot be that simple, as we now explain.

Consider the untyped net β of Fig. 20(b). Again, by reducing the cut p one obtains a strongly normalizing untyped net;
however β is not strongly normalizing (reduce the cut q and the (ccad) created by the reduction of q), despite the fact
that the reduction step associated with p is standard in Girard’s sense. Following Danos, one would be tempted to freeze p,
but this would not be correct. Indeed, we should then freeze all the cuts of type (&/⊕i), and such a freezing hides infinite
reduction sequences. For instance, the untyped net β of Fig. 20(b) would be in normal formw.r.t. the rewriting rule induced
by this freezing, despite the fact that β 6∈ SN. The difference between the reduction steps (!/?w) and (&/⊕i) is that while
the first one is purely erasing, the second one is both erasing and non erasing. A key feature of the introduction of slices is
precisely to separate the erasing aspect of the (&/⊕i) reduction step (taken into account by the (&i/⊕j) steps with i 6= j)
from its non erasing aspect (taken into account by the (&i/⊕i) steps).
For this reason the standardization theorem for full LL can be correctly stated only for sliced pure structures (as we did

in Theorem 4.2) and not for nets.

Another attempt to prove SN for LL (in presence of the additives) is contained in Okada’s work [18]. Themethod proposed
is to use phase semantics, which works well for WN, but for SN the same problem as in [7] arises (the proof of the
standardization theorem), and we have to mention here that (like for [7]) the way Okada argues on this point cannot be
considered as convincing (the author himself uses the expression ‘‘Sketch of proof’’). Indeed:

28 In this short discussion, we use the expression ‘‘untyped net’’, referring to the untyped version of the nets considered in this Section 5.1. An untyped
net is not necessarily an sps because of the presence of additive boxes.

440 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 21. An example of slicing a net.

1. Okada claims that (in certain circumstances) if β
cut
−→ β ′ and the reduced cut is of type (!/!) and if β ′ ∈ SN, then β ∈ SN

(‘‘Sketch of Proof’’ of lemma 6.6 p.364 case (4) of [18]). Of course (like Theorem 4.25 p.72 of [7]) the statement above
is true since eventually all nets turn out to be strongly normalizable. However, the author claims that it is possible to
‘‘simulate’’ any reduction sequence of β by a reduction sequence of β ′. This is as difficult as proving standardization, and
it is the motivation for Théorème 8.31 p.64 of [2]: in order to solve the problem Danos had to make the first very sharp
analysis of the rewriting rule induced by LL cut-elimination (in particular he had to prove confluence forMELL);

2. in presence of the additives a very ‘‘restricted’’ cut-elimination procedure is defined (see the ‘‘&-box entering rule’’ of
p.373 of [18]),29 so that even in case the proof were considered convincing (and we believe it should not be) it would still
be incomplete. With respect to this restricted procedure the extension to the additives is analyzed (‘‘Sketch of Modified
Proof of lemma 6.6’’ p.379 of [18]). Actually, Okada’s restriction is a way to eliminate the intrinsic difficulty of the (ccad)
reduction step: in the present paperwe found away to keep control on this step in presence of all the other LL connectives.

5.3. Slicing nets

Let us come back to the proof of SN for nets. We hinted in Section 5.1 that the SN of a net is related to the SN of the sps
‘‘associated with’’ that net. Indeed, a net β can be sliced in an sps sl(β)which has the same number of conclusions as β (an
example is given in Fig. 21). Following [7] we define sl(β) by induction on a sequentialization of β:30

• if β is an ax-link (resp. 1-link,>-link), then sl(β) has only one slice, consisting of an ax-link (resp. 1-link,>-link);
• if β is a &-link lwith associated left (resp. right) component β ′ (resp. β ′′), then sl(β) is obtained by adding a &1-link (resp.
&2-link) to every slice of sl(β ′) (resp. sl(β ′′)) and by taking the union of these multisets of slices (with the appropriate
equivalence on the conclusions, see Definition 2.2);
• if β is a !-link lwith associated net β ′, then sl(β) has only one slice consisting of a !-link corresponding to l and s.t. with
that link is associated sl(β ′);
• if a conclusion of β is conclusion of a

&

-link (resp. of a⊥-,⊕i-, ?w-, ?d-, ?c-link) l, let β ′ be the subnet of β obtained by
erasing l (and its conclusion), then sl(β) is obtained by adding to every slice of sl(β ′) the

&

-link (resp.⊥-,⊕i-, ?w-, ?d-,
?c-link) corresponding to l;
• if a conclusion of β is conclusion of a ∀- or ∃-link l, let β ′ be the subnet of β obtained by erasing l (and its conclusion),
then sl(β) = sl(β ′);
• if β is the union of two disjoint subnets β ′, β ′′ and of a⊗-link (resp. cut) l, then sl(β) is obtained by connecting every slice
of sl(β ′) and every slice of sl(β ′′) by means of the⊗-link (resp. cut) corresponding to l (and by defining the appropriate
equivalence on the conclusions, see Definition 2.2).

