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1. Introduction

Let R be an integral domain. Recall that an R-algebra A is called a Laurent polynomial algebra in
n-variables over R if A=R[X1, X1~ ', ..., Xn, X, '], where X1, X2, ..., X, are transcendental over R.
We call an R-algebra A to be a locally Laurent polynomial algebra in n variables over R if A ®g R,
is a Laurent polynomial algebra in n variables over the local ring R,, for every maximal ideal m of R.
In this paper we explore the Laurent polynomial analogues of some results and open problems on
polynomial (or A") fibrations.

We shall first establish a structure theorem for locally Laurent polynomial algebras, a Laurent
polynomial analogue of the famous local-global theorem of Bass, Connell and Wright [3, Theorem 4.4]

* Corresponding author.
E-mail addresses: smbhatwadekar@gmail.com (S.M. Bhatwadekar), neena_r@isical.ac.in (N. Gupta).

0021-8693/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.11.032


https://core.ac.uk/display/82286219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jalgebra.2011.11.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:smbhatwadekar@gmail.com
mailto:neena_r@isical.ac.in
http://dx.doi.org/10.1016/j.jalgebra.2011.11.032

S.M. Bhatwadekar, N. Gupta / Journal of Algebra 353 (2012) 142-157 143

which states that any finitely presented locally polynomial algebra in n variables over a ring R is isomorphic
to the symmetric algebra of a projective R-module of rank n. While the hypothesis on finite presentation is
clearly necessary in the polynomial case (consider the Z-algebra Z[X/2, X/3, X/5,...]), our structure
theorem will show that a locally Laurent polynomial algebra A over an integral domain R is necessarily
finitely presented and that A is of the form B[I~'], where B is isomorphic to the symmetric algebra
Symg(Q) of a (suitable) finitely generated projective R-module Q and I is an invertible ideal of B.
Here I~! denotes the B-submodule {a € F | al C B} of the quotient field F of B and B[I~'] denotes the
subring of F generated by B and I~!. The precise statement of the structure theorem (Theorem 2.3)
is given below.

Theorem A. Let R be an integral domain and A be a locally Laurent polynomial algebra in n variables over R.
Then there exist n finitely generated rank one projective R-modules Lj, 1 < i < n, such that A is isomorphic to
an R-algebra of the form

(Symg(Q))[17'].

where Q = L1 @ --- @ L, and [ is an invertible ideal of Symg(Q ) generated by the image of L1 ® - -+ ® Ly.
In particular, A is finitely presented over R. If Pic(R) = (0), then A is a Laurent polynomial algebra over R.

After describing the structure of a locally Laurent polynomial algebra, we investigate sufficient
conditions for an R-algebra to be locally Laurent polynomial. Note that any locally Laurent polynomial
R-algebra is faithfully flat over R. Now suppose that R is a Noetherian normal domain and A is a
faithfully flat R-algebra. Under these hypotheses, we shall see that A is a locally Laurent polynomial
algebra in n variables over R if A ®g Rp is a Laurent polynomial algebra in n variables over Rp for
every prime ideal P in R of height one (Proposition 2.7). This result was proved in [6, Theorem 4.8]
for the case n=1.

Next we consider the following fibration problem:

Question. Under what (minimal) fibre conditions will a faithfully flat algebra A over a Noetherian
domain R be a locally Laurent polynomial algebra?

We first investigate the case when R is a discrete valuation ring (DVR) and prove (Theorem 3.5):

Theorem B. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let A be an integral domain containing R such that

(i) A[1/t]is a Laurent polynomial algebra in n variables over K.
(ii) A/tA is a Laurent polynomial algebra in n variables over k.

Then A is a Laurent polynomial algebra in n variables over R.

Recall that for any P € SpecR, k(P) denotes the quotient field of R/P and that A ®g k(P) is the
fibre ring of an R-algebra A over P. Using Theorem B and Proposition 2.7, we shall show that for any
faithfully flat algebra A over a Noetherian normal domain R to be locally Laurent polynomial, it is
enough to ensure that the generic and codimension-one fibres of A are Laurent polynomial algebras
in n variables. In fact, we prove (Theorem 3.6):

Theorem C. Let R be a Noetherian normal domain with quotient field K and A be a faithfully flat R-algebra
such that

(i) The generic fibre A ®g K is a Laurent polynomial algebra in n variables over K.
(ii) Foreach height one prime ideal P in R, A®pg k(P) is a Laurent polynomial algebra in n variables over k(P).

Then A is a locally Laurent polynomial algebra in n variables over R.
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For the case n =1, this result was proved earlier in [5, Theorem 3.11] under the additional hy-
pothesis that A is finitely generated.

Finally we consider an arbitrary Noetherian domain. An example (see [4, Example 3.9]) of Bhat-
wadekar and Dutta shows that, even for n = 1, Theorem C cannot be extended to non-normal domains
without additional hypotheses. We give the following necessary and sufficient condition for extending
Theorem C to an arbitrary Noetherian domain (Theorem 4.4):

Theorem D. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra such
that

(i) A®r K =K[X1, X1~ ", ..., Xn. Xa~ 11, X1, ..., X are transcendental over R.
(ii) For each height one prime ideal P in R, A ®g k(P) is a Laurent polynomial algebra in n variables
over k(P).
(iii) L;j := AN KX;j is a finitely generated projective R-module of rank one, 1 <i < n.

Then A is a locally Laurent polynomial algebra in n variables over R.

However, even without the hypothesis (iii), we shall show (Proposition 4.3) that A is at least
finitely generated over R and that A ®g R’ is locally Laurent polynomial over a finite birational exten-
sion R’ of R.

Theorem A will be proved in Section 2, Theorems B and C in Section 3 and Theorem D in Section 4.

We recall some standard notation to be used throughout the paper. For a ring R, R* will denote
the multiplicative group of units of R. For a prime ideal P of R, and an R-algebra A, Ap denotes the
ring S~1A, where S=R\ P and k(P) denotes the residue field Rp/PRp. The notation A = R will
mean that A is isomorphic, as an R-algebra, to a polynomial ring in one variable over R.

We also recall a few definitions (cf. [8, p. 80]). Let R be an integral domain with quotient field K.
A non-zero R-submodule L of K is said to be a fractional ideal if there exists a non-zero element
o € R such that «L C R. A fractional ideal L is said to be invertible if L~'L = R, where L~ ! ={a € K |
ol CR}.

