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Bass, Connell and Wright have proved that any finitely presented
locally polynomial algebra in n variables over an integral domain
R is isomorphic to the symmetric algebra of a finitely generated
projective R-module of rank n. In this paper we prove a corre-
sponding structure theorem for a ring A which is a locally Lau-
rent polynomial algebra in n variables over an integral domain R ,
viz., we show that A is isomorphic to an R-algebra of the form
(SymR (Q ))[I−1], where Q is a direct sum of n finitely generated
projective R-modules of rank one and I is a suitable invertible ideal
of the symmetric algebra SymR (Q ). Further, we show that any
faithfully flat algebra over a Noetherian normal domain R , whose
generic and codimension-one fibres are Laurent polynomial alge-
bras in n variables, is a locally Laurent polynomial algebra in n
variables over R .

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let R be an integral domain. Recall that an R-algebra A is called a Laurent polynomial algebra in
n-variables over R if A = R[X1, X1

−1, . . . , Xn, Xn
−1], where X1, X2, . . . , Xn are transcendental over R .

We call an R-algebra A to be a locally Laurent polynomial algebra in n variables over R if A ⊗R Rm
is a Laurent polynomial algebra in n variables over the local ring Rm for every maximal ideal m of R .
In this paper we explore the Laurent polynomial analogues of some results and open problems on
polynomial (or An) fibrations.

We shall first establish a structure theorem for locally Laurent polynomial algebras, a Laurent
polynomial analogue of the famous local–global theorem of Bass, Connell and Wright [3, Theorem 4.4]
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which states that any finitely presented locally polynomial algebra in n variables over a ring R is isomorphic
to the symmetric algebra of a projective R-module of rank n. While the hypothesis on finite presentation is
clearly necessary in the polynomial case (consider the Z-algebra Z[X/2, X/3, X/5, . . .]), our structure
theorem will show that a locally Laurent polynomial algebra A over an integral domain R is necessarily
finitely presented and that A is of the form B[I−1], where B is isomorphic to the symmetric algebra
SymR(Q ) of a (suitable) finitely generated projective R-module Q and I is an invertible ideal of B .
Here I−1 denotes the B-submodule {a ∈ F | aI ⊆ B} of the quotient field F of B and B[I−1] denotes the
subring of F generated by B and I−1. The precise statement of the structure theorem (Theorem 2.3)
is given below.

Theorem A. Let R be an integral domain and A be a locally Laurent polynomial algebra in n variables over R.
Then there exist n finitely generated rank one projective R-modules Li , 1 � i � n, such that A is isomorphic to
an R-algebra of the form

(
SymR(Q )

)[
I−1],

where Q = L1 ⊕ · · · ⊕ Ln and I is an invertible ideal of SymR(Q ) generated by the image of L1 ⊗ · · · ⊗ Ln.
In particular, A is finitely presented over R. If Pic(R) = (0), then A is a Laurent polynomial algebra over R.

After describing the structure of a locally Laurent polynomial algebra, we investigate sufficient
conditions for an R-algebra to be locally Laurent polynomial. Note that any locally Laurent polynomial
R-algebra is faithfully flat over R . Now suppose that R is a Noetherian normal domain and A is a
faithfully flat R-algebra. Under these hypotheses, we shall see that A is a locally Laurent polynomial
algebra in n variables over R if A ⊗R R P is a Laurent polynomial algebra in n variables over R P for
every prime ideal P in R of height one (Proposition 2.7). This result was proved in [6, Theorem 4.8]
for the case n = 1.

Next we consider the following fibration problem:

Question. Under what (minimal) fibre conditions will a faithfully flat algebra A over a Noetherian
domain R be a locally Laurent polynomial algebra?

We first investigate the case when R is a discrete valuation ring (DVR) and prove (Theorem 3.5):

Theorem B. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let A be an integral domain containing R such that

(i) A[1/t] is a Laurent polynomial algebra in n variables over K .
(ii) A/t A is a Laurent polynomial algebra in n variables over k.

Then A is a Laurent polynomial algebra in n variables over R.

Recall that for any P ∈ Spec R , k(P ) denotes the quotient field of R/P and that A ⊗R k(P ) is the
fibre ring of an R-algebra A over P . Using Theorem B and Proposition 2.7, we shall show that for any
faithfully flat algebra A over a Noetherian normal domain R to be locally Laurent polynomial, it is
enough to ensure that the generic and codimension-one fibres of A are Laurent polynomial algebras
in n variables. In fact, we prove (Theorem 3.6):

Theorem C. Let R be a Noetherian normal domain with quotient field K and A be a faithfully flat R-algebra
such that

(i) The generic fibre A ⊗R K is a Laurent polynomial algebra in n variables over K .
(ii) For each height one prime ideal P in R, A ⊗R k(P ) is a Laurent polynomial algebra in n variables over k(P ).

Then A is a locally Laurent polynomial algebra in n variables over R.
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For the case n = 1, this result was proved earlier in [5, Theorem 3.11] under the additional hy-
pothesis that A is finitely generated.

Finally we consider an arbitrary Noetherian domain. An example (see [4, Example 3.9]) of Bhat-
wadekar and Dutta shows that, even for n = 1, Theorem C cannot be extended to non-normal domains
without additional hypotheses. We give the following necessary and sufficient condition for extending
Theorem C to an arbitrary Noetherian domain (Theorem 4.4):

Theorem D. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra such
that

(i) A ⊗R K = K [X1, X1
−1, . . . , Xn, Xn

−1], X1, . . . , Xn are transcendental over R.
(ii) For each height one prime ideal P in R, A ⊗R k(P ) is a Laurent polynomial algebra in n variables

over k(P ).
(iii) Li := A ∩ K Xi is a finitely generated projective R-module of rank one, 1 � i � n.

Then A is a locally Laurent polynomial algebra in n variables over R.

However, even without the hypothesis (iii), we shall show (Proposition 4.3) that A is at least
finitely generated over R and that A ⊗R R ′ is locally Laurent polynomial over a finite birational exten-
sion R ′ of R .

Theorem A will be proved in Section 2, Theorems B and C in Section 3 and Theorem D in Section 4.
We recall some standard notation to be used throughout the paper. For a ring R , R∗ will denote

the multiplicative group of units of R . For a prime ideal P of R , and an R-algebra A, A P denotes the
ring S−1 A, where S = R \ P and k(P ) denotes the residue field R P /P R P . The notation A = R[1] will
mean that A is isomorphic, as an R-algebra, to a polynomial ring in one variable over R .

We also recall a few definitions (cf. [8, p. 80]). Let R be an integral domain with quotient field K .
A non-zero R-submodule L of K is said to be a fractional ideal if there exists a non-zero element
α ∈ R such that αL ⊆ R . A fractional ideal L is said to be invertible if L−1L = R , where L−1 = {α ∈ K |
αL ⊆ R}.

2. On locally Laurent polynomial algebra in n variables

In this section we shall prove Theorem A. Throughout this section, R will denote an integral do-
main with quotient field K and A an integral domain containing R such that A ∩ K = R and

A ⊗R K = K
[

X1, X1
−1, . . . , Xn, Xn

−1]
for some X1, . . . , Xn transcendental over R . In this set up, we shall use the following notation. For
1 � i � n and j � 0, set

Cij := A ∩ K Xi
j and Dij := A ∩ K Xi

− j,

C := ⊕
( j1,..., jn)∈Z�0

n C1 j1 · · · Cnjn , where C1 j1 · · · Cnjn = {c1 · · · cn | c� ∈ C� j� } is an R-submodule of A ∩
K X1

j1 · · · K Xn
jn ,

I := the ideal of C generated by C11 · · · Cn1 and B := A ∩ K [X1, . . . , Xn].