We first note that the slicing of a net is switching acyclic:

Proposition 5.1. If β is a net, then sl(β) satisfies AC.

Proof. By the correctness criterion for nets (see [7,24]) and the definition of sl. �

Remark 5.2. If β is a net, then by Proposition 5.1 sl(β) is deadlock free. Furthermore, a net is typed by second order LL
formulas (remember Fig. 17), which implies that sl(β) is also clash free. This means that every cut of sl(β) is reducible, and
that sl(β) is a normal sps iff sl(β) is cut free (which is not the case for general sps).

29 Okada’s procedure does not always allow to reduce all cuts: there are proof-nets with cuts to which the procedure cannot be applied.
30 The procedure of slicing is actually independent from the chosen sequentialization and it can be applied also to non-sequentializable proof-structures
(see [10]).

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 441

Then we turn to the crucial point: the cut-elimination of nets can be simulated by that of its slicing, i.e. the following
diagram commutes

An example of this simulation is given in Fig. 22. The reader should notice that a sequence of steps of type (ccad) or (∀/∃)

(denoted by
ccad∀/∃∗
−−−−→) is ‘‘invisible’’ in sps: this might be a problem to derive β ∈ SN from sl(β) ∈ SN, but actually it isn’t

thanks to Lemma 5.5.
We actually have something more than a simulation property (recall that t(β ′) refers to the result of reducing a cut t in

β ′, Definition 2.12):

Lemma 5.3 (Simulation). Let t be a cut link of a net β . If t is of type ccad or ∀/∃, then sl(β) = sl
(
t(β)

)
; otherwise, sl(β)

+
−→

sl
(
t(β)

)
.

Proof. Straightforward, by inspection of cases. �

We now want to prove that there is no infinite sequence of reduction steps of type (ccad) or (∀/∃), and we use for this
purpose (a straightforward variant of) the separation property proven in [24]:

Lemma 5.4. Let β be a net. If β
(ccad)∀/∃∗
−−−−−→ β ′ and l′1, l

′

2 are two (different) residues
31 in β ′ of a &-link l of β , then there exists

a &-link m′ of β ′ which separates l′1 and l
′

2, i.e. l
′

1 (resp. l
′

2) is a link of the component i (resp. j) of m
′ and i 6= j (in particular, l′1

cannot be a link of a component of l′2, nor the converse).

Proof. By induction on the length of the reduction sequence β
(ccad)∀/∃∗
−−−−−→ β ′, see [24]. �

Lemma 5.5. There is no infinite sequence of reduction steps of type (ccad) or (∀/∃) starting from a net.

Proof. Let us define the additive depth of a link l of a net β as the number of &-components of β containing l, and the additive
depth of β as the maximal additive depth of its links.

The separation property (Lemma 5.4) implies that for every net β which contains n &-links, if β
(ccad)∀/∃∗
−−−−−→ β ′, then the

additive depth of β ′ is at most n. This allows to define a size on every (ccad), (∀/∃)-reduct of β: consider the n-tuple whose
ith component is the number of links of the net having additive depth i, and order these n-tuples lexicographically. It is easy

to show that this size shrinks at every (ccad) or (∀/∃) step: suppose that β
ccad∀/∃∗
−−−−→ β ′

x
−→ β ′′. If x is (∀/∃), then at some

(additive) depth 0 ≤ i ≤ n the number of links of β ′′ is strictly less than the number of links of depth i of β ′, and for every
0 ≤ j 6= i ≤ n the number of links of depth j in β ′ and β ′′ is the same. If x is (ccad), then let i be the depth of the &-link l′ of
β ′ playing the role of the link l in the (ccad) step of Fig. 19: at depth j < i the number of links of β ′ and β ′′ is the same, at
depth i there are strictly less links in β ′′ than in β ′, so that also in this case the previously defined size shrinks. �

We can conclude the subsection with the expected result:

Proposition 5.6. Let β be a net. If sl(β) ∈ SN then β ∈ SN.