2. On locally Laurent polynomial algebra in n variables

In this section we shall prove Theorem A. Throughout this section, R will denote an integral do-
main with quotient field K and A an integral domain containing R such that AN K =R and

AR K=K[X1,X17" ..., Xn, Xn ']

for some Xi,..., X, transcendental over R. In this set up, we shall use the following notation. For
1<i<nand j>0, set

Cij:=ANKX/ and Djj:=ANKX;,

C:= 69(1'1 YYYY ineZso" C1j, - Cnj,» where Cyqj, ---Cpj, ={c1---Cn | ce € Cyj,} is an R-submodule of AN
KX191 - K Xpin,

I :=the ideal of C generated by C11---Cy1 and B:=ANK[Xy,..., Xy].

Note that C is an R-subalgebra of B. Note also that for g € Cj; and h € D;j, gh € AN K = R. Therefore
we get an R-linear map

¥ij : Cij ®g Dijj — R defined by (g ® h) = gh.
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Set

Jij = vij(Cij ®r Dij).

With the above notation, we state a few lemmas needed for the proofs. We first show that when A
itself is a Laurent polynomial algebra, then C is a polynomial algebra, C =B and A=B[I"']=C[I"].

Lemma 2.1. Let A be a Laurent polynomial algebra in n variables over R. Then there exist a; € K* and U; € A

suchthat Uy = a;X;,1<i<n, A=R[U1,U;~,..., Uy, Uy~ and B =R[U1, ..., Uy,]. Further, for 1 <i <
nand j >0,

Cij(=ANKXi')=RU,  Dij(=ANKX;™/)=RU;~
and hence J;j=R,C=B=R[Uy,...,Up], I = (U1 ---Up)C, and
A=B[I""]=C[I"].
Proof. Let A=R[Yy,Y1™',..., Yy, Y, !]. Then
K[Xt, ... Xn, Xa 7l Xn 7 = K[ Ya, o Y Y YT
It follows that for each i, 1 <i <n,
Yi=aXi% X% o X% and Xj = guYPnyde . yhi

for some Aj, u; € K\ {0} and a;j, bjj € Z, 1 < j <n, satisfying

app apz - A bi1 b1z -+ by 1 0 --- 0
a1 axp -+ dp byr by -+ by | _[ O 1 -+ O
apn1 an2 -+ Onn bui bna -+ bm 0 o --- 1

T and

For 1 <i<n, set o := i~
Uj:=uiXi= Y]b” Ygiz e Y,l;i”.
Then, K[X1,..., Xn]=K[Uq,...,Up], and for 1 <i <n,
Yi — U]ail Uzaiz .. Unain.
Hence

A=R[U1,Ui7Y,...,Un, U], B=R[Ui,...,Up]

and ANK X/ (= ANKU;9) = RU;J for every i, 1 <i<n and every j€Z. Thus C=B, [ = (U1 ---Up)C
and A=B[I""1=C[I"!]. O

In the general case (i.e., when A is not necessarily a Laurent polynomial algebra over R), we give
below a sufficient condition for C to be the symmetric algebra of a finitely generated projective R-
module of rank n and I to be an invertible ideal of C.
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Lemma 2.2. Suppose that J;1 =RV i,1<i<n.Thenforeachi,1<i<n,and j>0,

M Jij=R

(II) Cjj and Dj;j are finitely generated projective R-modules of rank one.
(IT) The canonical map 6;j : Ci1 ®r Ci1 ®r - - - Qr Ci1 (j-times) — Cj; is an isomorphism.
(IV) There is a natural R-algebra isomorphism

C<: @ Cijy "'ann)ESYmR(C11@-~-€BCn1).

(j1swsJn)€Z 20"
(V) Theideal I of C generated by C11 - - - Cp1 is an invertible ideal.

Proof. Fix i, 1 <i<n, and j > 0. Note that C;; and D;; are torsion-free R-modules of rank one.
Moreover, if f € Ci; and g € D then f/ e Cyj, g/ € Djj and fig/ = (fg)/ e R.

(I) Since Ji1 = ¥i1(Ci1 ®r Di1) = R, there exist ¢, € Cj; and d¢ € Dj;, 1 < £ <r for some r, such
that

%’1(2% ®de> =ZC[dg=].
¢ ¢

Set a; :=cedy. As ¢y € Cij and d(j € Djj, we have a, f = ngd[j = w,-j(c@f ®dgj) € Jjj for each £. Since
> ,a, =1, we have (a1/,...,a)R =R and hence J;j =R.

(Il Set L := C,~jX,~_j and E := Dinij. Clearly L and E are non-zero R-submodules of K such that
LE(=CjjDjj) CANK =R. Thus L and E are fractional ideals. Since R = J;; = ¥;(Cij ®r Djj), there
exist fs € Cjj and gs € Djj, 1 <s <t for some t, such that

1= fsgs=Y (fsXi/)(gsXi’) € (C;jXi /) (DijXi) = LE.

Therefore L and E are invertible ideals of K with E=L"" and L = E~! and hence C;; and Dj; are
finitely generated projective R-modules of rank one (cf. [8, p. 80]).

(II) Set C(ij) := 6;j(Ci1 ®r Ci1 ®r -+ ®r Cj1). Since C(ij) € Cjj, it is enough to show that
C(ij)m = (Cij)m for every maximal ideal m of R. Fix a maximal ideal m of R. By (II), (Cij)m = Ru fij
for some fj; € (Cij)m. Since (Jij)m = Ry, we have (Dij)y, = R,,lf,f1 and so f,-j_1 € A,,. Now, since
firl e (Cij)m = Ru fij, we have finl = Aij fij for some Ajj € R,,. Hence Aij‘1 = fi]_jf,‘j €A, NK=R,.
Thus, fjj e Rmfnj C C(ij),,- Hence the result follows.

(IV) follows from (II) and (III).

(V) By (Il), C11,...,Cnp are finitely generated projective R-modules and hence the ideal I of C is
finitely generated and for every prime ideal p of R, I, is a principal ideal. Thus, for any prime ideal
P of C, if p=PNR, then Ip being a further localisation of I, is principal and so I is an invertible
ideal (see [8, Theorem 11.3]). O

We now prove Theorem A.

Theorem 2.3. Let R be an integral domain with quotient field K and A be a locally Laurent polynomial algebra
in n variables over R. Then there exist n finitely generated rank one projective R-modules L;, 1 < i < n, such
that A is isomorphic to an R-algebra of the form

(Symg(Q)[17'].
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where Q = L1 @ --- ® L, and [ is an invertible ideal of Sympg (Q ) generated by the image of L1 ® --- ® Ly.
In fact, if AQr K = K[X1, X1, ..., Xn, Xa "1 and B = AN K[X1, ..., Xy], then we may choose L; to
be AN KX; and Symg(Q) may be identified with the ring B. In particular, A is finitely presented over R.
If Pic(R) = (0), then A is a Laurent polynomial algebra over R.