Note that C is an R-subalgebra of B . Note also that for g ∈ Cij and h ∈ Dij , gh ∈ A ∩ K = R . Therefore
we get an R-linear map

ψi j : Cij ⊗R Dij → R defined by ψi j(g ⊗ h) = gh.
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Set

J i j := ψi j(Cij ⊗R Dij).

With the above notation, we state a few lemmas needed for the proofs. We first show that when A
itself is a Laurent polynomial algebra, then C is a polynomial algebra, C = B and A = B[I−1] = C[I−1].

Lemma 2.1. Let A be a Laurent polynomial algebra in n variables over R. Then there exist αi ∈ K ∗ and Ui ∈ A
such that Ui = αi Xi , 1 � i � n, A = R[U1, U1

−1, . . . , Un, Un
−1] and B = R[U1, . . . , Un]. Further, for 1 � i �

n and j � 0,

Ci j
(= A ∩ K Xi

j) = RUi
j, Dij

(= A ∩ K Xi
− j) = RUi

− j

and hence J i j = R, C = B = R[U1, . . . , Un], I = (U1 · · · Un)C, and

A = B
[
I−1] = C

[
I−1].

Proof. Let A = R[Y1, Y1
−1, . . . , Yn, Yn

−1]. Then

K
[

X1, . . . , Xn, X1
−1, . . . , Xn

−1] = K
[
Y1, . . . , Yn, Y1

−1, . . . , Yn
−1].

It follows that for each i, 1 � i � n,

Yi = λi X1
ai1 X2

ai2 · · · Xn
ain and Xi = μi Y1

bi1 Y bi2
2 · · · Y bin

n

for some λi , μi ∈ K \ {0} and aij , bij ∈ Z, 1 � j � n, satisfying

⎛
⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

⎞
⎟⎟⎠

⎛
⎜⎜⎝

b11 b12 · · · b1n

b21 b22 · · · b2n

· · · · · · · · · · · ·
bn1 bn2 · · · bnn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1

⎞
⎟⎟⎠ .

For 1 � i � n, set αi := μi
−1 and

Ui := αi Xi = Y1
bi1 Y bi2

2 · · · Y bin
n .

Then, K [X1, . . . , Xn] = K [U1, . . . , Un], and for 1 � i � n,

Yi = U1
ai1 U2

ai2 · · · Un
ain .

Hence

A = R
[
U1, U1

−1, . . . , Un, Un
−1], B = R[U1, . . . , Un]

and A ∩ K Xi
j(= A ∩ K Ui

j) = RUi
j for every i, 1 � i � n and every j ∈ Z. Thus C = B , I = (U1 · · · Un)C

and A = B[I−1] = C[I−1]. �
In the general case (i.e., when A is not necessarily a Laurent polynomial algebra over R), we give

below a sufficient condition for C to be the symmetric algebra of a finitely generated projective R-
module of rank n and I to be an invertible ideal of C .
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Lemma 2.2. Suppose that J i1 = R ∀ i, 1 � i � n. Then for each i, 1 � i � n, and j � 0,

(I) J i j = R.
(II) Cij and Dij are finitely generated projective R-modules of rank one.

(III) The canonical map θi j : Ci1 ⊗R Ci1 ⊗R · · · ⊗R Ci1( j-times) → Cij is an isomorphism.
(IV) There is a natural R-algebra isomorphism

C

(
=

⊕
( j1,..., jn)∈Z�0

n

C1 j1 · · · Cnjn

)
∼= SymR(C11 ⊕ · · · ⊕ Cn1).

(V) The ideal I of C generated by C11 · · · Cn1 is an invertible ideal.

Proof. Fix i, 1 � i � n, and j � 0. Note that Cij and Dij are torsion-free R-modules of rank one.
Moreover, if f ∈ Ci1 and g ∈ Di1 then f j ∈ Cij , g j ∈ Dij and f j g j = ( f g) j ∈ R .

(I) Since J i1 = ψi1(Ci1 ⊗R Di1) = R , there exist c� ∈ Ci1 and d� ∈ Di1, 1 � � � r for some r, such
that

ψi1

(∑
�

c� ⊗ d�

)
=

∑
�

c�d� = 1.

Set a� := c�d� . As c�
j ∈ Cij and d�

j ∈ Dij , we have a�
j = c�

jd�
j = ψi j(c�

j ⊗ d�
j) ∈ J i j for each �. Since∑

� a� = 1, we have (a1
j, . . . ,ar

j)R = R and hence J i j = R .
(II) Set L := Cij Xi

− j and E := Dij Xi
j . Clearly L and E are non-zero R-submodules of K such that

LE(= Cij Dij) ⊆ A ∩ K = R . Thus L and E are fractional ideals. Since R = J i j = ψi j(Cij ⊗R Dij), there
exist f s ∈ Cij and gs ∈ Dij , 1 � s � t for some t , such that

1 =
∑

s

f s gs =
∑

s

(
f s Xi

− j)(gs Xi
j) ∈ (

Cij Xi
− j)(Dij Xi

j) = LE.

Therefore L and E are invertible ideals of K with E = L−1 and L = E−1 and hence Cij and Dij are
finitely generated projective R-modules of rank one (cf. [8, p. 80]).

(III) Set C(i j) := θi j(Ci1 ⊗R Ci1 ⊗R · · · ⊗R Ci1). Since C(i j) ⊆ Cij , it is enough to show that
C(i j)m = (Cij)m for every maximal ideal m of R . Fix a maximal ideal m of R . By (II), (Cij)m = Rm f i j

for some f i j ∈ (Cij)m . Since ( J i j)m = Rm , we have (Dij)m = Rm f i j
−1 and so f i j

−1 ∈ Am . Now, since
f i1

j ∈ (Cij)m = Rm f i j , we have f i1
j = λi j f i j for some λi j ∈ Rm . Hence λi j

−1 = f i1
− j f i j ∈ Am ∩ K = Rm .

Thus, f i j ∈ Rm f i1
j ⊆ C(i j)m . Hence the result follows.

(IV) follows from (II) and (III).
(V) By (II), C11, . . . , Cn1 are finitely generated projective R-modules and hence the ideal I of C is

finitely generated and for every prime ideal p of R , I p is a principal ideal. Thus, for any prime ideal
P of C , if p = P ∩ R , then I P being a further localisation of I p is principal and so I is an invertible
ideal (see [8, Theorem 11.3]). �

We now prove Theorem A.

Theorem 2.3. Let R be an integral domain with quotient field K and A be a locally Laurent polynomial algebra
in n variables over R. Then there exist n finitely generated rank one projective R-modules Li , 1 � i � n, such
that A is isomorphic to an R-algebra of the form

(
SymR(Q )

)[
I−1],
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where Q = L1 ⊕ · · · ⊕ Ln and I is an invertible ideal of SymR(Q ) generated by the image of L1 ⊗ · · · ⊗ Ln.
In fact, if A ⊗R K = K [X1, X1

−1, . . . , Xn, Xn
−1] and B = A ∩ K [X1, . . . , Xn], then we may choose Li to

be A ∩ K Xi and SymR(Q ) may be identified with the ring B. In particular, A is finitely presented over R.
If Pic(R) = (0), then A is a Laurent polynomial algebra over R.

