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In this paper, we develop several combinatorial aspects of the theeay-wipotent
ideals. Letb be a fixed Borel subalgebra of a complex simple Lie alggprgollowing
[8], we say that an ideal df is ad-nilpotent if it is contained in[b, b]. Let 200 or A0d(g)
denote the set of alld-nilpotent ideals ob. Any ¢ € 200 is completely determined by the
corresponding set of roots. More precisely,tlee a Cartan subalgebragfying in b and
let A be the root system of the paig, t). ChooseA™, the system of positive roots, such
that the roots ob are positive. Thern = @, ; g, where[ is a suitable subset od*
andg, is the root space foy € A™. In particular, this means thato is finite. Abusing
language, we shall say that sutkt A™ is anad-nilpotent ideal, too.

In [8], Cellini and Papi proved that there is a bijection betweerathailpotentb-ideals
and the elements of the affine Weyl groﬁpsatisfying certain property (see (1.2) below).
In our paper, these elements are said tadmissible Using admissible elements, Cellini
and Papi established a bijection betwé&&nand the points of the coroot lattice lying in
a certain rig-dimensional simplexD with rational vertices [9]. As a consequence, they
obtained a conceptual proof for the explicit formula giving the humbeadshilpotent
ideals in all simple Lie algebras.

In Section 2, we give a characterization of the generatoad-oifilpotent ideals in terms
of admissible elements (Theorem 2.2). It is then shown that an idbakk generators
if and only if the corresponding lattice point lies on the faceldfof codimensionk
(Theorem 2.9). It is curious tha? has exactly one integral vertex. We deduce this from
the fact that there is only orel-nilpotent ideal having rig generators.

In Section 3, we consider the ‘simple root’ statistic #n(g), which assigns to any
ideal the number of simple roots in it. Wrifd(g); for the set of ideals containing exactly
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i simple roots. We give recurrent formulas for these numbers and then compute them for
A, and the exceptional Lie algebras. It is also shown that the simple root statistic has
the same distribution foB, andC,. In case ofC, andD,, we give conjectural values

for #20(g);, which are, no doubt, true. As a consequence of this theory, we observe some
similarities between thad-nilpotent ideals andlusters(see [11] for the latter). Itis shown

that the simple root statistic atio(g) and a certain statistic on the set of clusters have the
same distribution (Theorem 3.11).

To obtain a closed formula for2b(g)o (Proposition 3.10), we exploit a bijection
between thead-nilpotent ideals and the regions of the Catalan arrangement lying in the
dominant chamber, see [18]. We show tliat 20(g)o if and only if the corresponding
region is bounded. In turn, the number of bounded regions of any arrangement can
be counted using a powerful result of Zaslavsky, once one knows the characteristic
polynomial, see Proposition 3.8 for details. Having written this part, | learned that the
formula for #(0(g)o had already been obtained, in the same way, in a recent work of
Athanasiadis [4]. The main result of Athanasiadis’ preprint is a beautiful case-free proof
of the formula for the characteristic polynomial of the Catalan arrangement.

In the last three sections, we consider the statistic that assigns to aii id@al(g) the
number of its generators. In casegok sl,, thead-nilpotent ideals are identified with Dyck
path of semilengtlh and, therefore, the generating function for this statistic is the famous
Narayana polynomiglof degree: — 1). For this reason, we say that the generating function
for this statistic for arbitrary is a generalized Narayana polynomial. Motivated by the fact
that the Narayana polynomial is palindromic, we were searching for a materialization of
this property, i.e., for an involutory mapping (duality) 20 (s(,,) that takes the ideals with
k generators to the ideals with— 1 — k generators. Fosl,,, such a materialization does
exists, and it has a number of nice properties, see Section 4. The nicety of these propertiesis
that their formulation admits immediate generalization to all simple Lie algebras. We also
show that the number of self-dual idealssif,,+1 equalsC,,, the mth Catalan number.

In Section 5, the results concerning duality are extended to sBraasd C. This clearly
implies that the generalized Narayana polynomial#@ndC (in fact, they are equal) are
palindromic. We conjecture that such a duality exists for any simple Lie algebra. At least,
the generalized Narayana polynomials are always palindromic. General properties of this
conjectural duality are discussed in Section 6.

After this paper has been written, there appeared preprints of E. Sommers [19]
and C. Athanasiadis [5], which contain some further interesting resultslgnlpotent
ideals and admissible elements. It is worth mentioning that the generalized Narayana
polynomials appear in [6, 5.2] in connection with the study of the dual braid monoid.

1. Preliminarieson ad-nilpotent ideals
1.1. Main notation
A is the root system ofg, t) and W is the usual Weyl group. Far € A, g, is the

corresponding root space gn
At is the set of positive roots angl= 3 3", 1+ c.
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={a1,...,a,} is the set of simple roots in .
C is the fundamental Weyl chamber.
We setV :=tg = @f:l Qq; and denote by, ) a W-invariant inner product ofY . As
usual,u =2u/(u, u) is the coroot fo € A.
0 =@!_, Za; C V is the root lattice an®)™ = P_, Ze;’ is the coroot lattice.
0" ={>F_ nja; |nj e N} C Q.
Letting V = V & Q8 & QA, we extend the inner product ) on V so that(s, V) =
(A, V)—(S 8) =, A)=0and(s, r) =1.
={A+ké|keZ} is the set of affine real roots ant is the affine Weyl group.
ThenAJr = AT U{A+k8 | k > 1} is the set of positive affine roots adtl= IT U {ag}
is the corresponding set of affine simple roots. Heye- § — 6, whereg is the highest root
in AT. The inner product, ) on V is W-invariant.
Fora; (O Si < p), we lets; denote the corresponding simple reflectlorWn If the
index of« € I is not specified, then we merely writg. The length function oV with
respect tog, s1, . .., 5, is denoted by. For anyw e W, we set

ﬁ(w) = {a e At | w(a) € —Z+}.

Our convention gancernin@(w) is the same as in [12,15], but opposite to that in [8,9], so
that ourN (w) is N(w™?1) in the sense of Cellini-Papi.