Proof. As before, Cij = AN KX;/, Dijj = ANKX;~J, and J;j is the image of the canonical map ; :
Cij®r Dijj—> R defined by Vij(g ®h)=gh,1<i<n, j>0.

Fix i, 1 <i < n. For any maximal ideal m of R, since A, is a Laurent polynomial algebra in n
variables over R, it follows from Lemma 2.1 that (Ji1), = R,.. Thus Jj; = R. Hence, by Lemma 2.2,
Li(= Cyp) is a finitely generated projective R-module of rank one, Symg (L1 @ --- @ L,) may be iden-
tified with the subring C(= @0‘1 nCqj; ---Cpj,) of A, and the ideal I of C generated by
L1---Ly is invertible.

Since C € B and, by Lemma 2.1, C,, = B,, for every maximal ideal = of R, we have C = B. There-
fore, to complete the proof, we only need to show that A = C[I~!]. Since D;; C A and J;; =R, we
have 1€ Ji1 C Ci1A, ie., Ci1A = A. Hence IA = A. Therefore C[I~!] C A. Hence, it is enough to show
that A,, = C,[l,,~'] for every maximal ideal m of R. This follows from Lemma 2.1, since A,, is a
Laurent polynomial algebra in n variables over R,,. O

..... ine€Zzo

Remark 2.4. (i) With the notation described at the beginning of this section, we have seen in Theo-
rem 2.3 that if A is a locally Laurent polynomial, then C = B. This need not hold in general. Consider
the faithfully flat Z-algebra A = Z[} (X +3), X~']. Here A®7 Q= Q[X, X~'] so that B=Z[1(X +3)],
but C =Z[X] & B.

(ii) Note that Theorem 2.3 is proved in two steps. The first step is to prove that each Cj; is a
finitely generated projective R-module of rank one and C = Symg(C11 @ - -- @ Cn1). The second step is
to show that A = C[I~'] where I is the invertible ideal of C generated by Cij ---Cp;. We have seen
that if J;; = R for each i, then one achieves the first step (cf. Lemma 2.2). Moreover, in this case,
since Dj; C A, we have Ji; C Ci1A and hence Cj;A = A. Thus IA = A. Therefore C[I~1] C A.

Now suppose that R is Noetherian or Krull and A is a faithfully flat R-algebra such that Ap(=
A ®g Rp) is a Laurent polynomial algebra in n variables over Rp for every prime ideal P of R for
which depth Rp = 1. Under these hypotheses we will show (Proposition 2.7) that A is in fact a locally
Laurent polynomial algebra in n variables over R. As in the proof of Theorem 2.3, we will first show
that Jj; = R for each i (Lemma 2.6) and then show that A = C[I~1](= B[I"1]).

We first state a lemma; the proof will follow from the argument in [7, Lemma 2.8]. Note that for
a prime ideal P of a Krull domain R, depthRp =1 if and only if ht P = 1.

Lemma 2.5. Let R be an integral domain with quotient field K which is either a Noetherian or a Krull domain
and let A be the set of all prime ideals P of R such that depth Rp = 1. For a torsion-free R-module M, the
following conditions are equivalent:

(i) M ={\pea Mp, where M and Mp = M Qg Rp are identified with their images in M ®g K.
(ii) Forevery a,b € R such that (aR : b) = aR, we have (aM : b) = aM.

In particular, if M is R-flat then M = (pcp Mp.

The following is the key lemma for proving Proposition 2.7. This lemma was proved in [6,
Lemma 4.2] for n = 1. For convenience, we give a proof in our generalised setup.

Lemma 2.6. Let R be an integral domain which is either a Noetherian or a Krull domain and let A be a faithfully
flat R-algebra such that Ap is a Laurent polynomial algebra in n variables for every prime ideal P of R such
that depth Rp = 1. Then Cjy and Djy are finitely generated projective R-modules of rank one and J;1 = R for
eachi,1<i<n
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Proof. We first show that the canonical map Cij; ®g A — Cj1A is an isomorphism and C;1A = A.

Since Cj; < K X; and A is R-flat, we have Cj; ®r A <> KX; ®r A = K[X1,..., Xn, X171, ..., Xp 711,
Thus Cj; ®g A is a torsion-free A-module of rank one. Now if the canonical map Cj1 ®g A — Cj1A is
not injective then the kernel of this map is a non-zero torsion-free A-submodule of Cj; ®g A, which
contradicts that the rank of C;y ®g A is one. Thus, the canonical map Cj; ®g A — Cj1A is injective
and hence an isomorphism.

Let A denote the set of all prime ideals P of R such that depthRp = 1. For every P € A, since Ap
is a Laurent polynomial algebra, we have, by Lemma 2.1, (J;1)p = Rp; in particular Ji; ¢ P. Choose
a non-zero element x € J;1. Since R is either Noetherian or Krull, Assg(R/xR) is a finite subset of A.
Therefore, by prime avoidance, we see that Ji1 ¢ Upepssy(r/xr) P- Choose y € Jit \ Upeassq(r/xr) P-
Then {x, y} C Ji1 forms a regular sequence in R, i.e., (xR : y) = xR.

Since Ciy = ANKX; and A is R-flat, Ci1 = (\pca(Ci1)p by Lemma 2.5. Therefore, again by
Lemma 2.5, (xCj; : y) = xCj1, i.e, {x,y} forms a regular sequence in Cj;. Since A is R-flat and
Ci1t ®r A = Cj1 A, it follows that {x, y} forms a regular sequence in Cj;A and hence (xCi1A:y) =
XxCi1A. Since Dj;jA C A, we have Jj1A C Cj1A. Thus X,y € Ci1A and hence xy € xCj; A. Therefore
x € (xCij1A : y) =xCi1 A. Thus Cj1 A = A.

Since Ci1 g A(= Ci1A = A) is a free A-module of rank one and A is faithfully flat over R, it follows
that Cjp is a finitely presented flat and hence a projective R-module of rank one. Similarly Dj; is a
finitely generated projective R-module of rank one. Thus Cj; ®g Djp is a finitely generated projective
R-module of rank one. Since ¥;1(Ci1 ®g Di1) = Ji1, R is a domain and J;; # 0, we see that ;7 is an
isomorphism and hence J;; is a finitely generated projective R-module (of rank one). Therefore, by
Lemma 2.5,

Ja=[\Une=)Rr=R,

PeA PeA

because (Ji1)p = Rp for every P € A. Thus the lemma is proved. O

Proposition 2.7. Let R be an integral domain with quotient field K which is either a Noetherian or a Krull
domain and let A be a faithfully flat R-algebra such that Ap is a Laurent polynomial algebra in n variables
over Rp for every prime ideal P in R such that depth Rp = 1. Then A is a locally Laurent polynomial algebra
in n variables over R.