Proof. Immediate consequence of lemmata 5.3 and 5.5. �

5.4. Strong normalization for nets

Finally we prove that sl(β) ∈ WN¬e, for every net β (Theorem 5.11). Here we need Girard’s reducibility candidates. We
give the particular definition of reducibility candidates (Definition 5.10) required to prove Theorem 5.11, and then we just
sketch the proof of the theorem, which is standard after [7].

Definition 5.7. A term of type A is a net β together with a distinguished conclusion which is labelled by A. If β (resp. β ′) is a
term of type A (resp. A⊥), we denote by CUT(β, β ′) the net obtained by connecting β and β ′ bymeans of a cut with premises
the two distinguished conclusions A, A⊥.

Definition 5.8 (Duality). Let X be a set of terms of type A; we define X⊥ as follows:

X⊥ =
{
β ′ s.t. β ′ term of type A⊥ and sl(CUT(β, β ′)) ∈ WN¬e for every β ∈ X

}
.

31 We refer here to the obvious adaptation to nets of the notion introduced in Definition 2.14 for sps.

442 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

Fig. 22. Example of how sps cut-elimination simulates that of nets: notice that the (ccad) and (∀/∃) steps are invisible in sps reduction.

Proposition 5.9. Let X be a set of terms of type A:

1. if X contains the axiom link with conclusion A, A⊥, then for every β ∈ X⊥ one has sl(β) ∈ WN¬e;
2. if for every β ∈ X one has sl(β) ∈ WN¬e, then X⊥ contains the axiom link with conclusion A, A⊥.

Proof. Immediate from the definitions. �

Definition 5.10 (Reducibility Candidate). A reducibility candidate of type A is a set X of terms of type A s.t.:

1. X 6= ∅;
2. for every β ∈ X , one has sl(β) ∈ WN¬e;
3. X = X⊥⊥.

Theorem 5.11 (WN¬e Theorem). If β is a net, then sl(β) ∈ WN¬e.

Proof. Girard’s proof of Theorem 4.26 ([7]) works perfectly if one substitutes ‘‘β is SN’’ with ‘‘sl(β) ∈ WN¬e’’. We just give
here the idea of how to adapt the original proof. In what follows we use the notations and definitions of [7].
Let β be a net with conclusions C (where C = C1, . . . , Cn is a sequence of LL formulas), we prove that β is reducible, which

means that the following holds (see Definition 4.26.8 of [7]): let a (= a1, . . . , am) be the list of all free variables of C, then
for every sequence of formulas B (= B1, . . . , Bm), every sequence X (= X1, . . . , Xm) of reducibility candidates of types B and
every sequence of terms t (= t1, . . . , tn) in RED(C⊥ [X/a]) (see Definition 4.26.6 of [7]), one has sl(CUT(β [B/a] ; t)) ∈ WN¬e.
The net CUT(β [B/a] ; t) is obtained by:

• substituting in β the free variables a1, . . . , am with the formulas B1, . . . , Bm: this yields β [B/a]
• given a term ti ∈ RED(Ci⊥ [X/a]) for every conclusion Ci [B/a] of β [B/a], cutting every ti with β [B/a].

M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444 443

The proof that sl(CUT(β [B/a] ; t)) ∈ WN¬e is by induction on a sequentialization of β , hence it splits in 16 cases
(the number of rules of LL: ax, cut , ⊗, 1,

&

, ⊥, &, >, ⊕1, ⊕2, !, ?w, ?d, ?c , ∀2, ∃2). In every case, we have to prove that
sl(CUT(β [B/a] ; t)) ∈ WN¬e whatever ti ∈ RED(Ci⊥ [X/a]) has been selected. However, a simplification is often useful (and
possible): for example in case Ci⊥ = A ⊗ B one needs to prove sl(CUT(β [B/a] ; t)) ∈ WN¬e only for those ti belonging to
RED(Ci⊥ [X/a]) and such that ti can be obtained by performing a ⊗-link between some t1i ∈ RED(A [X/a]) and some t

2
i ∈

RED(B [X/a]). We shall use this simplification in the sequel of the proof. We consider only two cases: the &- and !-cases,
which show how works our version of reducibility candidates. Since the substitutions play no active role but make every-
thing hard to read (and to write), we shall not indicate them (thus working with RED(C⊥), etc...). We also use the fact that
by definition of RED (see Definition 4.26.6 of [7]), one has RED(C⊥) = RED(C)⊥.