1.2. ad-nilpotent ideals

Throughout the papeb is the Borel subalgebra af corresponding tasA™ andu =
[b, b]. The expressiondd-nilpotent ideal” or just “ideal” always refers totaideal lying
in u. Letc C b be anad-nilpotent ideal. Then = @, g« for a subset C A™, which is
called theset of roots of. As our exposition will be mostly combinatorial, ad-nilpotent
ideal will be identified with the respective set of roots. That iis, said to be aad-nilpotent
ideal, too. Whenever we want to explicitly indicate the context, we say tkatgeometric
ad-nilpotent ideal, whilel is a combinatorialad-nilpotent ideal. Accordingly, being in
combinatorial (respectively geometric) context, we speak about cardinality (respectively
dimension) of an ideal. In the combinatorial context, the definition afdanilpotent ideal
can be stated as follows.

I C AT is anad-nilpotent ideal, if the following condition is satisfied:

if yel,veAt, andy+veA, then y+vel.

We considerA™ as poset with respect to the standard partial orgériie., u < v if and
only if v — u € Q. Therefore, a combinatorial-nilpotent ideal is nothing but dual
order idealof the poset A, <). An elementw € W is said to beadmissibleif it has two
properties:

(8) w(w) is positive for any € IT; R
(b) if w™L(a) is negative for am € IT, thenw~1(a) = y — & for somey € A™.
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By [8, Section 2], there is a one-to-one correspondence between the admissible elements
of W and thead-nilpotentb-ideals. This correspondence is obtained as follows:

e Given ¢ € v, consider the members of the descending central sedes?, ¢ =
[¢k=1, ¢] (k > 2) and the corresponding sets of rofitsClearly, Iy > Ij41 andl,, = @
form > 0.SetNy ={ké§ —y |y € I}. Then® := Uk}lNk is a closed subset of
whose complement is closed as well, and therefore there is a umigu® such that
@ = N(w). Thisw is the required admissible element.

o Conversely, ifw € W is admissible, themV (w) = |J; >, Ni, whereNj = (k8 — |
y eIt} and Iy C AT. Thenl; is the set of roots of amd-nilpotent ideal, say.
Furthermore, the definition of an admissible element also impliesithatl; O - - -
and 1y is the set of roots of*.

If w e W is admissible, thei,, (respectively,,) stands for the corresponding combinato-
rial (respectively geometrigd-nilpotent ideal. That is,

Iwz{yeA+|5—yeﬁ(w)} and cwz@ga.

aely

Conversely, giveri € 200, we writew () for the respective admissible element. Notice that

dime,, =#(I,,) and l(w):Zdim(cw)k.
k>1

Throughout the papel,or I,, stands for a combinatoriab-nilpotent ideal. Whenever we
wish to stress thallo depends ot and/org, we write2(o(b) or 20(g) or even(d(b, g).

2. The generatorsof ad-nilpotent ideals

Let I be anad-nilpotent ideal. We say that € I is ageneratorof 1, if y —« ¢ I for all
a € AT, Obviously, this is equivalent to the fact tha {y} is still anad-nilpotent ideal.
Conversely, ifx is a maximal elementofit \ I (i.e.,(x + AT)N A C I), thenl U {x}is
anad-nilpotent ideal. These two procedures show that the following is true.

Proposition 2.1. Supposéd C J are twoad-nilpotentideals. Then there is a chain of ideals
I=IycliC---Cl,=Jsuchthat#(l;+1) = #(I;) + 1. In other words2(0 is a ranked
poset, with cardinalitydimension of an ideal as the rank function.

In the geometric setting, the set of generators has the following description. For an ideal
c= EBVH g, C b, there is a uniqué-stable spacé C ¢ such that = [b, c] @ ¢. Theny is

a generator of if and only if it is a root ofc. Write I"(I) for the set of generators df It

is clear that a subsét = {y1, ..., y;} C AT is the set of generators for some ideal if and
onlyif y; —y; ¢ Ot forall i, j. This means that' C A™ is the set of generators for some
ad-nilpotent ideal if and only if it is arantichainof (AT, <). This is a manifestation of a
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general fact that, for any poset there is a canonical bijection between the antichains and
the dual order ideals a?, see, e.g., [20, 3.1].

In what follows, we also writd (I") (respectivelyc(I")) for the combinatorial (respec-
tively geometric)ad-nilpotent ideal with the set of generatdrs For instance, the unique
maximal element o®(o has the following presentation:

Geometric  ¢(IT) =[b,b]=u;
Combinatoriat 1(J7) = AT.

It is helpful to have a description of the generatorsiofn terms of the respective
admissible element. As usual, we wrijte- 0 (respectively < 0),if y € AT (respectively
y € —AT).

Theorem 2.2. Suppose € I,,. Theny is a generator of, if and only ifw(§ — y) € —1I.

Proof. <. Suppose is not a generator af,,, i.e.,y =y +v, wherey € I, andv e AT,
Thenw(é — y) =w(§ — 7) — w(v) is the sum of twaegativeroots.

=. Setw( — y) = —u < 0. If u is not simple, theruw = w1 + w2, where both
summands are positive. We hawe (1) + w(u2) = —(8 — y) < 0. Assume for
definiteness that~1(u2) < 0. Sincew 1(—u2) > 0 andw(w=1(—u2)) < 0, we have
w(—p2) € N(w), i.e.,w L(ju2) = —k8 + v, wherek > 1 andv € I, C A™+.

(@) k = 1. It follows thatw=1(u1) =y —v e A andw(v — y) = —u1 < 0. Sincew is
admissible,y — y must be negative, i.ey — v € AT. This means thay is not a
generator off,,,.

(b) k> 2. Let us show that there is another decompositiop @k a sum of two positive
roots such that one has= 1 for one of the summands. We argue by inductiorkon

Sincew(ks — v) < 0, we havev € (I),. Therefore there is a decompositidh — v =
k's —v' + k"8 —v", wherek’,k” > 0 andv',v" € I,,. Henceuz = u, + 4, where
w=(uh) = v — k'8 andw=t(uy) =v” — k8. The following lemma shows that, in this
situation,u + u1 € A* oruf + 1 € AT, If the latter holds, thep = u), + (14 + p1) is

a decomposition such that~1(u,) =1’ — k'8, andk’ < k. This completes the induction
step. O

Lemma 2.3. Supposeu1, uz, u3 € AT andu := p1+puo+pz e At Thenui +pp € AT
orui+puz €A™,

Proof. If (u2 + u3, u1) < 0, then(u2, w1) < 0 or (us, u1) < 0, and we are done. If
(n2 + us, p1) = 0, then(uz + pu3, u) > 0. Henceuw —pup2 e Aoru —puze A. O

Corollary 2.4. The number of generators @f is equal to the number of rootse I such
thatw1(a) < 0.
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Proof. By the definition of an admissible elementuif1(«) < 0, thenw 1(a) =y —§
for somey e A*. Hencew(s — y) € —IT andy is a generator of,,. The rest is clear. O

Thus, the set of generators ff corresponds to a certain subset’df More precisely,
if wiy —8) =a ell (y € AT), then we say that is the generator of,, corresponding
too.