Proof. It is enough to assume that R is local. By Lemma 2.6, C;; = Rf; for some f; € A and
Ji1 = R for 1 <i < n. Therefore, by Lemma 2.2, C = R[f1,..., fn], I = (f1--- fn)C and hence
ClI'™1=RIf1, fi',..., fa, fa~'1. We now show that A= C[I™"].

Let A denote the set of all prime ideals P of R such that depthRp = 1. Since, for every P € A,
Ap is a Laurent polynomial algebra in n variables over Rp, we have Ap = Cpllp™] by Lemma 2.1.
Hence, as both A and C[I~!](= R[ fi1, ffl, ooy fas fn’l]) are R-flat and are submodules of the quo-
tient field of A, we have A=C[I~!] by Lemma 2.5. O

Remark 2.8. In contrast to Proposition 2.7, if R is a Noetherian local domain (or even a regular local
ring) and B is a faithfully flat finitely generated R-algebra such that Bp is a polynomial algebra in
n variables over Rp for every prime ideal P in R satisfying depthRp = 1, then B need not be a
polynomial algebra. Consider

R=C[m,m2ll,  B=RIX,Y,Zl/(maX +mY +Z* +1).
3. Laurent polynomial fibration over a Noetherian normal domain
In this section we shall prove Theorems B and C. We first prove Theorem B. The proof will require

an auxiliary lemma. We will use the following version of the dimension inequality (cf. [8, Theo-
rem 15.5, p. 118]).
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Theorem 3.1. Let R be a Noetherian integral domain and B an integral domain containing R. Let P be a prime
ideal of B and p = P N R. Then

ht P + tr.degg,, B/P < htp + tr.degg B.
As a consequence of Theorem 3.1, we have the following corollary.

Corollary 3.2. Let (R, t) be a discrete valuation ring with a regular parameter t and residue field k. Let B be an
integral domain containing R such that tB is a prime ideal of B. Then tr.deg;, B/tB < tr.degy B.

We state below a result, the proof of which will follow from [2, Proposition 6.1 and Theorem 6.3].

Theorem 3.3. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let D be an integral domain containing R such that

(i) D[1/t]= K™ and D/tD is an integral domain.
(ii) tr.deg, D/tD > 0.

Then D is a finitely generated R-algebra and there exists a finite algebraic field extension F of k such that
D/tD = FlI,

We now prove a lemma over discrete valuation rings which will be used in the proof of Theorem B.

Lemma 3.4. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let B be an integral domain containing R such that

(i) B[1/t]=K[X1,..., Xn], a polynomial ring in n variables over K.
(ii) B/tB is an integral domain and tr.degy, B/tB =n.

Set B :=R and for 1 <i<n,set Bj:=BNK[X1, Xa,..., X;]. Then

(1) Bit1[1/¢]= Bi[1/t][Xi411for 0<i<n—1.
(1) tB; is a prime ideal of B; of height one and tB; = tB; 1 N Bj, so that

k<> B1/tB1 < ---<— By /tB, = B/tB.

Let F; denote the quotient field of B;/tB,;.
(1) tr.degy B;/tBij(=tr.deg, F;) =i, 0<i<n.
(IV) (Bit+1/tBit1) ®p, 8, Fi = Kil!! for some finite algebraic field extension K; of F;.

Proof. (I) follows easily from the definition of B;’s.

(I tBij =tB N K[Xq, ..., X;j] =tB N Bj. Since by (ii) tB is prime ideal of B, we have tB; is a prime
ideal of B;.

Since tr.degy B/tB = tr.degg B =n, and ht(tR) =1, from the dimension inequality (Theorem 3.1)
we have ht(tB) < 1. Therefore, as B is an integral domain, we have ht(tB) = 1 and hence
ﬂ@O t"B = (0). Since B; C B for each i, 1 <i < n, it follows that ﬂ@o t"B; = (0), which implies
that ht(tB;) =1.

Also since B; C Bjy1 for each i, 0 <i<n—1, we have tB; =tBNB; =tBN Bj;1 N B; =tBij;+1 N B;.

() We first note that by (II), V;:= Bj(p,) is a discrete valuation ring with residue field F;. Set
Ei11:=Bit+1®s,; Vi, a localisation of B;;1. Then E;11[1/t] = V;[1/t][X;41] by (I). Since tE;; is a prime
ideal of Eiy1, we have tr.degp, (Ei+1/tEi+1) < 1 by Corollary 3.2, i.e., tr.degp, /g, (Bit+1/tBit+1) < 1. But
tr.degy B, /tB, =n and tr.degy, Bo/tBo = 0. Hence tr.deg; B;/tB; =i Vi.
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(IV) Note that E;1[1/t] = V;[1/t][Xi+1] by (I) and tE;y1 is a prime ideal of E;;1 by (II). Also
tr.degp, (Ei11/tEiy1)(= tr.degg, g, Bit1/tBiy1) = 1. Hence by Theorem 3.3, (Bit1/tBit+1) ®sp,tp; Fi =
Eit1/tEiy1 = K1 for some finite algebraic field extension K; of F;. O

We now prove Theorem B. Over a field k, we shall call a k-algebra A to be a Laurent polynomial
form in n variables if there exists an algebraic field extension F of k such that A ® F is a Laurent
polynomial algebra in n variables over F.

Theorem 3.5. Let (R, t) be a discrete valuation ring with a regular parameter t, quotient field K and residue
field k. Let A be an integral domain containing R such that A[1/t] is a Laurent polynomial algebra in n variables
over K. Then the following statements are equivalent:

(i) Ais a Laurent polynomial algebra in n variables over R.
(ii) A/tA is a Laurent polynomial algebra in n variables over k.
(iii) A/tA is a Laurent polynomial form in n variables over k.
(iv) There exists a field extension F of k such that A/tA ® F is an integral domain and contains a Laurent
polynomial algebra in n variables over F.

Proof. The implications (i) = (ii) = (iii) = (iv) are obvious. We prove (iv) = (i).
Since F is faithfully flat over k, we regard A/tA as a k-subalgebra of the integral domain A/tA®yF.
Note that t is a prime in A. We first show that we can choose Xj, ..., X;; in A such that

R[X1, X1 ' Xn, Xn | SAC AN/l = K[ X1, X1+, Xn, Xn .