Proof. As before, Cij = A ∩ K Xi
j , Dij = A ∩ K Xi

− j , and J i j is the image of the canonical map ψi j :
Cij ⊗R Dij → R defined by ψi j(g ⊗ h) = gh, 1 � i � n, j � 0.

Fix i, 1 � i � n. For any maximal ideal m of R , since Am is a Laurent polynomial algebra in n
variables over Rm , it follows from Lemma 2.1 that ( J i1)m = Rm . Thus J i1 = R . Hence, by Lemma 2.2,
Li(= Ci1) is a finitely generated projective R-module of rank one, SymR(L1 ⊕ · · · ⊕ Ln) may be iden-
tified with the subring C(= ⊕

( j1,..., jn)∈Z�0
n C1 j1 · · · Cnjn ) of A, and the ideal I of C generated by

L1 · · · Ln is invertible.
Since C ⊆ B and, by Lemma 2.1, Cm = Bm for every maximal ideal m of R , we have C = B . There-

fore, to complete the proof, we only need to show that A = C[I−1]. Since Di1 ⊂ A and J i1 = R , we
have 1 ∈ J i1 ⊂ Ci1 A, i.e., Ci1 A = A. Hence I A = A. Therefore C[I−1] ⊆ A. Hence, it is enough to show
that Am = Cm [Im

−1] for every maximal ideal m of R . This follows from Lemma 2.1, since Am is a
Laurent polynomial algebra in n variables over Rm . �
Remark 2.4. (i) With the notation described at the beginning of this section, we have seen in Theo-
rem 2.3 that if A is a locally Laurent polynomial, then C = B . This need not hold in general. Consider
the faithfully flat Z-algebra A = Z[ 1

2 (X +3), X−1]. Here A⊗Z Q = Q[X, X−1] so that B = Z[ 1
2 (X +3)],

but C = Z[X] � B .
(ii) Note that Theorem 2.3 is proved in two steps. The first step is to prove that each Ci1 is a

finitely generated projective R-module of rank one and C ∼= SymR(C11 ⊕· · ·⊕ Cn1). The second step is
to show that A = C[I−1] where I is the invertible ideal of C generated by C11 · · · Cn1. We have seen
that if J i1 = R for each i, then one achieves the first step (cf. Lemma 2.2). Moreover, in this case,
since Di1 ⊂ A, we have J i1 ⊂ Ci1 A and hence Ci1 A = A. Thus I A = A. Therefore C[I−1] ⊆ A.

Now suppose that R is Noetherian or Krull and A is a faithfully flat R-algebra such that A P (=
A ⊗R R P ) is a Laurent polynomial algebra in n variables over R P for every prime ideal P of R for
which depth R P = 1. Under these hypotheses we will show (Proposition 2.7) that A is in fact a locally
Laurent polynomial algebra in n variables over R . As in the proof of Theorem 2.3, we will first show
that J i1 = R for each i (Lemma 2.6) and then show that A = C[I−1](= B[I−1]).

We first state a lemma; the proof will follow from the argument in [7, Lemma 2.8]. Note that for
a prime ideal P of a Krull domain R , depth R P = 1 if and only if ht P = 1.

Lemma 2.5. Let R be an integral domain with quotient field K which is either a Noetherian or a Krull domain
and let � be the set of all prime ideals P of R such that depth R P = 1. For a torsion-free R-module M, the
following conditions are equivalent:

(i) M = ⋂
P∈� M P , where M and M P = M ⊗R R P are identified with their images in M ⊗R K .

(ii) For every a,b ∈ R such that (aR : b) = aR, we have (aM : b) = aM.

In particular, if M is R-flat then M = ⋂
P∈� M P .

The following is the key lemma for proving Proposition 2.7. This lemma was proved in [6,
Lemma 4.2] for n = 1. For convenience, we give a proof in our generalised setup.

Lemma 2.6. Let R be an integral domain which is either a Noetherian or a Krull domain and let A be a faithfully
flat R-algebra such that A P is a Laurent polynomial algebra in n variables for every prime ideal P of R such
that depth R P = 1. Then Ci1 and Di1 are finitely generated projective R-modules of rank one and J i1 = R for
each i, 1 � i � n.



148 S.M. Bhatwadekar, N. Gupta / Journal of Algebra 353 (2012) 142–157
Proof. We first show that the canonical map Ci1 ⊗R A → Ci1 A is an isomorphism and Ci1 A = A.
Since Ci1 ↪→ K Xi and A is R-flat, we have Ci1 ⊗R A ↪→ K Xi ⊗R A ∼= K [X1, . . . , Xn, X1

−1, . . . , Xn
−1].

Thus Ci1 ⊗R A is a torsion-free A-module of rank one. Now if the canonical map Ci1 ⊗R A → Ci1 A is
not injective then the kernel of this map is a non-zero torsion-free A-submodule of Ci1 ⊗R A, which
contradicts that the rank of Ci1 ⊗R A is one. Thus, the canonical map Ci1 ⊗R A → Ci1 A is injective
and hence an isomorphism.

Let � denote the set of all prime ideals P of R such that depth R P = 1. For every P ∈ �, since A P
is a Laurent polynomial algebra, we have, by Lemma 2.1, ( J i1)P = R P ; in particular J i1 � P . Choose
a non-zero element x ∈ J i1. Since R is either Noetherian or Krull, AssR(R/xR) is a finite subset of �.
Therefore, by prime avoidance, we see that J i1 �

⋃
P∈AssR (R/xR) P . Choose y ∈ J i1 \ ⋃

P∈AssR (R/xR) P .
Then {x, y} ⊂ J i1 forms a regular sequence in R , i.e., (xR : y) = xR .

Since Ci1 = A ∩ K Xi and A is R-flat, Ci1 = ⋂
P∈�(Ci1)P by Lemma 2.5. Therefore, again by

Lemma 2.5, (xCi1 : y) = xCi1, i.e., {x, y} forms a regular sequence in Ci1. Since A is R-flat and
Ci1 ⊗R A ∼= Ci1 A, it follows that {x, y} forms a regular sequence in Ci1 A and hence (xCi1 A : y) =
xCi1 A. Since Di1 A ⊆ A, we have J i1 A ⊆ Ci1 A. Thus x, y ∈ Ci1 A and hence xy ∈ xCi1 A. Therefore
x ∈ (xCi1 A : y) = xCi1 A. Thus Ci1 A = A.

Since Ci1 ⊗R A(∼= Ci1 A = A) is a free A-module of rank one and A is faithfully flat over R , it follows
that Ci1 is a finitely presented flat and hence a projective R-module of rank one. Similarly Di1 is a
finitely generated projective R-module of rank one. Thus Ci1 ⊗R Di1 is a finitely generated projective
R-module of rank one. Since ψi1(Ci1 ⊗R Di1) = J i1, R is a domain and J i1 = 0, we see that ψi1 is an
isomorphism and hence J i1 is a finitely generated projective R-module (of rank one). Therefore, by
Lemma 2.5,

J i1 =
⋂
P∈�

( J i1)P =
⋂
P∈�

R P = R,

because ( J i1)P = R P for every P ∈ �. Thus the lemma is proved. �
Proposition 2.7. Let R be an integral domain with quotient field K which is either a Noetherian or a Krull
domain and let A be a faithfully flat R-algebra such that A P is a Laurent polynomial algebra in n variables
over R P for every prime ideal P in R such that depth R P = 1. Then A is a locally Laurent polynomial algebra
in n variables over R.

