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In this paper, we develop several combinatorial aspects of the theory ofad-nilpotent
ideals. Letb be a fixed Borel subalgebra of a complex simple Lie algebrag. Following
[8], we say that an ideal ofb is ad-nilpotent, if it is contained in[b,b]. Let Ad or Ad(g)

denote the set of allad-nilpotent ideals ofb. Any c ∈Ad is completely determined by th
corresponding set of roots. More precisely, lett be a Cartan subalgebra ofg lying in b and
let ∆ be the root system of the pair(g, t). Choose∆+, the system of positive roots, suc
that the roots ofb are positive. Thenc =⊕γ∈I gγ , whereI is a suitable subset of∆+
andgγ is the root space forγ ∈ ∆+. In particular, this means thatAd is finite. Abusing
language, we shall say that suchI ⊂∆+ is anad-nilpotent ideal, too.

In [8], Cellini and Papi proved that there is a bijection between thead-nilpotentb-ideals
and the elements of the affine Weyl group̂W satisfying certain property (see (1.2) below
In our paper, these elements are said to beadmissible. Using admissible elements, Celli
and Papi established a bijection betweenAd and the points of the coroot lattice lying
a certain rkg-dimensional simplex̃D with rational vertices [9]. As a consequence, th
obtained a conceptual proof for the explicit formula giving the number ofad-nilpotent
ideals in all simple Lie algebras.

In Section 2, we give a characterization of the generators ofad-nilpotent ideals in terms
of admissible elements (Theorem 2.2). It is then shown that an idealI hask generators
if and only if the corresponding lattice point lies on the face ofD̃ of codimensionk
(Theorem 2.9). It is curious that̃D has exactly one integral vertex. We deduce this fr
the fact that there is only onead-nilpotent ideal having rkg generators.

In Section 3, we consider the ‘simple root’ statistic onAd(g), which assigns to an
ideal the number of simple roots in it. WriteAd(g)i for the set of ideals containing exact

✩ This research was supported in part by the Alexander von Humboldt-Stiftung and RFBI Grant No.
00756.

E-mail address:panyush@mccme.ru.
0021-8693/$ – see front matter 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2003.09.007

https://core.ac.uk/display/82286212?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


D.I. Panyushev / Journal of Algebra 274 (2004) 822–846 823

em for
ic has
s
some

n
the

n
n the
g
nt can
eristic
t the
rk of
proof

k
ous

tion
fact
ion of
h
s
erties is
also

.

e
least,
of this

s [19]

ayana
i simple roots. We give recurrent formulas for these numbers and then compute th
Ap and the exceptional Lie algebras. It is also shown that the simple root statist
the same distribution forBp andCp . In case ofCp andDp , we give conjectural value
for #Ad(g)i , which are, no doubt, true. As a consequence of this theory, we observe
similarities between thead-nilpotent ideals andclusters(see [11] for the latter). It is show
that the simple root statistic onAd(g) and a certain statistic on the set of clusters have
same distribution (Theorem 3.11).

To obtain a closed formula for #Ad(g)0 (Proposition 3.10), we exploit a bijectio
between thead-nilpotent ideals and the regions of the Catalan arrangement lying i
dominant chamber, see [18]. We show thatI ∈ Ad(g)0 if and only if the correspondin
region is bounded. In turn, the number of bounded regions of any arrangeme
be counted using a powerful result of Zaslavsky, once one knows the charact
polynomial, see Proposition 3.8 for details. Having written this part, I learned tha
formula for #Ad(g)0 had already been obtained, in the same way, in a recent wo
Athanasiadis [4]. The main result of Athanasiadis’ preprint is a beautiful case-free
of the formula for the characteristic polynomial of the Catalan arrangement.

In the last three sections, we consider the statistic that assigns to an idealI ∈Ad(g) the
number of its generators. In case ofg= sln, thead-nilpotent ideals are identified with Dyc
path of semilengthn and, therefore, the generating function for this statistic is the fam
Narayana polynomial(of degreen−1). For this reason, we say that the generating func
for this statistic for arbitraryg is a generalized Narayana polynomial. Motivated by the
that the Narayana polynomial is palindromic, we were searching for a materializat
this property, i.e., for an involutory mapping (duality) onAd(sln) that takes the ideals wit
k generators to the ideals withn− 1− k generators. Forsln, such a materialization doe
exists, and it has a number of nice properties, see Section 4. The nicety of these prop
that their formulation admits immediate generalization to all simple Lie algebras. We
show that the number of self-dual ideals insl2m+1 equalsCm, themth Catalan number
In Section 5, the results concerning duality are extended to seriesB andC. This clearly
implies that the generalized Narayana polynomials forB andC (in fact, they are equal) ar
palindromic. We conjecture that such a duality exists for any simple Lie algebra. At
the generalized Narayana polynomials are always palindromic. General properties
conjectural duality are discussed in Section 6.

After this paper has been written, there appeared preprints of E. Sommer
and C. Athanasiadis [5], which contain some further interesting results onad-nilpotent
ideals and admissible elements. It is worth mentioning that the generalized Nar
polynomials appear in [6, 5.2] in connection with the study of the dual braid monoid.

1. Preliminaries on ad-nilpotent ideals

1.1. Main notation

∆ is the root system of(g, t) andW is the usual Weyl group. Forα ∈ ∆, gα is the
corresponding root space ing.
∆+ is the set of positive roots andρ = 1 ∑

α∈∆+ α.
2
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, so

tively
Π = {α1, . . . , αp} is the set of simple roots in∆+.
C is the fundamental Weyl chamber.
We setV := tQ =⊕p

i=1 Qαi and denote by( , ) aW -invariant inner product onV . As
usual,µ∨ = 2µ/(µ,µ) is the coroot forµ ∈∆.
Q=⊕p

i=1 Zαi ⊂ V is the root lattice andQ∨ =⊕p

i=1 Zα∨i is the coroot lattice.
Q+ = {∑p

i=1niαi | ni ∈N} ⊂Q.
Letting V̂ = V ⊕ Qδ ⊕ Qλ, we extend the inner product( , ) on V̂ so that(δ,V ) =

(λ,V )= (δ, δ)= (λ,λ)= 0 and(δ, λ)= 1.
∆̂= {∆+ kδ | k ∈ Z} is the set of affine real roots and̂W is the affine Weyl group.
Then∆̂+ =∆+ ∪ {∆+ kδ | k � 1} is the set of positive affine roots and̂Π =Π ∪ {α0}

is the corresponding set of affine simple roots. Hereα0= δ− θ , whereθ is the highest roo
in ∆+. The inner product( , ) on V̂ is Ŵ -invariant.

For αi (0 � i � p), we let si denote the corresponding simple reflection in̂W . If the
index ofα ∈ Π̂ is not specified, then we merely writesα . The length function on̂W with
respect tos0, s1, . . . , sp is denoted byl. For anyw ∈ Ŵ , we set

N̂(w)= {α ∈ ∆̂+ ∣∣w(α) ∈−∆̂+}.
Our convention concerninĝN(w) is the same as in [12,15], but opposite to that in [8,9]
that ourN̂(w) is N̂(w−1) in the sense of Cellini–Papi.

1.2. ad-nilpotent ideals

Throughout the paper,b is the Borel subalgebra ofg corresponding to∆+ andu =
[b,b]. The expression “ad-nilpotent ideal” or just “ideal” always refers to ab-ideal lying
in u. Let c⊂ b be anad-nilpotent ideal. Thenc=⊕α∈Igα for a subsetI ⊂∆+, which is
called theset of roots ofc. As our exposition will be mostly combinatorial, anad-nilpotent
ideal will be identified with the respective set of roots. That is,I is said to be anad-nilpotent
ideal, too. Whenever we want to explicitly indicate the context, we say thatc is ageometric
ad-nilpotent ideal, whileI is a combinatorialad-nilpotent ideal. Accordingly, being in
combinatorial (respectively geometric) context, we speak about cardinality (respec
dimension) of an ideal. In the combinatorial context, the definition of anad-nilpotent ideal
can be stated as follows.
I ⊂∆+ is anad-nilpotent ideal, if the following condition is satisfied:

if γ ∈ I, ν ∈∆+, andγ + ν ∈∆, then γ + ν ∈ I.