Choose Ty, ..., Ty € A such that A[1/t]=K[T{,T;~',..., Tp, T, ']. Fix an integer i, 1 <i < n. Let
m; € Z>o be the least integer such that t™T;~! € A. Let X; := T;/t™. Then X;~' € A. If m; =0, then
X; € A and we are through. If not, since t™ = X;"!T; € A and t is a prime in A, we have either
t] X~ or t™ | T; in A. If t | X;~ 1, then t™~1T;~1 € A, which contradicts the minimality of m;. This
shows that t™ | T;, and hence X; € A.

We shall show that A= R[X1,..., Xn, X171, ..., X, ] for the above choice of X1, X2, ..., Xn.

Set B:=ANK[Xy,...,Xy] and C := R[X1, X2, ..., Xp]. We show that B = C. We first observe that

(1) C< B CB[1/t]=K[X1,..., Xal =C[1/t].
(2) tB=tANB and hence ¢ is prime in B.
(3) A=Bx,..x,(= BI(X1 -+ Xo) D).

(4) t does not divide X7 --- X, in B.

(5) tr.deg, B/tB =n.

(1) is obvious; (2) follows from the relation tB =tA N K[Xq, ..., X;] =tA N B. To see (3), note that if
h € A, then there exists £ € Z>q such that (X1 - - X)th e K[X1,...,Xa]NA(=B), so that h € BX; . -Xp-
(4) follows from the fact that B C A, X;---X, is a unit in A and t is a prime element of A. Since
tr.deg, A/tA =n by hypothesis (iv) and Corollary 3.2, (5) follows from (3) and (4).

We now show that the map from C/tC to B/tB is one-to-one. Suppose not. Let x; denote the
image of X; in B/tB for 1 <i < n. Note that, by (4), x; is a non-zero element of B/tB. As the map
from C/tC to B/tB is not one-to-one, x; is algebraic over k[x1,...,Xj_1,Xjy1,...,Xa](=> B/tB) for
some j. Interchanging the x;’s if necessary, we assume that x, is algebraic over k[x1,...,x;—1]. By
Lemma 3.4, if B,_1 =BNK[Xy,..., X;—1], then B,_1/tB,_1 — B/tB and

B/tB < (B/tB) ®p, 1/tBy; Fn—1 = Kn_1[Y1(= Kn—1'"),

where F,_1 is the quotient field of Bj_1/tBn—1, Kn—1 is a finite algebraic field extension of F;_q
and Y is transcendental over K,_q. Since R[X1i,..., X;] € B, we have R[X1,...,Xn—1] € Bp—_1, SO
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that xq,x2,...,X;,—1 are non-zero elements of B,_1/tBy,_1(— B/tB). Since by our assumption x, is
algebraic over k[x1,...,X;—1](= Bp—1/tBn—1), we have x, € K,_1, and hence a unit in K,_1 as x is
a non-zero element of B/tB — Ky_1[Y]. Therefore A/tA = (B/tB)x,..x,_,x, is contained in K;_1[Y].

Since Fy_1 is the quotient field of B,_1/tBy_1, (B/tB)®p, ,/tB,_; Fn—1(= Kn_1[Y]) is a localisation
of B/tB. Thus B/tB, A/tA and K,_1[Y] have the same quotient field, say E, and

B/tB <> AJtA <> Kn_1[Y] = E.

Since F is k-flat, we have the following inclusions

A/tAQ F — Kn_1[Y]® F— EQ®F.

Since A/tA ® F is an integral domain, and E is a localisation of A/tA, we have E ® F is an integral
domain. Thus Kn_1[Y] ®k F(= (Ka—1 ® F)1) is an integral domain and hence the units of A/tA ®
F are contained in K,_1 ® F. It then follows from the hypothesis (iv) that tr.degr Kn_1 ®x F > n.
But tr.degp K1 ® F = tr.deg, K,_1 = tr.deg, F,_1 and tr.deg, F,_1 =n — 1 by Lemma 3.4. This is
a contradiction. Thus the map C/tC — B/tB is one-to-one. Hence, as C[1/t] = B[1/t], it follows that
B = C. Therefore, by (3), A=R[X1,... Xn. X1~ %, ... X" '1. O

As a consequence of Theorem 3.5 and Proposition 2.7, we deduce Theorem C.
Theorem 3.6. Let R be a Krull domain with quotient field K and A be a faithfully flat R-algebra such that

(i) The generic fibre A ®g K is a Laurent polynomial algebra in n variables over K.

(ii) For each height one prime ideal P in R, there exists a field extension k(P)" of k(P) such that A ®g
k(P) ®kpy k(P)" is an integral domain and contains a Laurent polynomial algebra in n variables
over k(P)'.

Then A is a locally Laurent polynomial algebra in n variables over R.

Proof. Let A denote the set of all height one prime ideals of R. Since R is a Krull domain, for every
P € A, Rp is a DVR. Thus, by Theorem 3.5, Ap is a Laurent polynomial algebra in n variables over Rp
for every P € A. Now the result follows by Proposition 2.7. O

We conclude this section with some remarks pertaining to Theorems 3.5 and 3.6.

Remark 3.7. (1) Consider a discrete valuation ring R with a regular parameter t and residue field k.
Let A=R[X,Y,Z, X1, Y~1]/(tZ — XY 4+ 1). Then A is generically a Laurent polynomial algebra such
that the closed fibre A/tA(=k[X, Z, X~1]) is an integral domain, k is algebraically closed in A/tA
and k* G (A/tA)*. But A is not a Laurent polynomial algebra. This shows that the condition in (iv) of
Theorem 3.5, on the existence of a Laurent polynomial algebra in n variables in a suitable extension
A/tA ®y F, is necessary. (Also see [5, Remark 3.10].)

(2) An example of Bhatwadekar and Dutta [4, Example 3.9] shows that Theorem 3.5 cannot be
extended to a faithfully flat algebra A over an arbitrary Noetherian local domain R of dimension one
even if the generic as well as the closed fibre is a Laurent polynomial algebra in one variable.

(3) We may contrast Theorem 3.5 with the corresponding polynomial fibration problem over a
DVR. Consider the set up:

R a discrete valuation ring with a regular parameter t and B an integral domain containing R such
that

(i) The generic fibre B[1/t] is a polynomial algebra in n variables over R[1/t].

(ii) The closed fibre B/tB is a polynomial algebra in n variables over R/tR.