&-case: β is obtained from β1 and β2 by the &-box in Fig. 18. After simplification, we see that we have to check that
sl(CUT(β; c,⊕1t)) ∈ WN¬e and sl(CUT(β; c,⊕2u)) ∈ WN¬e for any c ∈ RED(C)⊥, t ∈ RED(A)⊥, and u ∈
RED(B)⊥. By induction hypothesis sl(CUT(β1; c, t)) ∈ WN¬e and sl(CUT(β2; c, u)) ∈ WN¬e for any c ∈
RED(C)⊥, t ∈ RED(A)⊥, and u ∈ RED(B)⊥. Since u can be chosen as an axiom, by Proposition 5.9 we deduce
that sl(CUT(β2; c)) ∈ WN¬e. Since by Definition 5.10 the slicing of every element of a reducibility candidate is
WN¬e, we also have sl(⊕1t) ∈ WN¬e.
Consider now sl(CUT(β; c,⊕1t)) = σ = σ1 + σ2, where σ1 (resp. σ2) is the multiset of the slices of CUT(β;

c,⊕1t)which contain the componentβ1 (resp.β2) of the&-box. Notice thatσ1
&1/⊕1
−−−→ sl(CUT(β1; c, t)), henceσ1 ∈

WN¬e. But pay attention that we cannot yet infer that also σ ∈ WN¬e, because for reducing σ to sl(CUT(β1; c, t))
we should perform several (&2/⊕1) reductions, which are erasing. Nevertheless we deduce that σ2 is WN¬e since
sl(CUT(β2; c)) ∈ WN¬e and sl(⊕1t) ∈ WN¬e and σ2 is obtained by connecting every slice of sl(CUT(β2; c)) and
every slice of sl(⊕1t) by means of a (&2/⊕1) cut link. We conclude that sl(CUT(β; c,⊕1t)) ∈ WN¬e.
For symmetric reasons, sl(CUT(β; c,⊕2u)) ∈ WN¬e.

!-case: β is a !-link with conclusions !A, ?C1, . . . , ?Cn whose associated box is the net β ′. The induction hypothesis is that
sl(CUT(β ′; c, t)) ∈ WN¬e for all c ∈ RED(?C)⊥ and t ∈ RED(A)⊥; and we want to conclude that sl(CUT(β; c, u))
∈ WN¬e for all c ∈ RED(?C)⊥ and for all u in RED(!A)⊥. Now, it is easy to show that we can make a sim-
plification on the whole sequence c, namely that c is of the form !d, for d ∈ RED(C)⊥. By several (!/!) re-
duction steps we reduce CUT(β; c, u) to CUT(!CUT(β ′; c), u), where !CUT(β ′; c) is the net consisting in a !-link
with conclusion !A, whose associated box is the net CUT(β ′; c) with conclusion A. Now, by induction hypothesis
CUT(β ′; c) ∈ RED(A), hence !CUT(β ′; c) ∈!RED(A) ⊂ RED(!A). So sl(CUT(!CUT(β ′; c), u)) ∈ WN¬e. Finally, since
sl(CUT(β; c, u))

!/!∗
−→ sl(CUT(!CUT(β ′; c), u)), we conclude that sl(CUT(β; c, u)) ∈ WN¬e. �

We can eventually conclude:

Theorem 5.12 (SN Theorem). If β is a net, then β ∈ SN.

Proof. If β is a net, then sl(β) satisfies AC (Proposition 5.1) and sl(β) ∈ WN¬e (Theorem 5.11). We can then apply Theo-
rem 4.2 and prove that sl(β) ∈ SN, from which we conclude that β ∈ SN (Proposition 5.6). �

Acknowledgments

We thank Jean-Yves Girard for his course on proof-theory given in Roma Tre in fall 2004, where he presented Gandy’s
method for natural deduction. We also thank Paolo Tranquilli, Olivier Laurent and Michele Abrusci for several discussions
on the subject.
First author’s work has been supported by the postdoc fellowship ‘‘Ricerche sulla geometria della logica’’, Dipartimento

di Filosofia, Università Roma Tre.

References

[1] H. Barendregt, The Lambda Calculus, its Syntax and Semantics, 2nd edition, in: Studies in Logic and the Foundations of Mathematics, no. 103, North-
Holland, 1984.

[2] V. Danos, La logique linéaire appliquée à l’étude de divers processus de normalisation (principalement du λ-calcul), Thèse de doctorat, Université
Paris VII, 1990.

[3] V. Danos, J.-B. Joinet, H. Schellinx, A new deconstructive logic: linear logic, Journal of Symbolic Logic 62 (3) (1997) 755–807.
[4] R. Di Cosmo, D. Kesner, E. Polonovski, Proof nets and explicit substitutions, Mathematical Structures in Computer Science 13 (3) (2003) 409–450.
[5] R.O. Gandy, Proofs of strong normalization, in: J. Seldin, J. Hindley (Eds.), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
Academic Press Limited, 1980, pp. 457–477.