We consider∆+ as poset with respect to the standard partial order ‘�’, i.e., µ � ν if and
only if ν − µ ∈Q+. Therefore, a combinatorialad-nilpotent ideal is nothing but adual
order idealof the poset(∆,�). An elementw ∈ Ŵ is said to beadmissible, if it has two
properties:

(a) w(α) is positive for anyα ∈Π ;
(b) if w−1(α) is negative for anα ∈ Π̂ , thenw−1(α)= γ − δ for someγ ∈∆+.



D.I. Panyushev / Journal of Algebra 274 (2004) 822–846 825

lements

to-

hat

e

ls

ideal

nd
e

a

By [8, Section 2], there is a one-to-one correspondence between the admissible e
of Ŵ and thead-nilpotentb-ideals. This correspondence is obtained as follows:

• Given c ∈ Ad, consider the members of the descending central seriesc = c1, ck =
[ck−1, c] (k � 2) and the corresponding sets of rootsIk . Clearly,Ik ⊃ Ik+1 andIm =∅

for m� 0. SetNk = {kδ− γ | γ ∈ Ik}. ThenΦ :=⋃k�1Nk is a closed subset of̂∆+
whose complement is closed as well, and therefore there is a uniquew ∈ Ŵ such that
Φ = N̂(w). Thisw is the required admissible element.
• Conversely, ifw ∈ Ŵ is admissible, then̂N(w) =⋃k�1Nk , whereNk = {kδ − γ |
γ ∈ Ik} and Ik ⊂ ∆+. Then I1 is the set of roots of anad-nilpotent ideal, sayc.
Furthermore, the definition of an admissible element also implies thatI1 ⊃ I2 ⊃ · · ·
andIk is the set of roots ofck .

If w ∈ Ŵ is admissible, thenIw (respectivelycw) stands for the corresponding combina
rial (respectively geometric)ad-nilpotent ideal. That is,

Iw =
{
γ ∈∆+ | δ− γ ∈ N̂(w)} and cw =

⊕
α∈Iw

gα.

Conversely, givenI ∈Ad, we writew〈I 〉 for the respective admissible element. Notice t

dimcw = #(Iw) and l(w)=
∑
k�1

dim(cw)
k.

Throughout the paper,I or Iw stands for a combinatorialad-nilpotent ideal. Whenever w
wish to stress thatAd depends onb and/org, we writeAd(b) or Ad(g) or evenAd(b,g).

2. The generators of ad-nilpotent ideals

Let I be anad-nilpotent ideal. We say thatγ ∈ I is ageneratorof I , if γ −α /∈ I for all
α ∈∆+. Obviously, this is equivalent to the fact thatI \ {γ } is still anad-nilpotent ideal.
Conversely, if! is a maximal element of∆+ \ I (i.e., (! +∆+)∩∆⊂ I ), thenI ∪ {!} is
anad-nilpotent ideal. These two procedures show that the following is true.

Proposition 2.1. SupposeI ⊂ J are twoad-nilpotent ideals. Then there is a chain of idea
I = I0⊂ I1⊂ · · · ⊂ Im = J such that#(Ii+1)= #(Ii)+ 1. In other words,Ad is a ranked
poset, with cardinality(dimension) of an ideal as the rank function.

In the geometric setting, the set of generators has the following description. For an
c=⊕γ∈I gγ ⊂ b, there is a uniquet-stable spacẽc⊂ c such thatc= [b, c] ⊕ c̃. Thenγ is
a generator ofI if and only if it is a root ofc̃. Write Γ (I) for the set of generators ofI . It
is clear that a subsetΓ = {γ1, . . . , γl} ⊂∆+ is the set of generators for some ideal if a
only if γi − γj /∈Q+ for all i, j . This means thatΓ ⊂∆+ is the set of generators for som
ad-nilpotent ideal if and only if it is anantichainof (∆+,�). This is a manifestation of
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general fact that, for any posetP , there is a canonical bijection between the antichains
the dual order ideals ofP , see, e.g., [20, 3.1].

In what follows, we also writeI (Γ ) (respectivelyc(Γ )) for the combinatorial (respec
tively geometric)ad-nilpotent ideal with the set of generatorsΓ . For instance, the uniqu
maximal element ofAd has the following presentation:

Geometric: c(Π)= [b,b] = u;
Combinatorial: I (Π)=∆+.

It is helpful to have a description of the generators ofI in terms of the respectiv
admissible element. As usual, we writeγ > 0 (respectivelyγ < 0), if γ ∈ ∆̂+ (respectively
γ ∈ −∆̂+).

Theorem 2.2. Supposeγ ∈ Iw . Thenγ is a generator ofIw if and only ifw(δ− γ ) ∈ −Π̂ .

Proof. ⇐. Supposeγ is not a generator ofIw, i.e.,γ = γ̄ + ν, whereγ̄ ∈ Iw andν ∈∆+.
Thenw(δ − γ )=w(δ − γ̄ )−w(ν) is the sum of twonegativeroots.
⇒. Setw(δ − γ ) = −µ < 0. If µ is not simple, thenµ = µ1 + µ2, where both

summands are positive. We havew−1(µ1) + w−1(µ2) = −(δ − γ ) < 0. Assume for
definiteness thatw−1(µ2) < 0. Sincew−1(−µ2) > 0 andw(w−1(−µ2)) < 0, we have
w−1(−µ2) ∈ N̂(w), i.e.,w−1(µ2)=−kδ+ ν, wherek � 1 andν ∈ Iw ⊂∆+.

(a) k = 1. It follows thatw−1(µ1) = γ − ν ∈ ∆ andw(ν − γ ) = −µ1 < 0. Sincew is
admissible,ν − γ must be negative, i.e.,γ − ν ∈ ∆+. This means thatγ is not a
generator ofIw .

(b) k � 2. Let us show that there is another decomposition ofµ as a sum of two positive
roots such that one hask = 1 for one of the summands. We argue by induction onk.

Sincew(kδ − ν) < 0, we haveν ∈ (Iw)k . Therefore there is a decompositionkδ − ν =
k′δ − ν′ + k′′δ − ν′′, wherek′, k′′ > 0 and ν′, ν′′ ∈ Iw . Henceµ2 = µ′2 + µ′′2, where
w−1(µ′2) = ν′ − k′δ andw−1(µ′′2) = ν′′ − k′′δ. The following lemma shows that, in th
situation,µ′2+µ1 ∈∆+ orµ′′2+µ1 ∈∆+. If the latter holds, thenµ= µ′2+ (µ′′2+µ1) is
a decomposition such thatw−1(µ′2)= ν′ − k′δ, andk′ < k. This completes the inductio
step. ✷
Lemma 2.3. Supposeµ1,µ2,µ3 ∈ ∆̂+ andµ := µ1+µ2+µ3 ∈ ∆̂+. Thenµ1+µ2 ∈ ∆̂+
or µ1+µ3 ∈ ∆̂+.

Proof. If (µ2 + µ3,µ1) < 0, then(µ2,µ1) < 0 or (µ3,µ1) < 0, and we are done. I
(µ2+µ3,µ1)� 0, then(µ2+µ3,µ) > 0. Henceµ−µ2 ∈ ∆̂ orµ−µ3 ∈ ∆̂. ✷
Corollary 2.4. The number of generators ofIw is equal to the number of rootsα ∈ Π̂ such
thatw−1(α) < 0.
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Proof. By the definition of an admissible element, ifw−1(α) < 0, thenw−1(α) = γ − δ
for someγ ∈∆+. Hencew(δ− γ ) ∈−Π̂ andγ is a generator ofIw . The rest is clear. ✷

Thus, the set of generators ofIw corresponds to a certain subset ofΠ̂ . More precisely,
if w(γ − δ)= α ∈ Π̂ (γ ∈∆+), then we say thatγ is the generator ofIw corresponding
to α.