Under the above hypotheses, when n =1, B is a polynomial algebra in one variables over R and
when n =2, a theorem of Sathaye shows that B is a polynomial algebra in two variables if R contains
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the field of rationals @ (see [10, Theorem 1] and [1, Corollary 3.2]). Moreover, if ch.(R/tR) > 0 and
n =2, Asanuma has given an example to show that B need not be a polynomial algebra (see [1,
Theorem 5.1]). However, for n > 2, it is not known whether B is a polynomial algebra even in the
case R2 Q.

(4) It is not known whether a polynomial analogue of Theorem 3.6 is true for n = 2. For instance,
even when R is a polynomial algebra in two variables over the field of complex numbers and A is a
finitely generated faithfully flat R-algebra all of whose fibres are polynomial algebras in 2 variables, it
is not known whether A is necessarily a polynomial algebra.

4. Laurent polynomial fibration over a general Noetherian domain

Let R be a Noetherian domain and A be a faithfully flat R-algebra such that all the fibre rings of
A are Laurent polynomial algebras in n variables. If R is normal, we have seen (Theorem 3.6) that
A is a locally Laurent polynomial algebra. However if R is not normal, then A need not be a locally
Laurent polynomial algebra (Remark 3.7 (2)). In this section, we shall prove (Proposition 4.3) that at
least A is finitely generated over R and that there exists a finite birational extension R’ of R such
that A ®g R’ is a locally Laurent polynomial algebra in n variables over R’. We shall also prove a
necessary and sufficient condition for A to be a locally Laurent polynomial algebra in n variables
over R (Theorem 4.4).

The following criterion for a module M to be flat over a Noetherian ring R is known but for the
lack of a proper reference, we give a proof below.

Lemma 4.1. Let R be a Noetherian ring and M be an R-module. Then M is flat over R if and only if
Tor$ (M, R/P) =0 for every prime ideal P of R.

Proof. Suppose that Torf(M, R/P) =0 for every prime ideal P of R. To show that M is flat over R, it
is enough to show that Torf(M, R/I) =0 for every ideal I of R (see [8, Theorem 7.8, p. 51]).

Since R is Noetherian, for every ideal I, there exist ideals I = Jo C J1 C--- C Jn = R such that R/I
has a filtration of submodules of the form

0=Jo/ICJ1i/IC--CJna1/IC Ju/I=R/I
satisfying Ji+1/Ji = R/P; for some prime ideal P; of R (see [8, Theorem 6.4, p. 39]). We prove that
Tor{2 (M, R/I) =0 by induction on n, the length of the filtration of R/I.

If n=1, then I is a prime ideal of R and by the given hypothesis, Torf (M,R/I)=0.
Suppose that n > 1. By applying Torf(M , —) to the short exact sequence

0— J1/I—>R/I—-R/]J1—0

we get the exact sequence

TorR(M, J1/1) — TorR(M, R/I) — TorR (M, R/ J1).

Now J1/I = R/Py for a prime ideal Pg and hence Torf(M, J1/D) =0. Since R/J; has a filtration of
length n — 1, Torf (M, R/ J1) =0 by induction hypothesis. Thus Torf (M,R/I)=0. O

We now prove an elementary result.

Lemma 4.2. Let R be a Noetherian domain and let R’ be an integral extension of R. Let D and A be flat
R-algebras such that D CAC A®g R’ and AQgr R" =D ®g R'. Then A= D.
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Proof. Let M = A/D. Since A®g R’ =D ®pg R/, it follows that M ®g R’ = 0. We will show that M is a
flat R-module. It will then follow that M < M ®g R’ =0, i.e., A=D.

By Lemma 4.1, it is enough to show that Tor§ (M, R/P) =0 for every prime ideal P of R. Fix a
prime ideal P of R. Since A is a flat R-module, we have the following exact sequence of R-modules

0— Tor®(M,R/P) - D ® R/P — A®g R/P — M ®g R/P — 0.

Since R’ is integral over R, there exists a prime ideal P’ of R’ lying over P. Since A and D are flat
R-modules, we have the following injective maps

D®gR/P<>D®gR/P' and A®gR/P— A®gR'/P'.

Since the map D ®g R/P < D ®g R’/P’ is a composite of the maps

D®RR/P—>A®rR/P and AQrR/P—> AQrR' /P =D®gR'/P/,
it follows that the map D ®g R/P — A ®g R/P is injective and hence Torﬁ2 (M,R/P)=0. O
We now prove a result for a Laurent polynomial fibration over a Noetherian domain.

Proposition 4.3. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra
such that

(i) The generic fibre A ®g K is a Laurent polynomial algebra in n variables over K.

(ii) For each height one prime ideal P of R, A ®g k(P) is geometrically integral over k(P) and there exists a
field extension k(P)’ of k(P) such that A ®g k(P) ®py k(P)’ contains a Laurent polynomial algebra in n
variables over k(P)'.

Then the following statements hold:

(I) All the fibre rings of A are Laurent polynomial forms in n variables.
(II) There exists a finite birational extension R’ of R such that A ®g R’ is a locally Laurent polynomial algebra
in n variables over R’.
(IlT) A is finitely generated over R.

Proof. (I) This proof is essentially the same as in [5, Theorem 3.13].

Fix any prime ideal P (need not be of height one) in R. Note that A ®g k(P) = Ap ®g, k(P). So
replacing R by Rp we can assume that R is a local Noetherian domain with maximal ideal P. We
prove the result by induction on the height of P.

Suppose that dim R = 1. From the Krull-Akizuki theorem [9, Theorem 33.2] and the fact that R is
local, it follows that the normalisation R of R is a semilocal PID and that k(P) is a ﬁmte algebraic
extension of k(P) for every maximal ideal P of R. Fix a maximal ideal P of R, let V = p and let
t € V be such that tV = PV. Since R and V are birational, A®g V is generically a Laurent polynomial
algebra in n variables over V. Also note that, by hypothesis (ii),

(A®R V)/t(A®R V) = (A ®g R) ®5 k(P) = (A ®r k(P)) ®(p) k(P)

satisfies the condition (iv) of Theorem 3.5. Hence A®g V is a Laurent polynomial in n variables over V
by Theorem 3.5; in particular, (A ®g k(P)) Qkp) k(P)(= A®g (V/tV)) is a Laurent polynomial algebra
in n variables over k(P). Thus A ®g k(P) is a Laurent polynomial form in n variables over k(P).