Recall that theclass of nilpotencef I € 20, denoted dll), is the maximak such that
I # @. Making use of the admissible elemantdefining thead-nilpotent ideall,,, one
can readily determine @,,).

Proposition 2.5. cl(I,) =k if and only ifw(ag) + k6 € AT U (S — A™T).

Proof. Since each(l,),, is anad-nilpotent ideal, we havél,),, # @ if and only if

0 € (I,)m- Therefore, the very definition of the admissible element corresponding to an
ad-nilpotent ideal (see (1.2)) implies that(f),) = k if and only if w(ké — 6) < 0 and

w((k 4+ 1)§ —9) > 0. In other wordsw(cg) + (kK — 1)§ < 0 andw(ag) + k8 > 0. Hence

the conclusion. O

Remark. If I is a non-trivial Abelian ideal, then @) = 1 and the proposition asserts
that w(ag) + 8 € AT U (§ — AT). However, Proposition 2.4 in [15] says that only the
first possibility actually realizes, i.ew(ao) + 8§ € AT. But, it can be shown that in case
k =cl(I) > 1 we do have both possibilities far(«g) + 3.

Example 2.6. Takew = sgso € W, wheresy € W is the reflection with respect tb Then

_Ja+4, (o,0)#0,
SQSO(W)—{O[’ (0,0)=0, foraell.

We also have

oo g+ 26,
wl::ai»—nxi if (;,0)=0, i+#0,
o= o — 98 if (a;,0)+#0, i+#0.
Hencew is admissible. The corresponding combinatoai@nilpotent ideal isH = {y €
At | (y,0) > 0} and the set of generators I3(H) = H N I1. The (geometric) ideal
c= EByeHgy is the standard Heisenberg subalgebrg.dDbviously, c(H) = 2, and we
havesyso(cg) + 26 =8 — 6.

The work of Cellini and Papi [9] establishes a bijection betweerathrilpotent ideals
of b and the points of certain simplex i lying in 0V, the coroot lattice. This was used
for giving a uniform proof of the formula for the numberaf-nilpotent ideals. Below, we
describe that bijection in a form adapted to our notation, and show that this can also be
used for determining the number of generators of an ideal.
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As is well known, W is isomorphic to a semi-direct product & and Q. Given
w € W, there is a unigue decomposition

W= Vyty,, (2.7)

wherev,, € W ands,,, is the translation correspondingig € V. The word “translation”
means the following. The grouy has two natural actions:

(a) the linear action o =V & Q8 & QA;
(b) the affine-linear action oW .

Forr € QV, the linear action of, € WonV @ Q¢ is given by, (x) = x — (x,7)é (we do
not need the formulas for the whole &%, while the affine-linear action oW is given by
t, oy = y+r. Sothat, is a true translation for this action an For instance, the formulae
of Example 2.6 show thapsg =1_gv.

There is a simple procedure for obtaining the affine-linear actiol drom the linear
action onV, which is explained in [9], but we do not need this.

Using the decomposition (2.7), one can define the map@hg» 0V by w
vy (ry) =: dy. One of the main results of [9] is that the $é},}, wherew ranges over all
admissible elements o, provides a nice parametrizationaf-nilpotent ideals. Namely,
set

D={teV|(t,0) > -1Va el and(z,6) < 2}.
Itis a simplex inV. The following is Proposition 3 in [9].

Theorem 2.8 (Cellini-Papi). The mapping(o — QV, defined byl > w(I) > dy () =:
d;, sets up a bijection betweé&mb andD N QV.

Remark. Our D N QY is —D in the notation of [9].

Now, we provide a link between the number of generators ahd the position ofl;
inside of D.

Theorem 2.9. The number of generators dfequals the codimensiam V) of the minimal
face of D containingd;.

Proof. We havew = w(I) is an admissible element oF . Let us realise how the vector
dr = vy (ry) can be determined by the linear actionwf If w = v, then wl=
vytt_y, - I the following computations, we repeatedly use the factsétigtsotropic
andw(8) = forall w e W. If x € V @& Q8, then

W) = vty () (1)) = vt (5 + (%, v (rw))8) = v () + (3, v (r))
= () + (x,dp)s.
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In particular, we have
w(er) = vy M) + (e, dp)s, i =1,
and
w™ (o) = vy (o) + (a0, d)8 = —v (O) + (1 — (8. d)))8.

Note thatv;l(oq) and—v;l(e) are inA. Therefore, by the very definition of an admissible
element, we havéw;,d;) > —1 (( > 1) and 1- (0,d;) > —1, i.e., (0,d;) < 2. (In
particular, we have recovered the fact that 5.) Setk; = (a;,dy) andko=1— (8, d)).

By Theorem 2.2, we havk; = —1 if and only if v;l(ai) is a generator of ; that is,

I has a generator corresponding#o Similarly, ko = —1 if and only if / has a generator
corresponding tag. It remains to observe that = -1 (i =0, 1, ..., p) are precisely the
equations of facets db. O

It follows that anad-nilpotent ideal has at most generators, and the ideals having
exactlyn generators correspond to timtegral (i.e., lying in QV) vertices ofD. Next, we
give an elementary proof for the first observation and showﬁaﬂways has a unique
integral vertex.

Proposition 2.10. LetI' ¢ A™ be an antichain. Then

(i) The elements af" are linearly independent and hengel™) < rkg;
(i) If#(I") =rkg, thenl” =11.