Recall that theclass of nilpotenceof I ∈Ad, denoted cl(I), is the maximalk such that
Ik �= ∅. Making use of the admissible elementw defining thead-nilpotent idealIw, one
can readily determine cl(Iw).

Proposition 2.5. cl(Iw)= k if and only ifw(α0)+ kδ ∈∆+ ∪ (δ−∆+).

Proof. Since each(Iw)m is an ad-nilpotent ideal, we have(Iw)m �= ∅ if and only if
θ ∈ (Iw)m. Therefore, the very definition of the admissible element corresponding
ad-nilpotent ideal (see (1.2)) implies that cl(Iw) = k if and only if w(kδ − θ) < 0 and
w((k + 1)δ − θ) > 0. In other words,w(α0)+ (k − 1)δ < 0 andw(α0)+ kδ > 0. Hence
the conclusion. ✷
Remark. If I is a non-trivial Abelian ideal, then cl(I) = 1 and the proposition asser
thatw(α0) + δ ∈ ∆+ ∪ (δ − ∆+). However, Proposition 2.4 in [15] says that only t
first possibility actually realizes, i.e.,w(α0) + δ ∈ ∆+. But, it can be shown that in cas
k = cl(I) > 1 we do have both possibilities forw(α0)+ kδ.

Example 2.6. Takew= sθ s0 ∈ Ŵ , wheresθ ∈W is the reflection with respect toθ . Then

sθ s0(α)=
{
α + δ, (α, θ) �= 0,
α, (α, θ)= 0, for α ∈Π.

We also have

w−1 :

{
α0 �→ α0+ 2δ,
αi �→ αi if (αi , θ)= 0, i �= 0,
αi �→ αi − δ if (αi , θ) �= 0, i �= 0.

Hencew is admissible. The corresponding combinatorialad-nilpotent ideal isH = {γ ∈
∆+ | (γ, θ) > 0} and the set of generators isΓ (H) = H ∩ Π . The (geometric) idea
c =⊕γ∈H gγ is the standard Heisenberg subalgebra ofg. Obviously, cl(H) = 2, and we
havesθ s0(α0)+ 2δ = δ− θ .

The work of Cellini and Papi [9] establishes a bijection between thead-nilpotent ideals
of b and the points of certain simplex inV lying in Q∨, the coroot lattice. This was use
for giving a uniform proof of the formula for the number ofad-nilpotent ideals. Below, we
describe that bijection in a form adapted to our notation, and show that this can a
used for determining the number of generators of an ideal.
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As is well known,Ŵ is isomorphic to a semi-direct product ofW andQ∨. Given
w ∈ Ŵ , there is a unique decomposition

w = vw·trw , (2.7)

wherevw ∈W andtrw is the translation corresponding torw ∈Q∨. The word “translation”
means the following. The group̂W has two natural actions:

(a) the linear action on̂V = V ⊕Qδ⊕Qλ;
(b) the affine-linear action onV .

For r ∈Q∨, the linear action oftr ∈ Ŵ onV ⊕Qδ is given bytr (x)= x − (x, r)δ (we do
not need the formulas for the whole of̂V ), while the affine-linear action onV is given by
tr ◦y = y+ r. So thattr is a true translation for this action onV . For instance, the formula
of Example 2.6 show thatsθ s0= t−θ∨ .

There is a simple procedure for obtaining the affine-linear action onV from the linear
action onV̂ , which is explained in [9], but we do not need this.

Using the decomposition (2.7), one can define the mappingŴ → Q∨ by w �→
vw(rw)=: dw. One of the main results of [9] is that the set{dw}, wherew ranges over al
admissible elements of̂W , provides a nice parametrization ofad-nilpotent ideals. Namely
set

D̃ = {τ ∈ V | (τ,α)�−1 ∀α ∈Π and(τ, θ)� 2
}
.

It is a simplex inV . The following is Proposition 3 in [9].

Theorem 2.8 (Cellini–Papi).The mappingAd→Q∨, defined byI �→ w〈I 〉 �→ dw〈I 〉 =:
dI , sets up a bijection betweenAd andD̃ ∩Q∨.

Remark. Our D̃ ∩Q∨ is−D in the notation of [9].

Now, we provide a link between the number of generators ofI and the position ofdI
inside ofD̃.

Theorem 2.9. The number of generators ofI equals the codimension(in V ) of the minimal
face ofD̃ containingdI .

Proof. We havew = w〈I 〉 is an admissible element of̂W . Let us realise how the vecto
dI = vw(rw) can be determined by the linear action ofw. If w = vw·trw , thenw−1 =
v−1
w ·t−vw(rw). In the following computations, we repeatedly use the facts thatδ is isotropic

andw(δ)= δ for all w ∈ Ŵ . If x ∈ V ⊕Qδ, then

w−1(x)= v−1
w

(
t−vw(rw)(x)

)= v−1
w

(
x + (x, vw(rw))δ)= v−1

w (x)+
(
x, vw(rw)

)
δ

= v−1
w (x)+ (x, dI )δ.
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In particular, we have

w−1(αi)= v−1
w (αi)+ (αi , dI )δ, i � 1,

and

w−1(α0)= v−1
w (α0)+ (α0, dI )δ =−v−1

w (θ)+
(
1− (θ, dI )

)
δ.

Note thatv−1
w (αi) and−v−1

w (θ) are in∆. Therefore, by the very definition of an admissib
element, we have(αi , dI ) � −1 (i � 1) and 1− (θ, dI ) � −1, i.e., (θ, di) � 2. (In
particular, we have recovered the fact thatdI ∈ D̃.) Setki = (αi, dI ) andk0= 1− (θ, dI ).
By Theorem 2.2, we haveki = −1 if and only if v−1

w (αi) is a generator ofI ; that is,
I has a generator corresponding toαi . Similarly, k0=−1 if and only if I has a generato
corresponding toα0. It remains to observe thatki =−1 (i = 0,1, . . . , p) are precisely the
equations of facets of̃D. ✷

It follows that anad-nilpotent ideal has at mostn generators, and the ideals havi
exactlyn generators correspond to theintegral (i.e., lying inQ∨) vertices ofD̃. Next, we
give an elementary proof for the first observation and show thatD̃ always has a uniqu
integral vertex.

Proposition 2.10. LetΓ ⊂∆+ be an antichain. Then

(i) The elements ofΓ are linearly independent and hence#(Γ )� rkg;
(ii) If #(Γ )= rkg, thenΓ =Π .

Proof. (i) SupposeΓ = {γ1, . . . , γt }. Sinceγi − γj /∈ ∆, the angle between any pair
elements ofΓ is non-acute. Because allγi ’s lie in open half-space ofV , they are linearly
independent.

(ii) SupposeΓ = {γ1, . . . , γp}, and letw ∈ Ŵ be the corresponding admissible eleme
We argue by induction onp. The casep = 1 being obvious, we assume thatp � 2. If

Γ ∩Π �=∅, sayγ1 ∈Π , then{γ2, . . . , γp} is an antichain in a root system whose rank
p− 1. HenceΓ =Π by the induction assumption. So, we have only to prove that the
Γ ∩Π =∅ is impossible. Assume not, i.e., ht(γi)� 2 for all i. By Theorem 2.2,

w(γi)− δ = αli ∈ Π̂. (2.11)

Sincep � 2, we may choosei such thatαli lies inΠ . Without loss of generality, we ma
assume thati = 1. Choose also rootsµ, µ̄ ∈ ∆+ such thatγ1 = µ + µ̄. Obviously, then
µ, µ̄ /∈ I = I (Γ ). By part (i),Γ is a basis forV . Hence,

µ=
∑

djγj −
∑

ckγk,
j∈J k∈K
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whereJ,K are disjoint subsets of{1,2, . . . , p} andck, dj > 0. Therefore,

µ̄=−
∑
j∈J

djγj +
∑
k∈K

ckγk + γ1.