Proof. It is enough to assume that R is local. By Lemma 2.6, Ci1 = R fi for some f i ∈ A and
J i1 = R for 1 � i � n. Therefore, by Lemma 2.2, C = R[ f1, . . . , fn], I = ( f1 · · · fn)C and hence
C[I−1] = R[ f1, f1

−1, . . . , fn, fn
−1]. We now show that A = C[I−1].

Let � denote the set of all prime ideals P of R such that depth R P = 1. Since, for every P ∈ �,
A P is a Laurent polynomial algebra in n variables over R P , we have A P = C P [I P

−1] by Lemma 2.1.
Hence, as both A and C[I−1](= R[ f1, f1

−1, . . . , fn, fn
−1]) are R-flat and are submodules of the quo-

tient field of A, we have A = C[I−1] by Lemma 2.5. �
Remark 2.8. In contrast to Proposition 2.7, if R is a Noetherian local domain (or even a regular local
ring) and B is a faithfully flat finitely generated R-algebra such that B P is a polynomial algebra in
n variables over R P for every prime ideal P in R satisfying depth R P = 1, then B need not be a
polynomial algebra. Consider

R = C[[π1,π2]], B = R[X, Y , Z ]/(π2 X + π1Y + Z 2 + 1
)
.

3. Laurent polynomial fibration over a Noetherian normal domain

In this section we shall prove Theorems B and C. We first prove Theorem B. The proof will require
an auxiliary lemma. We will use the following version of the dimension inequality (cf. [8, Theo-
rem 15.5, p. 118]).
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Theorem 3.1. Let R be a Noetherian integral domain and B an integral domain containing R. Let P be a prime
ideal of B and p = P ∩ R. Then

ht P + tr.degR/p B/P � ht p + tr.degR B.

As a consequence of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let (R, t) be a discrete valuation ring with a regular parameter t and residue field k. Let B be an
integral domain containing R such that t B is a prime ideal of B. Then tr.degk B/t B � tr.degR B.

We state below a result, the proof of which will follow from [2, Proposition 6.1 and Theorem 6.3].

Theorem 3.3. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let D be an integral domain containing R such that

(i) D[1/t] = K [1] and D/t D is an integral domain.
(ii) tr.degk D/t D > 0.

Then D is a finitely generated R-algebra and there exists a finite algebraic field extension F of k such that
D/t D = F [1] .

We now prove a lemma over discrete valuation rings which will be used in the proof of Theorem B.

Lemma 3.4. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let B be an integral domain containing R such that

(i) B[1/t] = K [X1, . . . , Xn], a polynomial ring in n variables over K .
(ii) B/t B is an integral domain and tr.degk B/t B = n.

Set B0 := R and for 1 � i � n, set Bi := B ∩ K [X1, X2, . . . , Xi]. Then

(I) Bi+1[1/t] = Bi[1/t][Xi+1] for 0 � i � n − 1.
(II) t Bi is a prime ideal of Bi of height one and t Bi = t Bi+1 ∩ Bi , so that

k ↪→ B1/t B1 ↪→ ·· · ↪→ Bn/t Bn = B/t B.

Let Fi denote the quotient field of Bi/t Bi .
(III) tr.degk Bi/t Bi(= tr.degk Fi) = i, 0 � i � n.
(IV) (Bi+1/t Bi+1) ⊗Bi/t Bi F i = Ki

[1] for some finite algebraic field extension Ki of Fi .

Proof. (I) follows easily from the definition of Bi ’s.
(II) t Bi = t B ∩ K [X1, . . . , Xi] = t B ∩ Bi . Since by (ii) t B is prime ideal of B , we have t Bi is a prime

ideal of Bi .
Since tr.degk B/t B = tr.degR B = n, and ht(t R) = 1, from the dimension inequality (Theorem 3.1)

we have ht(t B) � 1. Therefore, as B is an integral domain, we have ht(t B) = 1 and hence⋂
n�0 tn B = (0). Since Bi ⊂ B for each i, 1 � i � n, it follows that

⋂
n�0 tn Bi = (0), which implies

that ht(t Bi) = 1.
Also since Bi ⊂ Bi+1 for each i, 0 � i � n − 1, we have t Bi = t B ∩ Bi = t B ∩ Bi+1 ∩ Bi = t Bi+1 ∩ Bi .
(III) We first note that by (II), V i := Bi (t Bi ) is a discrete valuation ring with residue field Fi . Set

Ei+1 := Bi+1 ⊗Bi V i , a localisation of Bi+1. Then Ei+1[1/t] = V i[1/t][Xi+1] by (I). Since t Ei+1 is a prime
ideal of Ei+1, we have tr.degFi

(Ei+1/t Ei+1) � 1 by Corollary 3.2, i.e., tr.degBi/t Bi
(Bi+1/t Bi+1) � 1. But

tr.degk Bn/t Bn = n and tr.degk B0/t B0 = 0. Hence tr.degk Bi/t Bi = i ∀i.
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(IV) Note that Ei+1[1/t] = V i[1/t][Xi+1] by (I) and t Ei+1 is a prime ideal of Ei+1 by (II). Also
tr.degFi

(Ei+1/t Ei+1)(= tr.degBi/t Bi
Bi+1/t Bi+1) = 1. Hence by Theorem 3.3, (Bi+1/t Bi+1) ⊗Bi/t Bi F i =

Ei+1/t Ei+1 = Ki
[1] for some finite algebraic field extension Ki of Fi . �

We now prove Theorem B. Over a field k, we shall call a k-algebra A to be a Laurent polynomial
form in n variables if there exists an algebraic field extension F of k such that A ⊗k F is a Laurent
polynomial algebra in n variables over F .

Theorem 3.5. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let A be an integral domain containing R such that A[1/t] is a Laurent polynomial algebra in n variables
over K . Then the following statements are equivalent:

(i) A is a Laurent polynomial algebra in n variables over R.
(ii) A/t A is a Laurent polynomial algebra in n variables over k.

(iii) A/t A is a Laurent polynomial form in n variables over k.
(iv) There exists a field extension F of k such that A/t A ⊗k F is an integral domain and contains a Laurent

polynomial algebra in n variables over F .

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are obvious. We prove (iv) ⇒ (i).
Since F is faithfully flat over k, we regard A/t A as a k-subalgebra of the integral domain A/t A ⊗k F .

Note that t is a prime in A. We first show that we can choose X1, . . . , Xn in A such that

R
[

X1, X1
−1, . . . , Xn, Xn

−1] ⊆ A ⊂ A[1/t] = K
[

X1, X1
−1 · · · , Xn, Xn

−1].
Choose T1, . . . , Tn ∈ A such that A[1/t] = K [T1, T1

−1, . . . , Tn, Tn
−1]. Fix an integer i, 1 � i � n. Let

mi ∈ Z�0 be the least integer such that tmi Ti
−1 ∈ A. Let Xi := Ti/tmi . Then Xi

−1 ∈ A. If mi = 0, then
Xi ∈ A and we are through. If not, since tmi = Xi

−1Ti ∈ A and t is a prime in A, we have either
t | Xi

−1 or tmi | Ti in A. If t | Xi
−1, then tmi−1Ti

−1 ∈ A, which contradicts the minimality of mi . This
shows that tmi | Ti , and hence Xi ∈ A.