Proof. (i) Supposel” = {y1, ..., y:}. Sincey; — y; ¢ A, the angle between any pair of
elements of” is non-acute. Because a/l's lie in open half-space o¥, they are linearly
independent.
(if) Supposel” = {y1, ..., yp}, and letw € W be the corresponding admissible element.
We argue by induction op. The casep = 1 being obvious, we assume that> 2. If
I'NIT # @, sayy; € I1, then{y,, ..., y,} is an antichain in a root system whose rank is
p — 1. Hencel" = IT by the induction assumption. So, we have only to prove that the case
I' N IT = @ isimpossible. Assume not, i.e.,(nt) > 2 for all i. By Theorem 2.2,

w(y) —8=ay, €. (2.11)
Sincep > 2, we may choose such thaty, lies in I7. Without loss of generality, we may

assume that = 1. Choose also roots, i € A" such thaty; = i + 1. Obviously, then
w, ¢ 1 =1(I').Bypart(i),I" is a basis folV. Hence,

w=y divi— Y

jed kek
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whereJ, K are disjoint subsets df, 2, ..., p} andcy, d; > 0. Therefore,

= Zdj]/j + chyk + 71
jeJ kek

Givenv € A, we say that théevelof v, denoted lew), ism € Z, if v —mé € A. Consider
the rootsw(i), w(ia) € A. Sincew(s — 1) > 0 andw(w) > 0, we have leww(w)) is either

1 or 0, and likewise fofi. Asw(u + 1) = & + y1 has level 1, we may assume without loss
that lew(r)) = 0 and lew (1)) = 1. Using Eq. (2.11) for tha(y;)’s, we obtain

w(w) = (Zdj — ch)é + Zd.i“lj — Z cray,
J k

jed kek

and

w(it) = (1— Zdj + ch)5 - Zd-/alf + Z crou, + oy .
j k

jeJ keK

If one of the rootsey,, i € J UK, is equal toag = § — 6, then the equality
lev(w(in)) — lev(w(u)) = 1 cannot be satisfied. Hence all these roots ligZlimnd hence
Zj dj— ", cx =lev(w(n)) = 0. But the equalityw () = Zjej djou; = ek ckauy, € A
contradicts the fact thaib(w) is positive. O

Corollary 2.12. The simple@ has a unique integral vertex, corresponding to the unique
maximalad-nilpotent ideal.

The vertices ofD can explicitly be described, see [9]. Indeed,{let} be the basis for

V dual to{a;}, 1 <i < p, andh the Coxeter number fon. If 6 = Zf’zlmiai andp"

is the half-sum of all positive coroots, then the verticedodire—p¥ and—p“ + hm—inlni,

1 <i < p. However, it is notimmediately clear from this that exactly one vertex lig%\in

3. A combinatorial statistic on 20o(g), Catalan arrangements, and clusters

By [9], the cardinality of2d(g) is equal to[]"_, “+%+%, where thee;’s are the

exponents and is the Coxeter number gf. In this section, we consider tiggmple root
statisticon 2Ao(g). It is given by

sim(I) =#(I NI, IeAd(g).
Accordingly, we set

A0(g)i = {1 eAo(g) | #UNIT) =i}, i=0,1,...,p.
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Because we know the number ad-nilpotent ideals for all simplg, the numbeR(d(g)o
can be counted via the inclusion—exclusion principle. Indeed, the ideals contajréng
can be identified with the ideals of the semisimple subalgebigawhose simple roots

arelT \ {«;}. Write g(J) for the semisimple subalgebra gfwhose set of simple roots is
J CII.Then

#Ao(@o= Y  (~D7 A (a())). (3.1)
JciI1

In turn, the numberg&lo(g); (i > 0) are easily computed, once one kno¥a(g)g. For
instance, the number of ideals containing exactly one simple rooty;sag equal to the
number of all ideals ig(IT \ {«;}) that do not contain simple roots. Hence

#o@i= Y #A(a())),
#J/=p—-1

Similarly, one obtains the general formula:

#H@i= Y #M(g(), (3.2)
#J=p—i

Of course, applying Egs. (3.1) and (3.2), one should use the relation that if; & b2,
then (0 (h) = #A0(h1)-#A0(h2), and likewise foRld(h)o.
The distribution of the simple root statistic ov#v(g) yields the polynomial

P
Sg(q) =Y #A0(@)i)q’,

i=0

which is not hard to compute. For instance, Table 1 contains the relevant data for
exceptional Lie algebras.

It immediately follows from Eq. (3.2) that%o(g), = 1 and #(0(g),—1 = p. A bit
longer analysis yields

Proposition 3.3. If g is simply-laced, ther¥Ad(g),—2 = (p — D(p + 2/2; If g €
{B,C, F}, then#o(g) p—2 = p(p +1)/2.

Table 1
i 0 1 2 3 4 5 6 7 8
Fa 66 24 10 4 1
20 6 1
#00(g); Eg 418 228 110 50
E7 2431 1001 429 187 77 27 7 1

Eg 17342 4784 1771 728 299 112 35 8 1
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Proof. There arep(p — 1) subalgebras of the forng(J) with #J = 2. Of these
subalgebras, we have

e p — 1 subalgebra of typAs and(p — 1)(p — 2)/2 subalgebras of typ&i x Aq, if g
is simply-laced;

e one subalgebra of typ€,, p — 2 subalgebras of typA, and (p — D)(p — 2)/2
subalgebras of typA; x Aq, if g is doubly-laced. O

Our results and conjectures for the classical series are as follows.

Theorem 3.4.

i+1 (2p—i
#AV(A )i = , 1=01,...,p.
( p)l P+1( P > L p

We defer the proof to Section 4. Arguing by induction prand using Eq. (3.2), one
obtainsSy(q) = Syv(q), whereg" is the Langlands dual Lie algebra. The only practical
output of this equality is that the simple root statistic has the same distributioBfor
andC,. However, we have only conjectural values @y andD,,, which are verified for
p<8.

Conjecture 3.5.

2p—1—i .
#QlO(Cp)i=< -1 ), i=0,1,...,p.
- (2p—2—i 2p—3—i .
#910(Dp)z—< p—2 >+( p—2 ), i=12,...,p.

Notice that the conjecture does not give an expression¥a(B,)o. As we will see

below, the right value for%o(D ) is (2;’_’22) + (2;:33 )

Using Eq. (3.1), it is easy to comput@(#(g)o for any simple Lie algebra. However,
obtaining a closed expression in the classical case requires some work. In order to obtain
a more conceptual explanation and the closed formula valid for, &k use the theory of
arrangements.