Givenν ∈ ∆̂, we say that thelevelof ν, denoted lev(ν), ism ∈ Z, if ν −mδ ∈∆. Consider
the rootsw(µ),w(µ̄) ∈ ∆̂. Sincew(δ−µ) > 0 andw(µ) > 0, we have lev(w(µ)) is either
1 or 0, and likewise for̄µ. Asw(µ+ µ̄)= δ+ γ1 has level 1, we may assume without lo
that lev(w(µ))= 0 and lev(w(µ̄))= 1. Using Eq. (2.11) for thew(γi)’s, we obtain

w(µ)=
(∑

j

dj −
∑
k

ck

)
δ+

∑
j∈J

djαlj −
∑
k∈K

ckαlk ,

and

w(µ̄)=
(

1−
∑
j

dj +
∑
k

ck

)
δ−

∑
j∈J

djαlj +
∑
k∈K

ckαlk + αl1.

If one of the rootsαli , i ∈ J ∪ K, is equal to α0 = δ − θ , then the equality
lev(w(µ̄))− lev(w(µ)) = 1 cannot be satisfied. Hence all these roots lie inΠ and hence∑
j dj −

∑
k ck = lev(w(µ))= 0. But the equalityw(µ)=∑j∈J djαlj −

∑
k∈K ckαlk ∈∆

contradicts the fact thatw(µ) is positive. ✷
Corollary 2.12. The simplex̃D has a unique integral vertex, corresponding to the uni
maximalad-nilpotent ideal.

The vertices of̃D can explicitly be described, see [9]. Indeed, let{πi} be the basis fo
V dual to {αi}, 1 � i � p, andh the Coxeter number for∆. If θ =∑p

i=1miαi andρ∨
is the half-sum of all positive coroots, then the vertices ofD̃ are−ρ∨ and−ρ∨ + h+1

mi
πi ,

1 � i � p. However, it is not immediately clear from this that exactly one vertex lies inQ∨.

3. A combinatorial statistic on Ad(g), Catalan arrangements, and clusters

By [9], the cardinality ofAd(g) is equal to
∏p

i=1
h+ei+1
ei+1 , where theei ’s are the

exponents andh is the Coxeter number ofg. In this section, we consider thesimple root
statisticonAd(g). It is given by

sim(I)= #(I ∩Π), I ∈Ad(g).

Accordingly, we set

Ad(g)i =
{
I ∈Ad(g) | #(I ∩Π)= i}, i = 0,1, . . . , p.
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Because we know the number ofad-nilpotent ideals for all simpleg, the numberAd(g)0
can be counted via the inclusion–exclusion principle. Indeed, the ideals containingαi ∈Π
can be identified with the ideals of the semisimple subalgebra ofg whose simple roots
areΠ \ {αi}. Write g(J ) for the semisimple subalgebra ofg whose set of simple roots
J ⊂Π . Then

#Ad(g)0=
∑
J⊂Π

(−1)p−#J#Ad
(
g(J )

)
. (3.1)

In turn, the numbersAd(g)i (i > 0) are easily computed, once one knowsAd(g)0. For
instance, the number of ideals containing exactly one simple root, sayαi , is equal to the
number of all ideals ing(Π \ {αi}) that do not contain simple roots. Hence

#Ad(g)1=
∑

#J=p−1

#Ad
(
g(J )

)
0.

Similarly, one obtains the general formula:

#Ad(g)i =
∑

#J=p−i
#Ad

(
g(J )

)
0. (3.2)

Of course, applying Eqs. (3.1) and (3.2), one should use the relation that ifh = h1⊕ h2,
then #Ad(h)= #Ad(h1)·#Ad(h2), and likewise forAd(h)0.

The distribution of the simple root statistic overAd(g) yields the polynomial

Sg(q)=
p∑
i=0

#
(
Ad(g)i

)
qi,

which is not hard to compute. For instance, Table 1 contains the relevant da
exceptional Lie algebras.

It immediately follows from Eq. (3.2) that #Ad(g)p = 1 and #Ad(g)p−1 = p. A bit
longer analysis yields

Proposition 3.3. If g is simply-laced, then#Ad(g)p−2 = (p − 1)(p + 2)/2; If g ∈
{B,C,F }, then#Ad(g)p−2= p(p+ 1)/2.

Table 1

i 0 1 2 3 4 5 6 7 8

F4 66 24 10 4 1

#Ad(g)i
E6 418 228 110 50 20 6 1

E7 2431 1001 429 187 77 27 7 1
E8 17342 4784 1771 728 299 112 35 8
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Proof. There arep(p − 1) subalgebras of the formg(J ) with #J = 2. Of these
subalgebras, we have

• p− 1 subalgebra of typeA2 and(p− 1)(p− 2)/2 subalgebras of typeA1×A1, if g

is simply-laced;
• one subalgebra of typeC2, p − 2 subalgebras of typeA2 and (p − 1)(p − 2)/2

subalgebras of typeA1×A1, if g is doubly-laced. ✷
Our results and conjectures for the classical series are as follows.

Theorem 3.4.

#Ad(Ap)i = i + 1

p+ 1

(
2p− i
p

)
, i = 0,1, . . . , p.

We defer the proof to Section 4. Arguing by induction onp and using Eq. (3.2), on
obtainsSg(q)= Sg∨(q), whereg∨ is the Langlands dual Lie algebra. The only practi
output of this equality is that the simple root statistic has the same distribution foBp
andCp. However, we have only conjectural values forCp andDp , which are verified for
p � 8.

Conjecture 3.5.

#Ad(Cp)i =
(

2p− 1− i
p− 1

)
, i = 0,1, . . . , p.

#Ad(Dp)i =
(

2p− 2− i
p− 2

)
+
(

2p− 3− i
p− 2

)
, i = 1,2, . . . , p.

Notice that the conjecture does not give an expression for #Ad(Dp)0. As we will see

below, the right value for #Ad(Dp)0 is
(

2p−2
p−2

)
+
(

2p−3
p−3

)
.

Using Eq. (3.1), it is easy to compute #Ad(g)0 for any simple Lie algebra. Howeve
obtaining a closed expression in the classical case requires some work. In order to
a more conceptual explanation and the closed formula valid for allg, we use the theory o
arrangements.

Remark 3.6. Remark Having written up Propositions 3.7 and 3.10 below, I found
exactly the same results are obtained in the recent preprint of C. Athanasiadis [4].
preprint, he gave a conceptual proof of the formula (3.9) for the characteristic polyn
of the Catalan arrangement. In fact, Eq. (3.9) was known for all simple Lie algebra
case-by-case verification, and this was used in my original argument.

Recall a bijection between thead-nilpotent ideals and the regions of the Cata
arrangement that are contained in the fundamental Weyl chamber. This bijection
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to Shi [18, Theorem 1.4], see also [9, §4]. TheCatalan arrangementCat(∆) is the set of
hyperplanes inV having the equations

(x,µ)= 1, (x,µ)= 0, (x,µ)=−1
(
µ ∈∆+).

The regionsof an arrangement are the connected components of the complement iV of
the union of all its hyperplanes. Clearly,C is a union of regions of Cat(∆). Any region
lying in C is said to bedominant. The bijection takes an idealI ⊂∆+ to the region

RI =
{
x ∈ C | (x, γ ) > 1, if γ ∈ I and(x, γ ) < 1, if γ /∈ I}.