We shall show that A = R[X1, . . . , Xn, X1
−1, . . . , Xn

−1] for the above choice of X1, X2, . . . , Xn .
Set B := A ∩ K [X1, . . . , Xn] and C := R[X1, X2, . . . , Xn]. We show that B = C . We first observe that

(1) C ⊆ B ⊂ B[1/t] = K [X1, . . . , Xn] = C[1/t].
(2) t B = t A ∩ B and hence t is prime in B .
(3) A = B X1···Xn (= B[(X1 · · · Xn)−1]).
(4) t does not divide X1 · · · Xn in B .
(5) tr.degk B/t B = n.

(1) is obvious; (2) follows from the relation t B = t A ∩ K [X1, . . . , Xn] = t A ∩ B . To see (3), note that if
h ∈ A, then there exists � ∈ Z�0 such that (X1 · · · Xn)�h ∈ K [X1, . . . , Xn] ∩ A(= B), so that h ∈ B X1···Xn .
(4) follows from the fact that B ⊂ A, X1 · · · Xn is a unit in A and t is a prime element of A. Since
tr.degk A/t A = n by hypothesis (iv) and Corollary 3.2, (5) follows from (3) and (4).

We now show that the map from C/tC to B/t B is one-to-one. Suppose not. Let xi denote the
image of Xi in B/t B for 1 � i � n. Note that, by (4), xi is a non-zero element of B/t B . As the map
from C/tC to B/t B is not one-to-one, x j is algebraic over k[x1, . . . , x j−1, x j+1, . . . , xn](↪→ B/t B) for
some j. Interchanging the xi ’s if necessary, we assume that xn is algebraic over k[x1, . . . , xn−1]. By
Lemma 3.4, if Bn−1 = B ∩ K [X1, . . . , Xn−1], then Bn−1/t Bn−1 ↪→ B/t B and

B/t B ↪→ (B/t B) ⊗Bn−1/t Bn−1 Fn−1 = Kn−1[Y ](= Kn−1
[1]),

where Fn−1 is the quotient field of Bn−1/t Bn−1, Kn−1 is a finite algebraic field extension of Fn−1
and Y is transcendental over Kn−1. Since R[X1, . . . , Xn] ⊆ B , we have R[X1, . . . , Xn−1] ⊆ Bn−1, so
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that x1, x2, . . . , xn−1 are non-zero elements of Bn−1/t Bn−1(↪→ B/t B). Since by our assumption xn is
algebraic over k[x1, . . . , xn−1](↪→ Bn−1/t Bn−1), we have xn ∈ Kn−1, and hence a unit in Kn−1 as xn is
a non-zero element of B/t B ↪→ Kn−1[Y ]. Therefore A/t A = (B/t B)x1···xn−1xn is contained in Kn−1[Y ].

Since Fn−1 is the quotient field of Bn−1/t Bn−1, (B/t B)⊗Bn−1/t Bn−1 Fn−1(= Kn−1[Y ]) is a localisation
of B/t B . Thus B/t B , A/t A and Kn−1[Y ] have the same quotient field, say E , and

B/t B ↪→ A/t A ↪→ Kn−1[Y ] ↪→ E.

Since F is k-flat, we have the following inclusions

A/t A ⊗k F ↪→ Kn−1[Y ] ⊗k F ↪→ E ⊗k F .

Since A/t A ⊗k F is an integral domain, and E is a localisation of A/t A, we have E ⊗k F is an integral
domain. Thus Kn−1[Y ] ⊗k F (= (Kn−1 ⊗k F )[1]) is an integral domain and hence the units of A/t A ⊗k
F are contained in Kn−1 ⊗k F . It then follows from the hypothesis (iv) that tr.degF Kn−1 ⊗k F � n.
But tr.degF Kn−1 ⊗k F = tr.degk Kn−1 = tr.degk Fn−1 and tr.degk Fn−1 = n − 1 by Lemma 3.4. This is
a contradiction. Thus the map C/tC → B/t B is one-to-one. Hence, as C[1/t] = B[1/t], it follows that
B = C . Therefore, by (3), A = R[X1, . . . Xn, X1

−1, . . . , Xn
−1]. �

As a consequence of Theorem 3.5 and Proposition 2.7, we deduce Theorem C.

Theorem 3.6. Let R be a Krull domain with quotient field K and A be a faithfully flat R-algebra such that

(i) The generic fibre A ⊗R K is a Laurent polynomial algebra in n variables over K .
(ii) For each height one prime ideal P in R, there exists a field extension k(P )′ of k(P ) such that A ⊗R

k(P ) ⊗k(P ) k(P )′ is an integral domain and contains a Laurent polynomial algebra in n variables
over k(P )′ .

Then A is a locally Laurent polynomial algebra in n variables over R.

Proof. Let � denote the set of all height one prime ideals of R . Since R is a Krull domain, for every
P ∈ �, R P is a DVR. Thus, by Theorem 3.5, A P is a Laurent polynomial algebra in n variables over R P
for every P ∈ �. Now the result follows by Proposition 2.7. �

We conclude this section with some remarks pertaining to Theorems 3.5 and 3.6.

Remark 3.7. (1) Consider a discrete valuation ring R with a regular parameter t and residue field k.
Let A = R[X, Y , Z , X−1, Y −1]/(t Z − XY + 1). Then A is generically a Laurent polynomial algebra such
that the closed fibre A/t A(= k[X, Z , X−1]) is an integral domain, k is algebraically closed in A/t A
and k∗ � (A/t A)∗ . But A is not a Laurent polynomial algebra. This shows that the condition in (iv) of
Theorem 3.5, on the existence of a Laurent polynomial algebra in n variables in a suitable extension
A/t A ⊗k F , is necessary. (Also see [5, Remark 3.10].)

(2) An example of Bhatwadekar and Dutta [4, Example 3.9] shows that Theorem 3.5 cannot be
extended to a faithfully flat algebra A over an arbitrary Noetherian local domain R of dimension one
even if the generic as well as the closed fibre is a Laurent polynomial algebra in one variable.

(3) We may contrast Theorem 3.5 with the corresponding polynomial fibration problem over a
DVR. Consider the set up:

R a discrete valuation ring with a regular parameter t and B an integral domain containing R such
that

(i) The generic fibre B[1/t] is a polynomial algebra in n variables over R[1/t].
(ii) The closed fibre B/t B is a polynomial algebra in n variables over R/t R .
Under the above hypotheses, when n = 1, B is a polynomial algebra in one variables over R and

when n = 2, a theorem of Sathaye shows that B is a polynomial algebra in two variables if R contains
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the field of rationals Q (see [10, Theorem 1] and [1, Corollary 3.2]). Moreover, if ch.(R/t R) > 0 and
n = 2, Asanuma has given an example to show that B need not be a polynomial algebra (see [1,
Theorem 5.1]). However, for n > 2, it is not known whether B is a polynomial algebra even in the
case R ⊇ Q.

(4) It is not known whether a polynomial analogue of Theorem 3.6 is true for n = 2. For instance,
even when R is a polynomial algebra in two variables over the field of complex numbers and A is a
finitely generated faithfully flat R-algebra all of whose fibres are polynomial algebras in 2 variables, it
is not known whether A is necessarily a polynomial algebra.