Remark 3.6. Remark Having written up Propositions 3.7 and 3.10 below, | found that
exactly the same results are obtained in the recent preprint of C. Athanasiadis [4]. In this
preprint, he gave a conceptual proof of the formula (3.9) for the characteristic polynomial
of the Catalan arrangement. In fact, Eq. (3.9) was known for all simple Lie algebras via
case-by-case verification, and this was used in my original argument.

Recall a bijection between thad-nilpotent ideals and the regions of the Catalan
arrangement that are contained in the fundamental Weyl chamber. This bijection is due
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to Shi [18, Theorem 1.4], see also [9, §4]. Thatalan arrangementat(A) is the set of
hyperplanes i having the equations

(X,M):]-, (-xvluf)zov (-xvlu’):_l (M€A+)

Theregionsof an arrangement are the connected components of the compleniémifin
the union of all its hyperplanes. Clearly,is a union of regions of Caf\). Any region
lying in C is said to bedominant The bijection takes an idedlc AT to the region

Ri={xeCl(x,y)>1ifyeland(x,y) <1, if y ¢I}.

Obviously, the dominant regions of Gat) are the same as those for tBRi arrangement
Shi(A). Here ShiA) is the set of hyperplanes i having the equations

(x,w) =1, (x,u)=0 (neAat).

It will be more convenient for us to deal with the arrangement(&atsince it isW-
invariant. A region (of an arrangement) is calledunded if it is contained in a sphere
about the origin.

Proposition 3.7. I € 20o(g)o if and only if the regionk; is bounded.

Proof. (1) Supposd N IT = @. Then the definition oR; shows that it is contained in the
bounded domain ig given by the inequalitie&x, x) <1, « € I1.

(2) Supposeax; € I N I1. Then[ also contains all positive roots whose coefficient
of «; in the expression through the simple roots is positive. Hence for all soctgch
that (v, ¢;) > 0 we have the constraints, ) > 1. This means that it € R;, then all
constraints are satisfied for+ ag; with anya € R>o. Thus,R; is unbounded. O

The number of regions and bounded regions of any hyperplane arrangement can be
counted through the use of a striking result of T. Zaslavsky. ket ) denote the
characteristic polynomial of a hyperplane arrangereint V (see, e.g., [2,17] for precise
definitions).

Theorem 3.8 (Zaslavsky [23, Section 2]). (Ihe number of regions into which dissects
V equalsr(A) = (=P x (A, —-1).
(2) The number of bounded regions into whidtdissectsV equalsb(A) = |x (A, 1)|.

Recently, Athanasiadis [4] found a rather simple case-free proof of the following
formula for the characteristic polynomial of the Catalan arrangement:

p
x(Catta), 1) =] [ —h—e. (3.9)
i=1

(For the classical series, it was computed earlier in [2].) Now, combining the preceding
results, we arrive at our goal.
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Proposition 3.10.

)4

h+e —1

#o@o=[1—"7=
i=1 !

Proof. Since the arrangement Caf) is W-invariant, the number of its bounded regions
lying in C is equal toﬁﬂ(Cat(A), 1)|. Itremains to observe that#=[];(e; +1). O

Similarly, using the value (Cat(A), —1), as Athanasiadis also did in [4], one obtains
the formula for the number of adld-nilpotent ideals stated at the beginning of this section.
This proof is not so elementary as the proof of Cellini—Papi [9], for it requires some deep
results from the theory of arrangements.

Itis quite interesting that the numbdrg_, “+++ and[]/_, “*%+* also appearin[11,
Theorem 1.9 and Proposition 3.9] as the numbers of all and posmve clusters, respectively.
We are not going to discuss the theory of clusters related to the root systems, referring
to that paper for all relevant definitions. For our current purposes, it suffices to know that
clusters are certain subsets ot U (—IT). Each cluster is a linearly independent subset
of V having exactlyp elements. A cluster is callgabsitive if all its elements are positive
roots.

A close relationship between clusters antdnilpotent ideals is seen in the following
curious fact. Letlus(g); denote the set of clusters having exac¢tglements from-17.

Theorem 3.11. One always has the equali#(o(g); = #Clus(g);.

Proof. From Proposition 3.6 in [11], it follows that the numb&¥ss(g);, i =0,1,..., p
also satisfy the recurrent relations Egs. (3.1) and (3.2).

It is not too brave to suggest that there exists a natural bijection between clusters and
ad-nilpotent ideals that takeBlus(g); to 2Ao(g); for all ;.

4. On ad-nilpotent idealsfor g = sl,,

For the rest of the paper, we are going to study another combinatorial statistic on the
set ofad-nilpotent ideals, which is related to the theory developed in Section 2. We first
consider the classical series in Sections 4 and 5, and then move to the general case in
Section 6.

At the rest of this section, = sl,, and hence = n — 1. We assume théat(respectivelyt)
is standard, i.e., it is the space of upper-triangular (respectively diagonal) matrices. Then
the positive roots are identified with the pa(isj), where 1< i < j < n. For instance,

a; = (i,i + 1) andd = (1, n). An ad-nilpotentb-ideal is represented by a right-justified
Ferrers diagram with at most— 1 rows, where the length éth row is at most: — ;. If a
box of a Ferrers diagram corresponds to a positive (©g9, then we say that this box has
the coordinate&. j). The unigue northeast corner of the diagram correspongisital the
southwest corners give rise to the generators of the corresponding ideal, see Fig. 1.
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i1 Jk

Fig. 1. Anad-nilpotent ideal ins;, .

Such a diagram (ideal) is completely determined by the coordinates of boxes that
contain the southwest corners of the diagram,@ayj1), .. ., (i, jx). Then we obviously
havel" (I) = {(i1, j1). - ... (ix, ji)} and

1<ii<io<---<ipx<n—1, 2<j1i<jo<---<jr<n.