Obviously, the dominant regions of Cat(∆) are the same as those for theShi arrangemen
Shi(∆). Here Shi(∆) is the set of hyperplanes inV having the equations

(x,µ)= 1, (x,µ)= 0
(
µ ∈∆+).

It will be more convenient for us to deal with the arrangement Cat(∆), since it isW -
invariant. A region (of an arrangement) is calledbounded, if it is contained in a spher
about the origin.

Proposition 3.7. I ∈Ad(g)0 if and only if the regionRI is bounded.

Proof. (1) SupposeI ∩Π =∅. Then the definition ofRI shows that it is contained in th
bounded domain inC given by the inequalities(α, x) < 1, α ∈Π .

(2) Supposeαi ∈ I ∩ Π . Then I also contains all positive roots whose coefficie
of αi in the expression through the simple roots is positive. Hence for all rootsγ such
that (γ,ϕi) > 0 we have the constraints(x, γ ) > 1. This means that ifx ∈ RI , then all
constraints are satisfied forx + aϕi with anya ∈R�0. Thus,RI is unbounded. ✷

The number of regions and bounded regions of any hyperplane arrangement
counted through the use of a striking result of T. Zaslavsky. Letχ(A, t) denote the
characteristic polynomial of a hyperplane arrangementA in V (see, e.g., [2,17] for precis
definitions).

Theorem 3.8 (Zaslavsky [23, Section 2]). (1)The number of regions into whichA dissects
V equalsr(A)= (−1)pχ(A,−1).

(2) The number of bounded regions into whichA dissectsV equalsb(A)= |χ(A,1)|.

Recently, Athanasiadis [4] found a rather simple case-free proof of the follo
formula for the characteristic polynomial of the Catalan arrangement:

χ
(
Cat(∆), t

)= p∏
i=1

(t − h− ei). (3.9)

(For the classical series, it was computed earlier in [2].) Now, combining the prec
results, we arrive at our goal.
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Proposition 3.10.

#Ad(g)0=
p∏
i=1

h+ ei − 1

ei + 1
.

Proof. Since the arrangement Cat(∆) isW -invariant, the number of its bounded regio
lying in C is equal to 1

#W |χ(Cat(∆),1)|. It remains to observe that #W =∏i (ei + 1). ✷
Similarly, using the valueχ(Cat(∆),−1), as Athanasiadis also did in [4], one obta

the formula for the number of allad-nilpotent ideals stated at the beginning of this sect
This proof is not so elementary as the proof of Cellini–Papi [9], for it requires some
results from the theory of arrangements.

It is quite interesting that the numbers
∏p
i=1

h+ei+1
ei+1 and

∏p
i=1

h+ei−1
ei+1 also appear in [11

Theorem 1.9 and Proposition 3.9] as the numbers of all and positive clusters, respe
We are not going to discuss the theory of clusters related to the root systems, re
to that paper for all relevant definitions. For our current purposes, it suffices to know
clusters are certain subsets of∆+ ∪ (−Π). Each cluster is a linearly independent sub
of V having exactlyp elements. A cluster is calledpositive, if all its elements are positiv
roots.

A close relationship between clusters andad-nilpotent ideals is seen in the followin
curious fact. LetClus(g)i denote the set of clusters having exactlyi elements from−Π .

Theorem 3.11. One always has the equality#Ad(g)i = #Clus(g)i .

Proof. From Proposition 3.6 in [11], it follows that the numbersClus(g)i , i = 0,1, . . . , p,
also satisfy the recurrent relations Eqs. (3.1) and (3.2).✷

It is not too brave to suggest that there exists a natural bijection between cluste
ad-nilpotent ideals that takesClus(g)i to Ad(g)i for all i.

4. On ad-nilpotent ideals for g = sln

For the rest of the paper, we are going to study another combinatorial statistic
set ofad-nilpotent ideals, which is related to the theory developed in Section 2. We
consider the classical series in Sections 4 and 5, and then move to the general
Section 6.

At the rest of this section,g= sln and hencep = n−1. We assume thatb (respectivelyt)
is standard, i.e., it is the space of upper-triangular (respectively diagonal) matrices
the positive roots are identified with the pairs(i, j), where 1� i < j � n. For instance
αi = (i, i + 1) andθ = (1, n). An ad-nilpotentb-ideal is represented by a right-justifie
Ferrers diagram with at mostn− 1 rows, where the length ofith row is at mostn− i. If a
box of a Ferrers diagram corresponds to a positive root(i, j), then we say that this box ha
the coordinates(i.j ). The unique northeast corner of the diagram corresponds toθ and the
southwest corners give rise to the generators of the corresponding ideal, see Fig. 1.
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Fig. 1. Anad-nilpotent ideal insln.

Such a diagram (ideal)I is completely determined by the coordinates of boxes
contain the southwest corners of the diagram, say(i1, j1), . . . , (ik, jk). Then we obviously
haveΓ (I)= {(i1, j1), . . . , (ik, jk)} and

1 � i1< i2< · · ·< ik � n− 1, 2� j1< j2< · · ·< jk � n.

Various enumerative results forad-nilpotent ideals insln are obtained in [1,8,14]. In
particular, the total number ofad-nilpotent ideals equalsCn = 1

n+1

( 2n
n

)
, thenth Catalan

number. There is a host of combinatorial objects that are counted by Catalan numbe
[21, Chapter 6, Example 6.19] and the “Catalan addendum” at www-math.mit.edu/~
ec. We shall use the fact thatCn is equal to

(a) the number of all sequencesv = v1v2 · · ·v2n of n 1’s andn −1’s with all partial sums
nonnegative, or

(b) the number of lattice paths from(0,0) to (n,n) with steps(1,0) and (0,1), always
staying in the domainx � y, i.e., the number of Dyck paths of semilengthn.

In our matrix interpretation, we are forced to assume that thex-axis is vertical and
directed downwards, while they-axis is horizontal. Therefore(0,0) is the upper-left corne
and(n,n) is the lower-right corner of the matrix. The Dyck path corresponding to anad-
nilpotent ideal is the double path in Fig. 1. It has 2n steps. The corresponding sequencv
is obtained as follows. We start from(0,0) and attach+1 to the horizontal step (i.e.,(0,1))
and−1 to the vertical step (i.e.,(1,0)).

Remark. Coordinates of boxes of Ferrers diagrams and lattice points considered abo
compatible in the sense that the coordinates of a box are equal to the coordinate
southeast corner.
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Proof of Theorem 3.4. Once the relationship between thead-nilpotent ideals insln and
Dyck paths is established, one may appeal to huge combinatorial literature on the
It is clear thatI ∈ Ad(sln) contains a simple root if and only if the corresponding Dy
path touches the diagonal somewhere except the points(0,0) and(n,n). In other words,
the number of simple roots inI equals the number of (intermediate)returnsof the Dyck
path. The distribution of this statistic is well-known, see, e.g., [10, 6.6].✷

Let Adn denote the set of allad-nilpotent ideals forsln. From now on, we stick
to considering the statistic gen :Adn → N, which assigns to an ideal the number of
generators. LetAdkn, 0 � k � n−1, be the set of ideals withk generators, i.e., the set
Ferrers diagrams, as above, with exactlyk southwest corners.

Proposition 4.1.

#
(
Adkn

)= 1

n

(
n

k

)(
n

k + 1

)
.

Proof. The numbersN(n, k) = 1
n

( n
k

) ( n
k−1

)
, k = 1, . . . , n, are called theNarayana

numbers, so that we are to show that #(Adk−1
n ) = N(n, k). It is known that the Narayan

numbers have the following combinatorial interpretation, see [21, Chapter 6, Exa
36(a)]. LetXnk be the set of all sequencesv = v1 · · ·v2n as in (a) above, such that

k = #{j | vj = 1, vj+1=−1}.
Then #(Xnk)=N(n, k). Forv ∈Xnk , it is easily seen that

k − 1= #{j | vj =−1, vj+1= 1}.
The change of sign from 1 to−1 (respectively from−1 to 1) inv corresponds to the turn o
the type “horizontal followed by vertical” (respectively “vertical followed by horizonta
step in the respective lattice path. Geometrically, the steps of second type corresp
the southwest corners of our Ferrers diagram. It follows that the sequencesv ∈Xnk are in
bijection with the Ferrers diagrams withk − 1 southwest corners, and we are done.✷

SinceN(n, k)=N(n,n−k+1), one may suggest that there is a bijective interpreta
of this equality. This is really the case.