4. Laurent polynomial fibration over a general Noetherian domain

Let R be a Noetherian domain and A be a faithfully flat R-algebra such that all the fibre rings of
A are Laurent polynomial algebras in n variables. If R is normal, we have seen (Theorem 3.6) that
A is a locally Laurent polynomial algebra. However if R is not normal, then A need not be a locally
Laurent polynomial algebra (Remark 3.7 (2)). In this section, we shall prove (Proposition 4.3) that at
least A is finitely generated over R and that there exists a finite birational extension R ′ of R such
that A ⊗R R ′ is a locally Laurent polynomial algebra in n variables over R ′ . We shall also prove a
necessary and sufficient condition for A to be a locally Laurent polynomial algebra in n variables
over R (Theorem 4.4).

The following criterion for a module M to be flat over a Noetherian ring R is known but for the
lack of a proper reference, we give a proof below.

Lemma 4.1. Let R be a Noetherian ring and M be an R-module. Then M is flat over R if and only if
TorR

1 (M, R/P ) = 0 for every prime ideal P of R.

Proof. Suppose that TorR
1 (M, R/P ) = 0 for every prime ideal P of R . To show that M is flat over R , it

is enough to show that TorR
1 (M, R/I) = 0 for every ideal I of R (see [8, Theorem 7.8, p. 51]).

Since R is Noetherian, for every ideal I , there exist ideals I = J0 ⊂ J1 ⊂ · · · ⊂ Jn = R such that R/I
has a filtration of submodules of the form

0 = J0/I ⊂ J1/I ⊂ · · · ⊂ Jn−1/I ⊂ Jn/I = R/I

satisfying J i+1/ J i ∼= R/Pi for some prime ideal Pi of R (see [8, Theorem 6.4, p. 39]). We prove that
TorR

1 (M, R/I) = 0 by induction on n, the length of the filtration of R/I .
If n = 1, then I is a prime ideal of R and by the given hypothesis, TorR

1 (M, R/I) = 0.
Suppose that n > 1. By applying TorR

1 (M,−) to the short exact sequence

0 → J1/I → R/I → R/ J1 → 0

we get the exact sequence

TorR
1 (M, J1/I) → TorR

1 (M, R/I) → TorR
1 (M, R/ J1).

Now J1/I ∼= R/P0 for a prime ideal P0 and hence TorR
1 (M, J1/I) = 0. Since R/ J1 has a filtration of

length n − 1, TorR
1 (M, R/ J1) = 0 by induction hypothesis. Thus TorR

1 (M, R/I) = 0. �
We now prove an elementary result.

Lemma 4.2. Let R be a Noetherian domain and let R ′ be an integral extension of R. Let D and A be flat
R-algebras such that D ⊆ A ⊆ A ⊗R R ′ and A ⊗R R ′ = D ⊗R R ′ . Then A = D.
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Proof. Let M = A/D . Since A ⊗R R ′ = D ⊗R R ′ , it follows that M ⊗R R ′ = 0. We will show that M is a
flat R-module. It will then follow that M ↪→ M ⊗R R ′ = 0, i.e., A = D .

By Lemma 4.1, it is enough to show that TorR
1 (M, R/P ) = 0 for every prime ideal P of R . Fix a

prime ideal P of R . Since A is a flat R-module, we have the following exact sequence of R-modules

0 → TorR
1 (M, R/P ) → D ⊗R R/P → A ⊗R R/P → M ⊗R R/P → 0.

Since R ′ is integral over R , there exists a prime ideal P ′ of R ′ lying over P . Since A and D are flat
R-modules, we have the following injective maps

D ⊗R R/P ↪→ D ⊗R R ′/P ′ and A ⊗R R/P ↪→ A ⊗R R ′/P ′.

Since the map D ⊗R R/P ↪→ D ⊗R R ′/P ′ is a composite of the maps

D ⊗R R/P → A ⊗R R/P and A ⊗R R/P ↪→ A ⊗R R ′/P ′ = D ⊗R R ′/P ′,

it follows that the map D ⊗R R/P → A ⊗R R/P is injective and hence TorR
1 (M, R/P ) = 0. �

We now prove a result for a Laurent polynomial fibration over a Noetherian domain.

Proposition 4.3. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra
such that

(i) The generic fibre A ⊗R K is a Laurent polynomial algebra in n variables over K .
(ii) For each height one prime ideal P of R, A ⊗R k(P ) is geometrically integral over k(P ) and there exists a

field extension k(P )′ of k(P ) such that A ⊗R k(P ) ⊗k(P ) k(P )′ contains a Laurent polynomial algebra in n
variables over k(P )′ .

Then the following statements hold:

(I) All the fibre rings of A are Laurent polynomial forms in n variables.
(II) There exists a finite birational extension R ′ of R such that A ⊗R R ′ is a locally Laurent polynomial algebra

in n variables over R ′ .
(III) A is finitely generated over R.

Proof. (I) This proof is essentially the same as in [5, Theorem 3.13].
Fix any prime ideal P (need not be of height one) in R . Note that A ⊗R k(P ) = A P ⊗R P k(P ). So

replacing R by R P we can assume that R is a local Noetherian domain with maximal ideal P . We
prove the result by induction on the height of P .

Suppose that dim R = 1. From the Krull–Akizuki theorem [9, Theorem 33.2] and the fact that R is
local, it follows that the normalisation R̃ of R is a semilocal PID and that k( P̃ ) is a finite algebraic
extension of k(P ) for every maximal ideal P̃ of R̃ . Fix a maximal ideal P̃ of R̃ , let V = R̃ P̃ and let
t ∈ V be such that tV = P̃ V . Since R and V are birational, A ⊗R V is generically a Laurent polynomial
algebra in n variables over V . Also note that, by hypothesis (ii),

(A ⊗R V )/t(A ⊗R V ) = (A ⊗R R̃) ⊗R̃ k( P̃ ) = (
A ⊗R k(P )

) ⊗k(P ) k( P̃ )

satisfies the condition (iv) of Theorem 3.5. Hence A ⊗R V is a Laurent polynomial in n variables over V
by Theorem 3.5; in particular, (A ⊗R k(P ))⊗k(P ) k( P̃ )(= A ⊗R (V /tV )) is a Laurent polynomial algebra
in n variables over k( P̃ ). Thus A ⊗R k(P ) is a Laurent polynomial form in n variables over k(P ).

Now suppose that dim R � 2. Then by the induction hypothesis, the fibre ring A ⊗R k(Q ) is a
Laurent polynomial form in n variables for every prime ideal Q � P . Let R̂ be the completion of R
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with respect to the maximal ideal P and let P̂ denote the maximal ideal of R̂ . Then dim R̂ = dim R
and R̂/ P̂ = R/P . Let P̂0 be a minimal prime ideal of R̂ such that dim R̂ = dim R̂/ P̂0. Since R̂ is R-flat,
by the going down theorem, for any prime ideal Q̂ of R̂ , ht(Q̂ ∩ R) � ht Q̂ . Hence, since ht P̂0 = 0
and R is an integral domain, we have P̂0 ∩ R = (0). Set Â := A ⊗R R̂/ P̂0. Since P̂0 ∩ R = (0), Â is
generically a Laurent polynomial algebra in n variables over R̂/ P̂0. Let Q̂ be a non-zero prime ideal of
R̂/ P̂0 properly contained in P̂ and Q = Q̂ ∩ R . Since Â ⊗R̂ k(Q̂ ) = (A ⊗R k(Q )) ⊗k(Q ) k(Q̂ ), we have
Â ⊗R̂ k(Q̂ ) is a Laurent polynomial form in n variables over k(Q̂ ). Now since A ⊗R k(P ) = Â ⊗R̂ k( P̂ ),
we can replace R by R̂/ P̂0 and A by Â and assume that R is a complete Noetherian local domain. Let
R̃ denote the normalisation of R . Then R̃ is a finite R-module (see [9, Theorem 32.1]) and hence a
Noetherian normal local domain and for every non-zero non-maximal ideal Q̃ of R̃ , A ⊗R R̃ ⊗R̃ k(Q̃ )

is a Laurent polynomial form in n variables. Hence, by Theorem 3.6, A ⊗R R̃ is a Laurent polynomial
algebra in n variables over R̃ . This proves that the closed fibre of A is a Laurent polynomial form in n
variables.