[6] J.-Y. Girard, Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur, Thèse de doctorat d’etat, Université Paris
VII, 1972.

[7] J.-Y. Girard, Linear logic, Theoretical Computer Science 50 (1987) 1–102.
[8] J.-Y. Girard, Proof Theory and Logical Complexity, in: Studies in Proof-theory, Bibliopolis, Napoli, 1987.
[9] J.-Y. Girard, Quantifiers in linear logic II, in: G. Corsi, G. Sambin (Eds.), Nuovi problemi della logica e della filosofia della scienza, CLUEB, Bologna, 1991,
pp. 79–90.

[10] J.-Y. Girard, Proof-nets: the parallel syntax for proof-theory, in: A. Ursini, P. Agliano (Eds.), Logic and Algebra, in: Lecture Notes In Pure and Applied
Mathematics, vol. 180, Marcel Dekker, New York, 1996, pp. 97–124.

444 M. Pagani, L. Tortora de Falco / Theoretical Computer Science 411 (2010) 410–444

[11] D. Hughes, R. van Glabbeek, Proof nets for unit-freemultiplicative-additive linear logic, in: Proceedings of the Eighteenth Annual Symposium on Logic
in Computer Science. IEEE, IEEE Comp. Soc. Press, Ottawa, 2003, pp. 1–10.

[12] J.W. Klop, Term rewriting systems, in: S. Abramsky, D. Gabbay, T. Maibaum (Eds.), Handbook of Logic in Computer Science, Vol. 2, IEEE, Oxford
University Press, 1992, pp. 1–116.

[13] J.-L. Krivine, Lambda-Calcul: Types et Modèles. Études et Recherches en Informatique, Masson, 1990.
[14] O. Laurent, Étude de la polarisation en logique, Thèse de doctorat, Université Aix-Marseille II, March 2002.
[15] O. Laurent, M. Quatrini, L. Tortora de Falco, Polarized and focalized linear and classical proofs, Annals of Pure and Applied Logic 134 (2–3) (2005)

217–264.
[16] O. Laurent, L. Tortora de Falco, Slicing polarized additive normalization, in: T. Ehrhard, J.-Y. Girard, P. Ruet, P. Scott (Eds.), Linear Logic in Computer

Science, in: London Mathematical Society Lecture Note Series, vol. 316, Cambridge University Press, 2004, pp. 247–282.
[17] O. Laurent, L. Tortora de Falco, Obsessional cliques: a semantic characterization of bounded time complexity, in: Proceedings of the Twenty-First

Annual IEEE Symposium on Logic in Computer Science, LICS ’06, 2006.
[18] M. Okada, Phase semantic cut-elimination and normalization proofs of first- and higher-order linear logic, Theoretical Computer Science 227 (1–2)

(1999) 333–396.
[19] D. Prawitz, Natural Deduction. A Proof—Theoretical Study, Almquist and Wiksell, Stockholm, Sweden, 1965.
[20] L. Regnier, Lambda-calcul et réseaux, Thèse de doctorat, Université Paris VII, 1992.
[21] M.H. Sørensen, SN fromWN in typed λ-calculi, Information and Computation 133 (1) (1997) 35–71.
[22] Terese, Term Rewriting Systems, in: Cambridge Tracts in Theoretical Computer Science, vol. 55, Cambridge University Press, 2003.
[23] L. Tortora de Falco, Réseaux, cohérence et expériences obsessionnelles, Thèse de doctorat, Université Paris VII, 2000.
[24] L. Tortora de Falco, Additives of linear logic and normalization- part I: A (restricted) church-rosser property, Theoretical Computer Science 294 (3)

(2003) 489–524.
[25] P. Tranquilli, Intuitionistic differential nets and lambda calculus, in: Girard’s Festschrift, Theoretical Computer Science (special issue) (in press).
[26] P. Tranquilli, Confluence of pure differential nets with promotion, in: Proceedings of Computer Science Logic 2009, 2009 (in press).

	Strong normalization property for second order linear logic
	Introduction
	Definitions
	Sliced pure structures
	Compendium of rewriting theory
	Cut-elimination
	Examples of reductions
	Switching acyclicity

	Two results of strong normalization
	The strong normalization of log
	The strong normalization of str

	Standardization for sliced pure structures
	SN is a consequence of SN¬e
	SN¬e is a consequence of WN¬e
	Confluence of ell

	Strong normalization for linear logic
	The syntax of nets
	A digression on standardization
	Slicing nets
	Strong normalization for nets

	Acknowledgments
	References