Theorem 4.2. There is a natural bijection betweenAdkn andAdn−k−1
n .

Proof. Let (i1, j1), . . . , (ik, jk) be the generators of anad-nilpotent ideal I ∈ Adkn.
Consider separately the ordered sets of the first and second coordinates for these ge
i.e. putX(I)= {i1, . . . , ik} andY (I)= {ji, . . . , jk}. We wish to construct two other ordere
sets that will form the first and the second coordinates of the generators for the dua
To this end, put

X
(
I∗
)= {1, . . . , n−1} \ {j1− 1, . . . , jk − 1}.
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Y
(
I∗
)= {2, . . . , n} \ {i1+ 1, . . . , ik + 1}.

ForA= {a1, . . . , am}, it is convenient to introduce notationA[a] = {a1+ a, . . . , am + a}.
Then the previous formulas can be written as

X
(
I∗
)= ({2, . . . , n} \ Y (I))[−1],

Y
(
I∗
)= ({1, . . . , n− 1} \X(I))[1]. (4.3)

It is then easily seen that the square of this transformation is the identity onAdkn. Therefore
one has only to prove that the ordered setsX(I∗), Y (I∗) determine anad-nilpotent ideal.
The latter means that ifX(I∗) = {i∗1, . . . , i∗n−k−1} and Y (I∗) = {j∗1 , . . . , j∗n−k−1}, then
i∗q < j∗q for all q . (Of course,i∗1 < i∗2 < · · · and likewise forj∗l .)

(a) Givenq ∈ {1, . . . , n− k − 1}, suppose there ism such thatim > m+ q − 1. Assume
also thatm is the minimal number with this property. Thenim �m+ q andim−1 <

m − 1+ q . Therefore theq th element of{1, . . . , n − 1} \ X(I) is m − 1+ q and
hencej∗q =m+ q . Sincejm > im = m+ q , we can find the minimal numberl such
that jl > l + q . Thenl � m and theq th element of{2, . . . , n} \ Y (I) is l + q . Thus,
i∗q = l + q − 1<m+ q = j∗q .

(b) Supposeim � m + q − 1 for all m ∈ {1, . . . , k}, that is, ik � k + q − 1. Then
the q th element of{1, . . . , n − 1} \ X(I) is k + q and hencej∗q = k + q + 1.
On the other hand, the inequalitiesi∗q < i∗q+1 < · · · < i∗n−k−1 � n − 1 show that
i∗q � (n− 1)− ((n− k − 1)− q)= q + k.

Thus,X(I∗) andY (I∗) determine an element ofAdn−k−1
n , which we denote byI∗. ✷

For all k ∈ {0,1, . . . , n−1}, we have constructed bijections

Adkn→Adn−k−1
n , I �→ I∗.

which give rise to an involutory transformation∗ :Adn→ Adn. Although this transfor-
mation is not order-reversing with respect to the inclusion of ideals, it has intere
properties. The formulation of these properties is “universal,” i.e., it makes sense fo
(semi)simple Lie algebra:

Lemma 4.4. SupposeA⊂Π is an arbitrary subset, andI = I (A). ThenI∗ = I (Π \A).

Proof. Straightforward. Use formulae (4.3).✷
To state one more property, we need some notation. As usual, the height of

γ ∈ ∆+ is denoted by ht(γ ). Recall thath = ht(θ) + 1 is the Coxeter number ofg. Set
∆+(k) = {γ ∈ ∆+ | ht(γ ) = k} and∆+k = {γ ∈ ∆+ | ht(γ ) � k}. It is clear that∆+k is a
combinatorialad-nilpotent ideal andΓ (∆+k )=∆+(k).

For sln, we have ht(i, j)= j − i and the Coxeter number isn.
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Lemma 4.5. In case ofsln, we have(∆+k )∗ =∆+h+1−k =∆+n+1−k .

Proof. SetI =∆+k . In our notation, the roots in∆+(k) are(1, k+ 1), (2, k+ 2), . . . , (n−
k,n). HenceX(I)= {1,2, . . . , n−k} andY (I)= {k+1, k+2, . . . , n}. ThereforeX(I∗)=
{1,2, . . . , k − 1} andY (I∗) = {n− k + 2, . . . , n}. This means thatI∗ is generated by th
roots(1, n− k + 2), . . . , (k − 1, n), i.e., all roots of heightn− k + 1. ✷
Examples. In the geometric context, takingk = 1, we obtainu∗ = {0}. Fork = 2, we have
[u,u]∗ = gθ , becauseθ is the only root of heighth− 1.

It is curious that our definition of the dualad-nilpotent ideal forsln leads to anothe
occurrence of Catalan numbers. Namely, let us try to describe and enumerate the s
ideals. ForI ∈ Admn , the necessary condition of self-duality ism = n − m − 1. That is,
n= 2m+ 1.

Theorem 4.6. There are no self-dualad-nilpotent ideals forsl2m. For sl2m+1, the number
of self-dualad-nilpotentb-ideals is equal to 1

m+1

( 2m
m

)
.

Proof. We use the notation introduced in Theorem 4.2. SupposeI ∈ Adm2m+1 andX =
X(I) = {i1, i2, . . . , im}, Y = Y (I) = {j1, j2, . . . , jm}. The conditionI = I∗ means tha
X =X∗ = ({2,3, . . . ,2m+1} \Y )[−1] andY = Y ∗ = ({1,2, . . . ,2m} \X)[1]. Clearly, all
these equalities are equivalent to the following

{1,2, . . . ,2m} = {i1, i2, . . . , im} % {j1− 1, j2− 1, . . . , jm − 1} =X % Y [−1].

ThereforeY is determined byX and vice versa. However,X cannot be an arbitrarym-
element subset of{1,2, . . . ,2m}, since the conditionsik < jk , k = 1, . . . ,m, must also be
satisfied. GivenX ⊂ {1,2, . . . ,2m} with #(X)=m, define the sequencev = v1v2 . . . v2m
by the following rule:

vi =
{

1, if i ∈X,
−1, if i /∈X.

Then the pair(X, {1,2, . . . ,2m} \ X} = Y [−1]) determines anad-nilpotent ideal if and
only if all partial sums ofv are nonnegative. Indeed,

∑2k−1
i=1 vi < 0 if and only if ik � jk .

As was mentioned above, the number of such sequences is themth Catalan number. ✷
To illustrate Theorem 4.6, we list the generators of all self-dual ideals forsl7:

Γ1=
{
(1,5), (2,6), (3,7)

}
, Γ2=

{
(1,4), (2,6), (4,7)

}
,

Γ3=
{
(1,4), (2,5), (5,7)

}
, Γ4=

{
(1,3), (3,6), (4,7)

}
,

Γ5=
{
(1,3), (3,5), (5,7)

}
.
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Remark 4.7. The equality of Theorem 4.6 is (almost) an instance of the so-called “q =−1
phenomenon” studied by J. Stembridge [22]. The distribution of the statistic “numb
generators” yields the polynomial

Nn(q)=
n−1∑
k=0

#
(
Adkn

)
qk =

n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
qk,

which is often called theNarayana polynomial. Theq =−1 phenomenon is said to occur
Nn(−1) counts the number of fixed points of some natural involution onAdn. We already
have the involution ‘∗’ and know the number of its fixed points. On the other hand
follows from [7, Proposition 2.2] that

Nn(−1)=
{

0, if n is even,
(−1)(n−1)/2Cn−1/2, if n is odd. (4.8)

(Actually, the authors of [7] deal with the polynomialdn(q)= (1+q)Nn(q+1). However,
the sign given there for the valuedn(−2) should be opposite.) Thus, we see that theq =−1
phenomenon occurs up to sign. It is interesting that Eq. (4.8) appears also in [13, p
in connection with a discussion of the Charney–Davis conjecture and properties
Coxeter zonotope of typeA.