Various enumerative results fad-nilpotent ideals insl, are obtained in [1,8,14]. In
particular, the total number @fd-nilpotent ideals equal§, = n—}rl(zlf) thenth Catalan
number. There is a host of combinatorial objects that are counted by Catalan numbers, see
[21, Chapter 6, Example 6.19] and the “Catalan addendum” at www-math.mit.edu/~rstan/

ec. We shall use the fact tha}, is equal to

(a) the number of all sequences= vivz--- v, 0f n 1's andn —1's with all partial sums
nonnegative, or

(b) the number of lattice paths fro®, 0) to (n, n) with steps(1, 0) and (0, 1), always
staying in the domain < y, i.e., the number of Dyck paths of semilength

In our matrix interpretation, we are forced to assume thatxtaxis is vertical and
directed downwards, while theaxis is horizontal. Therefor@®, 0) is the upper-left corner
and(n, n) is the lower-right corner of the matrix. The Dyck path corresponding tadan
nilpotent ideal is the double path in Fig. 1. It hasgeps. The corresponding sequence
is obtained as follows. We start fro¢@, 0) and attacht1 to the horizontal step (i.6(0, 1))
and—1 to the vertical step (i.e(1, 0)).

Remark. Coordinates of boxes of Ferrers diagrams and lattice points considered above are
compatible in the sense that the coordinates of a box are equal to the coordinates of its
southeast corner.
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Proof of Theorem 3.4. Once the relationship between thé-nilpotent ideals insl,, and

Dyck paths is established, one may appeal to huge combinatorial literature on the latter.
It is clear thatl € 2Ad(sl,) contains a simple root if and only if the corresponding Dyck
path touches the diagonal somewhere except the p@n® and (n, n). In other words,

the number of simple roots ih equals the number of (intermediatejurnsof the Dyck

path. The distribution of this statistic is well-known, see, e.g., [10, 6.6].

Let 20, denote the set of alhd-nilpotent ideals forsl,. From now on, we stick
to considering the statistic ge®ld,, — N, which assigns to an ideal the number of its
generators. Leﬂaﬁ, 0 < k < n—1, be the set of ideals with generators, i.e., the set of
Ferrers diagrams, as above, with exaétouthwest corners.

#0,) = % <Z) <k11>‘

Proof. The numbersN(n, k) = %(’,j)(kfl) k=1,...,n, are called theNarayana

numbersso that we are to show tha(%’,‘l‘l) = N(n, k). It is known that the Narayana
numbers have the following combinatorial interpretation, see [21, Chapter 6, Example
36(a)]. LetX,x be the set of all sequences=v1 - -- v, asin (a) above, such that

Proposition 4.1.

k=#jlvi=1 vjz1=-1}
Then #X,x) = N(n, k). Forv € X,;, itis easily seen that
k=1=#jlvi=-1 vjy1=1}.

The change of sign from 1 te1 (respectively from-1 to 1) inv corresponds to the turn of

the type “horizontal followed by vertical” (respectively “vertical followed by horizontal”)
step in the respective lattice path. Geometrically, the steps of second type correspond to
the southwest corners of our Ferrers diagram. It follows that the sequekcEsg; are in
bijection with the Ferrers diagrams wikth— 1 southwest corners, and we are dongl

SinceN (n, k) = N (n, n — k + 1), one may suggest that there is a bijective interpretation
of this equality. This is really the case.

Theorem 4.2. There is a natural bijection betwee@¥pX and2(o” %1,

Proof. Let (i1, j1),..., (ix, jx) be the generators of aad-nilpotent ideal I < Qlaﬁ.
Consider separately the ordered sets of the first and second coordinates for these generators,
i.e.putX(l) ={i1,...,ix}andY () = {j;, ..., jr}. We wish to construct two other ordered

sets that will form the first and the second coordinates of the generators for the dual ideal.
To this end, put

X(I*):{1,...,n—1}\{j1—1,~-~,jk—1}~



D.1. Panyushev / Journal of Algebra 274 (2004) 822-846 837

Y(I*)={2,...,1’1}\{i1+1,...,ik-‘rl}.

ForA ={aq,...,an}, itis convenientto introduce notatiotja] = {a1 +a, ..., an + a}.
Then the previous formulas can be written as

X(I*)=({2,....n}\ Y(D)[-1], 4.3)
Y(I*)=({1,....n = 1)\ X(D)[1]. '
Itis then easily seen that the square of this transformation is the idenmyﬂpnTherefore
one has only to prove that the ordered sétg*), Y (I*) determine arad-nilpotent ideal.
The latter means that iK (/") = {i],....i;_,_;} andY(I*) = {j], ..., j5_;_4}, then
ij; < j;‘ for all ¢. (Of coursejj <i; < --- and likewise forj;".)

(a) Giveng €{1,...,n —k — 1}, suppose there i& such that,, > m + g — 1. Assume
also thatm is the minimal number with this property. Thép > m + g andiy,,—1 <
m — 1+ g. Therefore theggth element of{1,...,n — 1} \ X({I) ism — 1+ ¢ and
hencej; =m +q. Sincej, > in =m + q, we can find the minimal numbérsuch
thatj; > 1 + ¢. Thenl < m and thegth element off2,...,n} \ Y(I) isl + ¢. Thus,
ig=l+q—1<m+q=j;.

(b) Supposei,, <m +qg — 1 forall m € {1,...,k}, that is, iy <k + g — 1. Then
the gth element of{1,...,n — 1} \ X(I) is k + ¢ and hencej; =k + g + 1.
On the other hand, the inequalitié§ < i;‘+1 <. <i¥ . 4 <n—1show that
i;"g(n—l)—((n—k—l)—q)zq—i-k.

Thus,X (I*) andY (I*) determine an element 8f0” =1, which we denote by*. O
Forallk € {0, 1,...,n—1}, we have constructed bijections
Aok — Aor -1 1 1

which give rise to an involutory transformatian 200, — 200,. Although this transfor-
mation is not order-reversing with respect to the inclusion of ideals, it has interesting
properties. The formulation of these properties is “universal,” i.e., it makes sense for any
(semi)simple Lie algebra:
Lemma 4.4. Supposed C I1 is an arbitrary subset, and = 71 (A). Thenl* =1 (1T \ A).
Proof. Straightforward. Use formulae (4.3) 0

To state one more property, we need some notation. As usual, the height of a root
y € AT is denoted by K/). Recall thath = ht(9) + 1 is the Coxeter number gf. Set
AT (k) ={y € AT | ht(y) =k} and A = {y € AT | ht(y) > k}. Itis clear thatA] is a

combinatoriakd-nilpotent ideal and“(A,j) = AT(%).
Forsl,, we have hii, j) = j — i and the Coxeter numberis
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Lemma4.5. In case ofl,, we have(A,)* = Ay =401k

Proof. Setl = A,f. In our notation, the roots in ™ (k) are(1, k+1), (2, k+2),..., (n—
k,n).HenceX(I) ={1,2,...,.n—k}andY(I) ={k+1,k+2,...,n}. ThereforeX (I*) =
{1,2,....,k—1}andY(I*) = {n —k + 2,...,n}. This means that* is generated by the
roots(L,n —k+2),...,(k—1,n),ie., alrootsof height —k+1. O

Examples. In the geometric context, taking= 1, we obtainu* = {0}. Fork = 2, we have
[u, u]* = gg, becausé@ is the only root of height — 1.