Now suppose that dimR > 2. Then by the induction hypothesis, the fibre ring A ®g k(Q) is a
Laurent polynomial form in n variables for every prime ideal Q ;Ct P. Let R be the completion of R
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with | respect to the max1ma1 ideal P and let P denote the maximal ideal of ﬁ Then dlmﬁ =dimR
and R/P R/P. Let Po be a minimal prime ideal of R such that dimR = dim R/Po Since R is _R-flat,
by the going down theorem, for any prlme ideal Q of R, ht(Q N R) th Hence since ht Po =0
and R is an integral domain, we have Po N R = (0). Set A = A ®R R/Po Since Po N R = (0), A is
generlcally a Laurent polynomlal algebra i inn variables over R/Po Let Q be a non-zero prlme ideal of
R/P(] properly contained in P and Q= Q AR. Since A ®r k(Q) = (A®r k(Q)) () k(Q) we have
A ®% k(Q) is a Laurent polynomlal form in n variables over k(Q) Now since A ®g k(P) = A ®% k(P)
we can replace R by R/Po and A by A and assume that R is a complete Noetherian local domain. Let
R denote the normalisation of R. Then R is a finite R-module (see [9, Theorem 32.1]) and hence a
Noetherian normal local domain and for every non-zero non-maximal ideal Q of R, A ®z R ®z k(Q)
is a Laurent polynomial form in n variables. Hence, by Theorem 3.6, A ®g R is a Laurent polynomial
algebra in n variables over R. This proves that the closed fibre of A is a Laurent polynomial form in n
variables.

(II) Let R be the normalisation of R. Then R is a Krull domain (see [9, Theorem 33.10]). By (1),
all the codimension-one fibres of A ®g R are Laurent polynomial forms in n variables over R.
Hence, by Theorems 3.6 and 2.3, there exist n finitely generated rank one projective modules L;,
1<i<n, of R such that A ®g R is isomorphic to an R-algebra of the form (SymR(Q))[1—1]
where Q =Ly @ --- ® Ly and [ is an invertible ideal of Symy(Q) generated by the image of
L1 ®---® Ly, Since L; is a finitely generated projective R-module, there exists a finite extension
R’ of R contained in R such that, for each i, 1 <i<n, there exist finitely generated rank one pro-
jective R’-modules L;’ satisfying L; = L’ ® R. Then (Sympg (Q")[I'"']1 S (Symz(Q)I[I"'1=A®r R,
where Q' =L ® ---® L,’ and I’ is an invertible ideal of Symg (Q’) generated by the image of
L7 ®---®Ly. Since (SymR/(Q/))[l"l](g A ®g R) is a finitely generated R’-algebra, by enlarging R’
if necessary, we can ensure that (Symg (Q')[I'"'1 CA®g R € A® R(= (Symf(.(Q))[I‘l]). Since
R’ is a finite module over the Noetherian ring R, R’ is a Noetherian ring. Hence, by Lemma 4.2,
Symg QNI '1=A®r R

(1) Since A is flat over R, we have R < A <> A ®g R’. Since A ®g R’ is a locally Laurent polyno-
mial algebra in n variables over R’, by Theorem 2.3, A ®g R’ is a finitely generated R’-algebra. Now
since R’ is a finite R-module, we have A®g R’ is a finite A-module and A ®g R’ is a finitely generated
R-algebra. Thus, A is finitely generated over R. 0O

We now prove Theorem D.

Theorem 4.4. Let R be a Noetherian domain with quotient field K and let A be a faithfully flat R-algebra such
that

(i) A®r K =K[X1, X171, ..., Xn, Xa~ 11, for some X1, ..., X, transcendental over R.

(ii) For each height one prime ideal P of R, A ®g k(P) is geometrically integral over k(P) and there exists a
field extension k(P)’ of k(P) such that A ®g k(P) Qkpy k(P) contains a Laurent polynomial algebra in n
variables over k(P)'.

(iii) L; := AN KX is a finitely generated projective R-module of rank one, 1 <i < n.

Then A is a locally Laurent polynomial algebra in n variables over R.

Proof. We may assume that R is local. By Proposition 4.3, we can find a finite birational extension
R’ of R such that A ®g R’ is a locally Laurent polynomial algebra in n variables over R’. Since R is
local and R’ is a finite birational extension of R, R’ is a semilocal domain and hence PicR’ = (0).
Therefore, by Theorem 2.3, A ®g R’ = R'[Yq, Y, 1, ,Ya, Yn‘1] for some elements Y1, ..., Y, which
are transcendental over R’ and are chosen such that K Xi=KY; for 1 <i<n (cf. Lemma 2 1).

Fix i, 1 <i < n. Since R is local, by hypothesis (iii), L = A N KX; = Rf; for some f; € A(—
R[Y1,Y17Y, ..., Yn, Yoo ']). Since fi € KYi(= KX;), it follows that there exists a; € R’ such that
fi=aY;.
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We show that a; is a unit in R’. Let J be the conductor ideal of R’ in R. It then follows that
JYi € ANKX; = Rfi = Ra;Y;. Therefore, Ja;~' € R C R’. It follows that Ja;~! is an ideal of R’ and
hence Ja;~! € J. Therefore J =a;7. Since J is a non-zero finitely generated ideal of the integral
domain R/, it follows from NAK Lemma [8, Theorem 2.2, p. 8] that g; is a unit in R’.

Therefore A®g R’ =R'[f1, fi~", ..., fa, fn~']. Since A ®g R’ is integral over A, fi € A and fi~! e
A®g R/, we have fi~! € A. Thus

R[fi.firls oo fa fa | SACARR =R[f1. fi 'sooos fus f -

Now by Lemma 4.2, A=R[f1, fi_',..., fa, fa '], a Laurent polynomial algebra in n variables. O

The following lemma shows that an algebra which is stably Laurent polynomial is necessarily a
Laurent polynomial algebra.

Lemma 4.5. Let R be an integral domain and B be a Laurent polynomial algebra in n variables over R. Suppose
that A is an R-algebra such that

(i) either A[W1, ..., W] = B[Z1,..., Z;] as R-algebras,
(i) or AW, W1~ 1, ..., We, W, 1= B[Z1, Z17 1, ..., Zt, Z:— "] as R-algebras,

for some Wi, Z;, 1 <i <t, transcendental over A and B respectively. Then A = B as R-algebras.

Proof. Suppose that (i) holds. Let B = R[X1, X1~',..., Xp, X»~']. We may assume that A[W1,...,
W] = B[Z1,...,Z:]. Since R is an integral domain, A is an integral domain and as Xi,..., X, are
units in A[Wq,..., W], we see that X1, X1~ !,..., Xn, Xo~! € A. Therefore B C A and hence A = B
because B is algebraically closed in B[Z1, ..., Z;] and tr.degg A = tr.degy B.