(II) Let R̃ be the normalisation of R . Then R̃ is a Krull domain (see [9, Theorem 33.10]). By (I),
all the codimension-one fibres of A ⊗R R̃ are Laurent polynomial forms in n variables over R̃ .
Hence, by Theorems 3.6 and 2.3, there exist n finitely generated rank one projective modules Li ,
1 � i � n, of R̃ such that A ⊗R R̃ is isomorphic to an R̃-algebra of the form (SymR̃(Q ))[I−1],
where Q = L1 ⊕ · · · ⊕ Ln and I is an invertible ideal of SymR̃(Q ) generated by the image of
L1 ⊗ · · · ⊗ Ln . Since Li is a finitely generated projective R̃-module, there exists a finite extension
R ′ of R contained in R̃ such that, for each i, 1 � i � n, there exist finitely generated rank one pro-
jective R ′-modules Li

′ satisfying Li ∼= Li
′ ⊗R ′ R̃ . Then (SymR ′ (Q ′))[I ′−1] ⊆ (SymR̃(Q ))[I−1] = A ⊗R R̃ ,

where Q ′ = L1
′ ⊕ · · · ⊕ Ln

′ and I ′ is an invertible ideal of SymR ′(Q ′) generated by the image of
L′

1 ⊗ · · · ⊗ L′
n . Since (SymR ′(Q ′))[I ′−1](⊆ A ⊗R R̃) is a finitely generated R ′-algebra, by enlarging R ′

if necessary, we can ensure that (SymR ′ (Q ′))[I ′−1] ⊆ A ⊗R R ′ ⊆ A ⊗R R̃(= (SymR̃(Q ))[I−1]). Since
R ′ is a finite module over the Noetherian ring R , R ′ is a Noetherian ring. Hence, by Lemma 4.2,
(SymR ′(Q ′))[I ′−1] = A ⊗R R ′ .

(III) Since A is flat over R , we have R ↪→ A ↪→ A ⊗R R ′ . Since A ⊗R R ′ is a locally Laurent polyno-
mial algebra in n variables over R ′ , by Theorem 2.3, A ⊗R R ′ is a finitely generated R ′-algebra. Now
since R ′ is a finite R-module, we have A ⊗R R ′ is a finite A-module and A ⊗R R ′ is a finitely generated
R-algebra. Thus, A is finitely generated over R . �

We now prove Theorem D.

Theorem 4.4. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra such
that

(i) A ⊗R K = K [X1, X1
−1, . . . , Xn, Xn

−1], for some X1, . . . , Xn transcendental over R.
(ii) For each height one prime ideal P of R, A ⊗R k(P ) is geometrically integral over k(P ) and there exists a

field extension k(P )′ of k(P ) such that A ⊗R k(P ) ⊗k(P ) k(P )′ contains a Laurent polynomial algebra in n
variables over k(P )′ .

(iii) Li := A ∩ K Xi is a finitely generated projective R-module of rank one, 1 � i � n.

Then A is a locally Laurent polynomial algebra in n variables over R.

Proof. We may assume that R is local. By Proposition 4.3, we can find a finite birational extension
R ′ of R such that A ⊗R R ′ is a locally Laurent polynomial algebra in n variables over R ′ . Since R is
local and R ′ is a finite birational extension of R , R ′ is a semilocal domain and hence Pic R ′ = (0).
Therefore, by Theorem 2.3, A ⊗R R ′ = R ′[Y1, Y1

−1, . . . , Yn, Yn
−1] for some elements Y1, . . . , Yn which

are transcendental over R ′ and are chosen such that K Xi = K Yi for 1 � i � n (cf. Lemma 2.1).
Fix i, 1 � i � n. Since R is local, by hypothesis (iii), Li = A ∩ K Xi = R fi for some f i ∈ A(↪→

R ′[Y1, Y1
−1, . . . , Yn, Yn

−1]). Since f i ∈ K Yi(= K Xi), it follows that there exists ai ∈ R ′ such that
f i = ai Yi .
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We show that ai is a unit in R ′ . Let J be the conductor ideal of R ′ in R . It then follows that
J Yi ⊆ A ∩ K Xi = R fi = Rai Yi . Therefore, J ai

−1 ⊆ R ⊆ R ′ . It follows that J ai
−1 is an ideal of R ′ and

hence J ai
−1 ⊆ J . Therefore J = ai J . Since J is a non-zero finitely generated ideal of the integral

domain R ′ , it follows from NAK Lemma [8, Theorem 2.2, p. 8] that ai is a unit in R ′ .
Therefore A ⊗R R ′ = R ′[ f1, f1

−1, . . . , fn, fn
−1]. Since A ⊗R R ′ is integral over A, f i ∈ A and f i

−1 ∈
A ⊗R R ′ , we have f i

−1 ∈ A. Thus

R
[

f1, f1
−1, . . . , fn, fn

−1] ⊆ A ⊆ A ⊗R R ′ = R ′[ f1, f1
−1, . . . , fn, fn

−1].
Now by Lemma 4.2, A = R[ f1, f1

−1, . . . , fn, fn
−1], a Laurent polynomial algebra in n variables. �

The following lemma shows that an algebra which is stably Laurent polynomial is necessarily a
Laurent polynomial algebra.

Lemma 4.5. Let R be an integral domain and B be a Laurent polynomial algebra in n variables over R. Suppose
that A is an R-algebra such that

(i) either A[W1, . . . , Wt] ∼= B[Z1, . . . , Zt ] as R-algebras,
(ii) or A[W1, W1

−1, . . . , Wt , Wt
−1] ∼= B[Z1, Z1

−1, . . . , Zt , Zt
−1] as R-algebras,

for some W i , Zi , 1 � i � t, transcendental over A and B respectively. Then A ∼= B as R-algebras.

Proof. Suppose that (i) holds. Let B = R[X1, X1
−1, . . . , Xn, Xn

−1]. We may assume that A[W1, . . . ,

Wt] = B[Z1, . . . , Zt ]. Since R is an integral domain, A is an integral domain and as X1, . . . , Xn are
units in A[W1, . . . , Wt], we see that X1, X1

−1, . . . , Xn, Xn
−1 ∈ A. Therefore B ⊆ A and hence A = B

because B is algebraically closed in B[Z1, . . . , Zt ] and tr.degR A = tr.degR B .
Now suppose that (ii) holds. It is enough to consider the case when t = 1 and show that if

A[W , W −1] = B[Z , Z−1] as R-algebras, then A ∼=R B . Let B = R[X1, X1
−1, . . . , Xn, Xn

−1]. Since Z ,
X1, . . . , Xn are units in A[W , W −1], we have Z = λW � and Xi = μi W ai for some λ,μi ∈ A∗ and
�,ai ∈ Z, 1 � i � n. Again, since W is a unit in B[Z , Z−1], we have W = ν X1

b1 · · · Xn
bn Zr , for some

ν ∈ R∗ and r,bi ∈ Z and hence

W = ν
(
μ1W a1

)b1 · · · (μn W an
)bn

(
λW �

)r = νμ1
b1 · · ·μn

bnλr W a1b1+···+anbn+�r .