It is curious that our definition of the dual-nilpotent ideal forsl, leads to another
occurrence of Catalan numbers. Namely, let us try to describe and enumerate the self-dual
ideals. Forl € v, the necessary condition of self-dualitysis=n —m — 1. That is,
n=2m+ 1.

Theorem 4.6. There are no self-duald-nilpotent ideals fotsly,,. For sl 41, the number
of self-dualad-nilpotentb-ideals is equal to,= ().
Proof. We use the notation introduced in Theorem 4.2. Supgoseloy, | and X =
X(I) ={i1,iz,...,im}, Y =YU) = {j1, j2, ..., jm}. The condition] = I* means that
X=X*=({23,....2m+1}\Y)[-1llandY =Y*=({1,2,...,2m}\ X)[1]. Clearly, all
these equalities are equivalent to the following

(1,2,....2m) = {it iz, .. im}U{j1—1 jo— 1, ..., jm — 1} = X L Y[=1].

ThereforeY is determined byX and vice versa. Howevek cannot be an arbitrary:-
element subset dfL, 2, ..., 2m}, since the conditiong < ji, k=1,..., m, must also be
satisfied. GivernX C {1, 2, ..., 2m} with #(X) = m, define the sequenae= vivz...v2y,
by the following rule:
i — 1, ifi e X,
Tl -1, ifiéX.
Then the painX, {1, 2,...,2m} \ X} = Y[-1]) determines arad-nilpotent ideal if and

only if all partial sums ofv are nonnegative. Indee; %% v; < 0 if and only if i > ji.
As was mentioned above, the number of such sequencesighh@atalan number. O

To illustrate Theorem 4.6, we list the generators of all self-dual idealsfor

rn={(1,5,(26), 3.7}, nR=1{1,4),(26),47},
{(1.9),2,5),5,7}, In=1{(13),(3,6), (4D},

{(1.3),(3,5), (5, N}

I3

I5
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Remark 4.7. The equality of Theorem 4.6 is (almost) an instance of the so-cajled -1
phenomenon” studied by J. Stembridge [22]. The distribution of the statistic “number of
generators” yields the polynomial

N(q)—Z#Qlak Z%( ><k+1) k

k=0 k=0

which is often called thdlarayana polynomialTheq = —1 phenomenonis said to occur if
N, (—1) counts the number of fixed points of some natural involutio®op. We already
have the involution " and know the number of its fixed points. On the other hand, it
follows from [7, Proposition 2.2] that

if n is even
No(-1) = { (=1)®=D/2¢C,_q/5, if nisodd (4.8)
(Actually, the authors of [7] deal with the polynomial(g) = (14 ¢q) N, (¢ + 1). However,
the sign given there for the valdg(—2) should be opposite.) Thus, we see that¢ghe —1
phenomenon occurs up to sign. It is interesting that Eq. (4.8) appears also in [13, p. 276]
in connection with a discussion of the Charney—Davis conjecture and properties of the
Coxeter zonotope of typa.

The involution o, (and hence on the set of Dyck paths of semilengtdescribed
in Theorem 4.2 seems to be new.

5. ad-nilpotent b-idealsfor orthogonal and symplectic Lie algebras

A possible idea for constructing an involutory mapping(o(g) — 2A0(g) for the other
classical Lie algebras can be the following:

Consider the standard embeddiag- sly, and choose a Borel subalgetfrac sly
such thath N g = b is a Borel subalgebra af. Making use of the embeddirtgc b, one
can regardd(b, g) as a subset dlld(b, sly) consisting of ideals satisfying a symmetry
condition. Then we apply t8(d(b, sly) the duality procedure described in the previous
section. The last step should be to interpret the resulting idesllyiras an element of
2A0(b, g).

It turns out that this recipe yields “expected” results §pj ,, but not immediately for
s0,. The obstacle is that the last step in the above program cannot always be fulfilled in
the orthogonal case. Still, one can modify this procedure, so that to get a suitable result for
s02p+1. However, | do not know how to deal with the cases0f,.

5.1. The symplectic case

Choose a basis for ap2dimensional symplecti&-vector spaceV so that the skew-
symmetric non-degenerate bilinear form has the ms(’tgi% 7;”) whereY;, isthep x p
P
matrix whose only nonzero entries are 1's along the antidiagonal.
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For any A € Mat,(k), let A denote the matrixt’,(A") T, where A" is the usual
transpose ofA. The transformatiom — A is the transpose relative to the antidiagonal.
In the above basis fov, the algebrap,, has the following block form:

5p2p:{(2 g)‘B:B\y C=6, D:—A\},

whereA, B, C, D arep x p matrices. Ifb is the standard Borel subalgebrastf,, then
b:= Enspzp is a Borel subalgebra ap,,, . It follows thato(sp,,) can be identified with

the subset ofA0(sl3,) consisting of all Ferrers diagram that are symmetric relative to the
antidiagonal.

Let us say thatl e Ao(slpp) is self-conjugateif the corresponding Ferrers diagram
is symmetric with respect to the antidiagonal. It is easily seen théteif%lo(slzp) is
self-conjugate, ther* is self-conjugate as well, see below. This induces the desired
involution on 2Ad(sp,,), and a straightforward verification shows that this involution
satisfies properties (4.4) and (4.5).

Since the Ferrers diagram corresponding toadmilpotent b-ideal has a symmetry
property, we may cancel out its part which is below the antidiagonal. What we obtain is a
shifted Ferrers diagram.