The involution onAdn (and hence on the set of Dyck paths of semilengthn) described
in Theorem 4.2 seems to be new.

5. ad-nilpotent b-ideals for orthogonal and symplectic Lie algebras

A possible idea for constructing an involutory mapping∗ :Ad(g)→Ad(g) for the other
classical Lie algebras can be the following:

Consider the standard embeddingg ⊂ slN , and choose a Borel subalgebrab̄ ⊂ slN

such that̄b ∩ g= b is a Borel subalgebra ofg. Making use of the embeddingb⊂ b̄, one
can regardAd(b,g) as a subset ofAd(b̄, slN) consisting of ideals satisfying a symmet
condition. Then we apply toAd(b̄, slN) the duality procedure described in the previo
section. The last step should be to interpret the resulting ideal inslN as an element o
Ad(b,g).

It turns out that this recipe yields “expected” results forsp2p, but not immediately for
sop . The obstacle is that the last step in the above program cannot always be fulfi
the orthogonal case. Still, one can modify this procedure, so that to get a suitable re
so2p+1. However, I do not know how to deal with the case ofso2p .

5.1. The symplectic case

Choose a basis for a 2p-dimensional symplectick-vector spaceV so that the skew

symmetric non-degenerate bilinear form has the matrix
(

0 Υp

−Υp 0

)
, whereΥp is thep × p

matrix whose only nonzero entries are 1’s along the antidiagonal.
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For anyA ∈ Matp(k), let Â denote the matrixΥp(At)Υp , whereAt is the usual
transpose ofA. The transformationA �→ Â is the transpose relative to the antidiagon
In the above basis forV, the algebrasp2p has the following block form:

sp2p =
{(
A B

C D

)∣∣∣B = B̂, C = Ĉ, D =−Â} ,
whereA,B,C,D arep × p matrices. Ifb̄ is the standard Borel subalgebra ofsl2p, then
b := b̄∩ sp2p is a Borel subalgebra ofsp2p . It follows thatAd(sp2p) can be identified with
thesubset ofAd(sl2p) consisting of all Ferrers diagram that are symmetric relative to
antidiagonal.

Let us say thatĪ ∈ Ad(sl2p) is self-conjugate, if the corresponding Ferrers diagra
is symmetric with respect to the antidiagonal. It is easily seen that ifĪ ∈ Ad(sl2p) is
self-conjugate, then̄I∗ is self-conjugate as well, see below. This induces the des
involution on Ad(sp2p), and a straightforward verification shows that this involut
satisfies properties (4.4) and (4.5).

Since the Ferrers diagram corresponding to anad-nilpotentb-ideal has a symmetr
property, we may cancel out its part which is below the antidiagonal. What we obta
shifted Ferrers diagram.

Example 5.1.1. g= sp8. In our matrix interpretation, the array of positive roots is

1000 1100 1110 1111 1121 1221 2221
0100 0110 0111 0121 0221

0010 0011 0021
0001

where the quadruplec1c2c3c4 stands for the root
∑
ciαi . Consider thead-nilpotent ideal

I whose generators areα1, α2+ α3,2α3+ α4. The corresponding shifted Ferrers diagr
is depicted on the left hand side in Fig. 2.

The dotted lines demonstrate the positive roots that are not inI , and the whole arra
corresponds to∆+ (or u). The boxes marked with ‘◦’ represent the generators. T
corresponding self-conjugate idealĪ ∈Ad(sl8) is depicted in Fig. 3, where the dotted lin
is the antidiagonal.

◦
◦

◦
I : ◦I∗:

Fig. 2. Anad-nilpotent ideal inAd(sp8) and its dual.
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Ī :

Fig. 3. The self-conjugatead-nilpotent idealĪ in Ad(sl8).

From the picture representinḡI , we find thatX(Ī ) = {1,2,3,5,7} and Y (Ī ) =
{2,4,6,7,8}. ThereforeX(Ī∗) = {2,4} and Y (Ī∗) = {5,7}. This leads to the diagram
depicted on the right hand side in Fig. 2. The sole generator of the idealI∗ is α2+α3+α4.

Formally, our recipe for constructing the dual ad-nilpotent ideal inAd(sp2p) is as
follows. We use the same coordinate system as in thesln-case. The shifted Ferrers diagra
(as in Fig. 2) is determined by the coordinates of the boxes that contain its sou
corners, and these boxes give rise to the generators of the respectivead-nilpotent ideal.
SupposeΓ = {(i1, j1), . . . , (ik, jk)} is the set of generators ofI ∈Ad(sp2p), andi1< i2<
· · ·< ik . Thenil < jl for all l, j1< j2 < · · ·< jk, andik + jk � 2p + 1. Conversely, if a
setΓ satisfies all these inequalities, then it is the set of generators of anad-nilpotent ideal.
Denoting byĪ the corresponding self-conjugate ideal inAd(sl2p), we obtain

X
(
Ī
)= (i1, . . . , ik,2p+ 1− jk, . . . ,2p+ 1− j1),

Y
(
Ī
)= (j1, . . . , jk,2p+ 1− ik, . . . ,2p+ 1− i1).

[If ik + jk = 2p + 1, then one should cancel out the repetition in the middle.]
coordinates of vectorsX(Ī ), Y (Ī ) can be paired so that the sum in each pair is equ
2p + 1. Therefore the same property holds for the shifted complementsX(Ī∗), Y (Ī∗).
That is, Ī∗ is again a self-conjugate ideal inAd(sl2p), and we can define the ide
I∗ ∈Ad(sp2p).

Notice that

#Γ (I)+ #Γ (I∗)= p

and the multiset{Γ (I),Γ (I∗)} contains a unique long root, i.e., the distribution of lo
and short roots is always the same as inΠ . (A long root corresponds to the genera
(ik, jk) with ik + jk = 2p + 1.) In particular, the equalityI = I∗ is impossible, i.e., ther
arenoself-dualad-nilpotent ideals.

Example 5.1.2. g= sp6. In Table 2, we list all pairs of dualad-nilpotent ideals including
the ideals with one and two generators. The column withI (respectivelyI∗) contains all
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Table 2
Pairs of dualad-nilpotent ideals insp6

No. Γ (I ) Γ (I∗)
1–3 αi Π \ {αi }
4 α1+ α2 α1+ α2, α3
5 α2+ α3 2α2+ α3, α1
6 2α2+ α3 α2+ α3, α1
7 α1+ α2+ α3 α1+ α2,2α2+ α3
8 α1+ 2α2+ α3 α1+ α2+ α3,2α2+ α3
9 2α1+ 2α2+ α3 α1+ α2, α2+ α3

ideals with one (respectively) two generators. The numeration of simple roots is sta
α1= ε1− ε2, α2= ε2− ε3, α3= 2ε3.

It is clearly seen that properties of Lemmas 4.4 and 4.5 are satisfied here.

5.2. The orthogonal case

Choose a basis for ann-dimensional orthogonalk-vector spaceV so that the symmetri
non-degenerate bilinear form has the matrixΥn. In the above basis forV, we have:

son =
{
A |A=−Â}.

Here we also haveb := b̄∩ son is a Borel subalgebra. This means that to anyad-nilpotent
b-ideal inson, one can again attach a self-conjugatead-nilpotentb̄-ideal insln. But unlike
the symplectic case this mapping is not onto. The reason is that the orthogonal m
have zero antidiagonal entries. Therefore a self-conjugatead-nilpotent ideal insln having
a generator on the antidiagonal cannot correspond to ab-ideal inson. It may happen that
for I ∈Ad(son), the last element in the sequenceI → Ī → Ī∗ cannot be interpreted as a
ideal inson. So, a naive attempt to repeat the “symplectic” procedure fails.