Since νμ1
b1 · · ·μn

bn λr ∈ A, we have
∑

i aibi + �r = 1. Since Z is PID, the unimodular row
(b1 b2 · · · bn r) can be completed to an invertible (n + 1) × (n + 1) matrix, say M = (bij), such
that the last row of M is (b1 b2 · · · bn r). Set Yi := X1

bi1 · · · Xn
bin Zbi(n+1) for 1 � i � n + 1. Then

A[W , W −1] = B[Z , Z−1] = R[Y1, Y1
−1, . . . , Yn+1, Yn+1

−1] = R[Y1, Y1
−1, . . . , Yn, Yn

−1, W , W −1], since
W = νYn+1 and ν ∈ R∗ . Hence A ∼= R[Y1, Y1

−1, . . . , Yn, Yn
−1] and so A ∼= B . �

Remark 4.6. Let R be a Noetherian domain and B be a faithfully flat finitely generated R-algebra such
that all the fibre rings B ⊗R k(P ) are polynomial algebras in n variables (over k(P )). From a result of
Asanuma [1, Theorem 3.4], it follows that if the module of 1-differential forms ΩB/R is free, then B is
a stably polynomial algebra over R .

Bhatwadekar and Dutta have constructed an explicit example [4, Example 3.9] of a finitely gener-
ated faithfully flat algebra A over a one dimensional Noetherian (seminormal) local domain R such
that each fibre ring A ⊗R k(P ) is a Laurent polynomial ring in one variable over k(P ), ΩA/R is a free
A-module of rank 1 but A is not a Laurent polynomial algebra over R . In view of Lemma 4.5, A is
not a stably Laurent polynomial algebra. Thus, a Laurent polynomial analogue of Asanuma’s structure
theorem (see [1, Theorem 3.4]) does not seem to exist.
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Appendix A. Laurent polynomial forms in n variables

Let k be a field and A be a k-algebra. Recall that A is said to be a Laurent polynomial form in n
variables if there exists an algebraic field extension F of k such that A ⊗k F is a Laurent polynomial
algebra in n variables over F , if F can be chosen to be separably algebraic, then the Laurent polyno-
mial form A will be called separably algebraic. It was observed in [5, Proposition 2.3] that a separable
Laurent polynomial form in one variable is trivial if and only if k∗ � A∗ . We extend the result to n
variables; the proof is essentially the same as in the case n = 1.

Recall that a field extension F over k (not necessarily algebraic) is said to be separably generated
if there exists a transcendence basis B of F such that F is separably algebraic over k(B).

Proposition A.1. Let k be a field, A a k-algebra and F a separably generated field extension of k such that
A ⊗k F is a Laurent polynomial algebra in n variables over F . Suppose that A contains a Laurent polynomial
algebra in n variables over k. Then A is a Laurent polynomial algebra in n variables over k.

Proof. Let A ⊗k F = F [U1, U1
−1, . . . , Un, Un

−1]. Since A ↪→ A ⊗k F , we regard A as a k-subalgebra of
A ⊗k F . It is easy to see that there exists a finitely generated separable extension F1 of k such that
A ⊗k F1 = F1[U1, U1

−1, . . . , Un, Un
−1]. Thus replacing F by F1, we can assume that F is a finitely

generated separable extension of k.
We first consider the case when F is a finite separable algebraic extension of k. Replacing F by

its normal extension, we can assume that F is a Galois extension of k with Galois group G . Now any
σ ∈ G can be extended to an A-automorphism of A ⊗k F , by defining σ(a ⊗ μ) = a ⊗ σ(μ). Since F
over k is a Galois extension, the bilinear map

F × F → k, sending (x, y) → Tr(xy)

is non-degenerate and hence there exist ci ∈ F such that Tr(ci Ui) = 0, 1 � i � n. Replacing Ui by
ci Ui we can assume that Tr(Ui) = 0. Let W i = Tr(Ui). Then W i ∈ A. We show that A = k[W1, W1

−1,

. . . , Wn, Wn
−1].

Let k[X1, X1
−1, . . . , Xn, Xn

−1] ⊆ A, where X1, X2, . . . , Xn are transcendental over k. Then, there
exist integers aij , 1 � i, j,� n such that

Xi = μi U1
ai1 U ai2

2 · · · U ain
n ,

for some μi ∈ F ∗ . Let M = (aij) and Mad := Adj(M) = (bij) for some bij ∈ Z. Since X1, X2, . . . , Xn are
transcendental over k, det M = 0. Set

Yi := X1
bi1 X2

bi2 · · · Xn
bin ∈ A

for 1 � i � n. Since Mad M = (det M)In , where In is the identity matrix, we have

Yi = λi U i
(det M),

1 � i � n, for some λi ∈ F ∗ . Fix i, 1 � i � n. Replacing Yi by Yi
−1, we may assume that det M > 0.

Since for any σ ∈ G , σ(Yi) = Yi , we have (σ (Ui)/Ui)
det M = (λi/σ (λi)) ∈ F ∗ . Therefore, σ(Ui) = νσ Ui

for some νσ ∈ F ∗ . Hence W i = Tr(Ui) = di Ui for some di ∈ F ∗ . Thus F [W1, W1
−1, . . . , Wn, Wn

−1] =
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F [U1, U1
−1, . . . , Un, Un

−1]. Since A ⊗k F is integral over A, and for 1 � i � n, W i
−1 ∈ A ⊗k F , we

have W i
−1 ∈ A. Hence k[W1, W1

−1, . . . , Wn, Wn
−1] ⊆ A. Since F is faithfully flat over k, we have

k[W1, W1
−1, . . . , Wn, Wn

−1] = A. Now the argument in [5, Proposition 2.3] shows that if F is an
arbitrary separable extension over k then also A is a Laurent polynomial algebra. �

The following example shows that a purely inseparable Laurent polynomial form A in one variable
over a field k which contains non-trivial units (i.e. k∗ � A∗) need not be trivial.

Example A.2. Let k be a non-perfect field of characteristic p. Let β ∈ k be such that β /∈ kp := {ap |
a ∈ k}. Let L = k(α) be a purely inseparable extension of k such that αp = β . Now let B = k[X, Y ]/
(X − Y p − β X p). It is known that B is a non-trivial inseparable A1-form. Now

B ⊗k L = L[X, Y ]
(X − Y p − β X p)

= L[X − (Y + αX)p, Y + αX]
(X − (Y + αX)p)

∼= L[Y + αX].

Let A = B[X−1]. Since (Y + αX)p = X in A ⊗k L, we have A ⊗k L ∼= L[Y + αX, (Y + αX)−1], a Laurent
polynomial algebra in one variable. Also k[X, X−1] ⊆ A. But A is not a Laurent polynomial algebra.
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