Now suppose that (ii) holds. It is enough to consider the case when t =1 and show that if
AW, W~1] = B[Z,Z71] as R-algebras, then A = B. Let B = R[X1, X1~ !,..., Xn, Xo"!]. Since Z,
X1,..., Xn are units in A[W,W~1], we have Z = AW?® and X; = u;W% for some A, u; € A* and
¢,a; € Z, 1 <i<n. Again, since W is a unit in B[Z, Z~!], we have W = vX;b1 ... X,bnZ", for some
v € R* and r, b; € Z and hence

W= V(Ml Wﬂ1)b1 . (anan)bn ()\W[)r _ VMlbl . Mnbn)\rwalbl-&-----&-anbn—kir_

Since v,ulbl-nunb")\r € A, we have ) ;ab; + ¢r = 1. Since Z is PID, the unimodular row
(b1 by --- by 1) can be completed to an invertible (n + 1) x (n + 1) matrix, say M = (b;j), such
that the last row of M is (by by --- by r). Set Y; := Xqbit ... X,bin Zbintd for 1 <i < n+ 1. Then
AW, W =B[Z, Z711=R[Y1, Y1, ..., Yne1, Va1 T 1 =R[Y1, Y170, ., Yy, Yo L, W, W1, since
W =Y, and v € R*. Hence A= R[Yy,Y1™',...,Yn, Yo land so AZB. O

Remark 4.6. Let R be a Noetherian domain and B be a faithfully flat finitely generated R-algebra such
that all the fibre rings B ®g k(P) are polynomial algebras in n variables (over k(P)). From a result of
Asanuma [1, Theorem 3.4], it follows that if the module of 1-differential forms §2p/ is free, then B is
a stably polynomial algebra over R.

Bhatwadekar and Dutta have constructed an explicit example [4, Example 3.9] of a finitely gener-
ated faithfully flat algebra A over a one dimensional Noetherian (seminormal) local domain R such
that each fibre ring A ®g k(P) is a Laurent polynomial ring in one variable over k(P), £24,r is a free
A-module of rank 1 but A is not a Laurent polynomial algebra over R. In view of Lemma 4.5, A is
not a stably Laurent polynomial algebra. Thus, a Laurent polynomial analogue of Asanuma’s structure
theorem (see [1, Theorem 3.4]) does not seem to exist.
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Appendix A. Laurent polynomial forms in n variables

Let k be a field and A be a k-algebra. Recall that A is said to be a Laurent polynomial form in n
variables if there exists an algebraic field extension F of k such that A ® F is a Laurent polynomial
algebra in n variables over F, if F can be chosen to be separably algebraic, then the Laurent polyno-
mial form A will be called separably algebraic. It was observed in [5, Proposition 2.3] that a separable
Laurent polynomial form in one variable is trivial if and only if k* ;Ct A*. We extend the result to n
variables; the proof is essentially the same as in the case n =1.

Recall that a field extension F over k (not necessarily algebraic) is said to be separably generated
if there exists a transcendence basis B of F such that F is separably algebraic over k(5).

Proposition A.1. Let k be a field, A a k-algebra and F a separably generated field extension of k such that
A ®y F is a Laurent polynomial algebra in n variables over F. Suppose that A contains a Laurent polynomial
algebra in n variables over k. Then A is a Laurent polynomial algebra in n variables over k.

Proof. Let A®; F = F[Uy,Uq~ ', ..., Up, Uy~ 1]. Since A < A ®; F, we regard A as a k-subalgebra of
A ®y F. It is easy to see that there exists a finitely generated separable extension Fi of k such that
A Qi F1 = F1[Uy,U17Y, ..., Up, Uy~ ']. Thus replacing F by Fi, we can assume that F is a finitely
generated separable extension of k.

We first consider the case when F is a finite separable algebraic extension of k. Replacing F by
its normal extension, we can assume that F is a Galois extension of k with Galois group G. Now any
o € G can be extended to an A-automorphism of A ® F, by defining 0 (a ® n) =a ® o (). Since F
over k is a Galois extension, the bilinear map

F x F—k, sending (x,y)— Tr(xy)
is non-degenerate and hence there exist ¢; € F such that Tr(c;U;) # 0, 1 <i < n. Replacing U; by
c;U; we can assume that Tr(U;) # 0. Let W; = Tr(U;). Then W; € A. We show that A =k[W, W;~1,
L W Wy

Let k[X1, X1~ Y, ..., Xn, Xn~ 11 € A, where X1, Xo,..., Xn are transcendental over k. Then, there
exist integers a;j, 1 <1i, j, <n such that

Xi = iU U2 - Uy,

for some u; € F*. Let M = (q;;) and M = Adj(M) = (bjj) for some bjj € Z. Since X1, X3, ..., X, are
transcendental over k, det M # 0. Set

Y= X P Xpbe . xpbin e A
for 1 <i < n. Since MM = (det M)I,,, where I, is the identity matrix, we have
Yi = UM,
1 <i<n, for some A; € F*. Fix i, 1 <i < n. Replacing Y; by Y,-_1, we may assume that detM > 0.

Since for any o € G, o (Y;) = Y;, we have (o (U;)/U)%tM = ();/0 (1)) € F*. Therefore, o (U;) = vy U;
for some v, € F*. Hence W; = Tr(U;) = d;U; for some d; € F*. Thus F[W1, W1, ..., W,, W, 1] =
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F[Uq,Uq7Y, ..., Up, Uy~ 1. Since A ®y F is integral over A, and for 1 <i<n, W;"! € A®; F, we
have W;~! € A. Hence k[W1, W;~1, ..., Wy, W,~1]1 C A. Since F is faithfully flat over k, we have
kIWq, Wi—1, ..., Wy, W,~1] = A. Now the argument in [5, Proposition 2.3] shows that if F is an
arbitrary separable extension over k then also A is a Laurent polynomial algebra. O

The following example shows that a purely inseparable Laurent polynomial form A in one variable
over a field k which contains non-trivial units (i.e. k* ; A*) need not be trivial.

Example A.2. Let k be a non-perfect field of characteristic p. Let 8 € k be such that g8 ¢ kP := {aP |
a € k}. Let L =k(a) be a purely inseparable extension of k such that o = 8. Now let B =k[X, Y]/
(X —YP — BXP). It is known that B is a non-trivial inseparable A'-form. Now

L[X,Y] _LX = (Y +aX)P, Y +aX]

(X —YP —BXP) X — (Y +aX)P) =LY + aX].

B®y L=

Let A=B[X"!]. Since (Y +aX)? =X in A® L, we have AQ, L= L[Y +aX, (Y +aX)"'], a Laurent
polynomial algebra in one variable. Also k[X, X~1] C A. But A is not a Laurent polynomial algebra.
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