In the odd-dimensional case, this difficulty can be circumvented by associating
b-ideal inso2p+1 the ideal insp2p having the same shape (shifted Ferrers diagram).
is achieved by cancelling out from a symmetric Ferrers diagram both the antidia
(which corresponds to zero entries in the matrix) and the part below the antidiagona
leads to a satisfactory procedure.

Example 5.2.1. g= so7. In Table 3, we list all pairs of dualad-nilpotent ideals including
the ideals with one and two generators. The column withI (respectivelyI∗) contains all
ideals with one (respectively) two generators. The numeration of simple roots is sta
α1= ε1− ε2, α2= ε2− ε3, α3= ε3. One can see some small distinctions from Table

Again, the properties of Lemmas 4.4 and 4.5 are satisfied here. In the following se
we also summarize some other properties of the duality mapping that are inspired
computations in classical cases.
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Table 3
Pairs of dualad-nilpotent ideals inso7

No. Γ (I ) Γ (I∗)
1–3 αi Π \ {αi }
4 α1+ α2 α1+ α2, α3
5 α2+ α3 α2+ 2α3, α1
6 α2+ 2α3 α2+ α3, α1
7 α1+ α2+ α3 α1+ α2, α2+ 2α3
8 α1+ α2+ 2α3 α1+ α2+ α3, α2+ 2α3
9 α1+ 2α2+ 2α3 α1+ α2, α2+ α3

6. Towards the general case

In view of Theorem 4.2, it is natural to ask whether there is a natural involutory map
∗ :Ad(g)→Ad(g) for any simple Lie algebrag such that

#
(
Γ (I)

)+ #
(
Γ
(
I∗
))= rkg

and the two properties of Lemmas 4.4 and 4.5 are also satisfied?
It is plausible that a conjectural definition of duality should exploit somehow admis

elements ofŴ and the simplex̃D. Although my attempts to define such a mapping i
uniform way were unsuccessful, I believe that such a mapping does exist.

Since anad-nilpotent idealI ∈ Ad(g) is completely determined by the correspond
antichainΓ = Γ (I)⊂∆+, properties of the conjectural duality onAd(g) can be restate
in terms of antichains in∆+. Let An(∆+) denote the set of all antichains in∆+. For a
moment, we assume that∆ is not necessarily irreducible, and∆=⊔i∆i , where each∆i
is an irreducible root system and the rank of∆i is pi .

Conjecture 6.1. There exists a natural involutory mapping

∗ :An
(
∆+

)→An
(
∆+

)
such that the following hol ds forΓ ∈An(∆+):

(i) Γ ∗ =⊔(Γ ∩∆i)∗ and(Γ ∩∆i)∗ depends only onΓ ∩∆i;
(ii) #(Γ ∩∆i)+ #(Γ ∗ ∩∆i)= pi for all i;
(iii) SupposeΓ contains a simple rootα. Write ∆(Π \ {α}) for the root subsystem

spanned by the set of simple rootsΠ \ {α}. ThenΓ ∗ ⊂ ∆(Π \ {α})+ and moreover
Γ ∗ = (Γ \ {α})∗, whereΓ \ {α} is regarded as antichain in∆(Π \ {α})+;

(iv) (Approximately a converse to the previous property.) If Γ ⊂ ∆(Π \ {α})+, then
Γ ∗ = {α} ∪ {the dual ofΓ taken in∆(Π \ {α})+};

(v) If ∆ is irreducible, then(∆+(k))∗ =∆+(h+ 1− k), whereh is the Coxeter numbe
of∆ (cf. Lemma4.5);

(vi) the distribution of long and short roots in the multiset{Γ,Γ ∗} is the same as inΠ .
(This condition is vacuous in the simply-laced case.)
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It is easy to see that the duality defined for the root systems of typeAp, Bp, Cp satisfies
all these properties. Also, it is immediate that ‘∗’ can uniquely be defined forG2.

Now, we again assume that∆ is irreducible. Clearly, a necessary condition for suc
duality to exist is that the number of antichains of cardinalityk ought to be equal to th
number of antichains of cardinalityp− k. This holds in all cases, where the correspond
values are known, see below. Ifk = 0, then the assertion follows from Proposition 2.10
casek = 1, one should be able to prove that the number of positive roots is equal
number of antichains of cardinalityp − 1. Unfortunately, the only proof I know amoun
to a case-by-case verification.

For each simple Lie algebrag, we define an analogue of Narayana polynom
as follows. Letdk(g) be the number of allad-nilpotent ideals withk generators or
equivalently, the number of allk-element antichains in∆+. Then

Ng(q)=
p∑
i=0

dk(g)q
k (6.2)

is said to be theNarayana polynomial of typeg (or, a generalized Narayana polynomia
Clearly,d0(g)= dp(g)= 1 andd1(g)= #∆+. By Theorem 2.9,dp−1(g) equals the numbe
of integral points lying on the edges of the simplexD̃ (except of the unique integral vertex
Below, we list all generalized Narayana polynomials:

NAp(q)=
p∑
k=0

1

p+ 1

(
p+ 1
k

)(
p+ 1
k + 1

)
qk;

NBp(q)=NCp(q)=
p∑
k=0

(
p

k

)2

qk;

NDp(q)=
p∑
k=0

((
p

k

)2

− p

p− 1

(
p− 1
k

)(
p− 1
k − 1

))
qk.

NG2(q)= 1+ 6q + q2;
NF4(q)= 1+ 24q + 55q2+ 24q3+ q4;

NE6(q)= 1+ 36q + 204q2+ 351q3+ 2044+ 36q5+ q6;
NE7(q)= 1+ 63q + 546q2+ 1470q3+ 14704+ 546q5+ 63q6+ q7;

NE8(q)= 1+ 120q + 1540q2+ 6120q3+ 95184+ 6120q5+ 1540q6+ 120q7+ q8.

In typeA, it is the usual Narayana polynomial (cf. Remark 4.7). The result for typeB

andC follows from [3, Corollary 5.8]. In that place, Athanasiadis computes the num
of non-nesting partitions onBp or Cp whose ‘type’ hask parts. However, it follows from
his previous exposition that a non-nesting partition whose type hask parts is exactly an
antichain of cardinalityp − k. The case ofDp is dealt with in [5]. Here one also ha
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( p
k

)2− p
p−1

(
p−1
k

)( p−1
k−1

)
is the number ofnon-crossingpartitions onDp whose type hask

parts [16, Section 4]. The case ofG2 is trivial and that ofF4 is relatively easy.
The case ofEn requires more work. The result can be obtained through the counti

all integral points inD̃ and use of Theorem 2.9.
Thus, all generalized Narayana polynomials are palindromic.
By [9], we haveNg(1) = #Ad(g) = ∏p

i=1
h+ei+1
ei+1 . It would be interesting to find

uniform expression for the coefficients of the generalized Narayana polynomials.
Another intriguing feature is that there are nice formulae for the valuesNg(−1). ForAp ,

we refer again to Remark 4.7. TheBp- or Cp-case amounts to a well-known combinator
identity:

p∑
k=0

(−1)k
(
p

k

)2

=


0, if p is odd,

(−1)p/2
(
p

p/2

)
, if p is even.

Combining the expressions forAp andBp cases, we obtain

NDp(−1)=


0, if p is odd,

(−1)p/2
[(

p

p/2

)
− 2

(
p− 2
p/2− 1

)]
= (−1)p/22

(
p− 2
p/2

)
, if p is even.

One may also observe that ifp is even, then(−1)p/2Ng(−1) is positive for all simple Lie
algebrasg.
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