Example5.1.1. g = spg. In our matrix interpretation, the array of positive roots is

1000 1100 1110 1111 1121 1221 2221
0100 0110 0111 0121 0221
0010 0011 0021
0001

where the quadruple cacacs stands for the roo}  ¢;«;. Consider thead-nilpotent ideal
I whose generators asg, a2 + a3, 2a3 + a4. The corresponding shifted Ferrers diagram
is depicted on the left hand side in Fig. 2.

The dotted lines demonstrate the positive roots that are nbtémd the whole array
corresponds taA* (or u). The boxes marked witho' represent the generators. The
corresponding self-conjugate idefak A0 (slg) is depicted in Fig. 3, where the dotted line
is the antidiagonal.

Fig. 2. Anad-nilpotent ideal ind(spg) and its dual.
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~i

Fig. 3. The self-conjugated-nilpotent ideall in Ad(slg).

From the picture representing, we find that X (/) = {1,2,3,5,7} and Y (/) =
{2,4,6,7,8}. ThereforeX (I*) = {2,4} and Y (I*) = {5, 7}. This leads to the diagram
depicted on the right hand side in Fig. 2. The sole generator of theitlésad, + a3 + a4.

Formally, our recipe for constructing the dual ad-nilpotent ideaRld(sp,,) is as
follows. We use the same coordinate system as inlfrease. The shifted Ferrers diagram
(as in Fig. 2) is determined by the coordinates of the boxes that contain its southwest
corners, and these boxes give rise to the generators of the respettiipotent ideal.
Supposd” = {(i1, j1), - - -, (ik, Jx)} IS the set of generators dfe 2A0(sp2,), andi; < iz <
.- <. Theni; < jiforall l, j1 < jo» <--- < ji, andiy + jr < 2p + 1. Conversely, if a
setI” satisfies all these inequalities, then it is the set of generatorsaaf-ailpotent ideal.
Denoting by! the corresponding self-conjugate ideaRin(slz,), we obtain

X(I)=(i1,....ix.2p + 1= ji,....2p+1— ju),
Y(I)=(1, v ks 2p + 1 =ik, ..., 2p + 1 —in).

[If ix + jx = 2p + 1, then one should cancel out the repetition in the middle.] The
coordinates of vector¥ (1), Y (/) can be paired so that the sum in each pair is equal to
2p + 1. Therefore the same property holds for the shifted complemeqts), Y (I*).
That is, I* is again a self-conjugate ideal ®o(slz,), and we can define the ideal
I*e Qla(spzp).

Notice that

#O() +#T (%) = p

and the multiset{I" (1), I' (I*)} contains a unique long root, i.e., the distribution of long
and short roots is always the same ag1in (A long root corresponds to the generator
(ix, jr) With ix + jr = 2p + 1.) In particular, the equality = I'* is impossible, i.e., there
areno self-dualad-nilpotent ideals.

Example 5.1.2. g = spg. In Table 2, we list all pairs of duald-nilpotent ideals including
the ideals with one and two generators. The column Witrespectively/*) contains all
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Table 2

Pairs of duakd-nilpotent ideals irspg

No. r) rda#*
1-3 o T\ {e;}
4 a1+ oz a1+, 03
5 ap + a3 2000 + a3, a1
6 20+ a3 o2 +az,
7 a1 +ap+ a3 a1 +ap, 200 + a3
8 a1+ 200 + a3 o1 + oo + a3z, 200 + a3
9 201 + 200 + a3 a1 +a, 00 + a3

ideals with one (respectively) two generators. The numeration of simple roots is standard:
a1 =€1— €2, A2 = &2 — €3, a3 = 2¢3.

Itis clearly seen that properties of Lemmas 4.4 and 4.5 are satisfied here.
5.2. The orthogonal case

Choose a basis for anrdimensional orthogoné-vector spac& so that the symmetric
non-degenerate bilinear form has the matfjx In the above basis fé¥, we have:

so,={A|A=—A4}.

Here we also have := b N so, is a Borel subalgebra. This means that to adynilpotent

b-ideal inso,,, one can again attach a self-conjugadminotentE-ideaI insl,. But unlike

the symplectic case this mapping is not onto. The reason is that the orthogonal matrices
have zero antidiagonal entries. Therefore a self-conjughtelpotent ideal insl,, having

a generator on the antidiagonal cannot correspondbtidaal inso,. It may happen that,

for I € Ad(s0,), the last element in the sequenice> I — I* cannot be interpreted as an
ideal inso,,. S0, a haive attempt to repeat the “symplectic” procedure fails.

In the odd-dimensional case, this difficulty can be circumvented by associating to a
b-ideal inso2,+1 the ideal insp,, having the same shape (shifted Ferrers diagram). This
is achieved by cancelling out from a symmetric Ferrers diagram both the antidiagonal
(which corresponds to zero entries in the matrix) and the part below the antidiagonal. This
leads to a satisfactory procedure.

Example 5.2.1. g = so7. In Table 3, we list all pairs of duald-nilpotent ideals including

the ideals with one and two generators. The column Witrespectively/*) contains all
ideals with one (respectively) two generators. The numeration of simple roots is standard:
o1 =¢&1— &2, ap = &2 — €3, az = £3. One can see some small distinctions from Table 2.

Again, the properties of Lemmas 4.4 and 4.5 are satisfied here. In the following section,
we also summarize some other properties of the duality mapping that are inspired by our
computations in classical cases.
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Table 3

Pairs of duakd-nilpotent ideals irso7

No. ra r(*
1-3 o T\ {o;}
4 oy o oy +op, a3
5 o + a3 ap + 203, 01
6 ao + 203 ao + o3, 01
7 a1 +ap+ a3 a1+, a2+ 203
8 a1 + oo + 203 oy + oo + a3z, 0 + 203
9 a1+ 200 + 203 o1 +op, a0+ a3

6. Towardsthegeneral case

Inview of Theorem 4.2, it is natural to ask whether there is a natural involutory mapping
*:20(g) — Ad(g) for any simple Lie algebrg such that

#(I (D) +#I (1) =rkg

and the two properties of Lemmas 4.4 and 4.5 are also satisfied?

Itis plausible that a conjectural definition of duality should exploit somehow admissible
elements ofi¥ and the simplexD. Although my attempts to define such a mapping in a
uniform way were unsuccessful, | believe that such a mapping does exist.

Since anad-nilpotent ideall € 2(0(g) is completely determined by the corresponding
antichainl” = I'(I) C A™, properties of the conjectural duality @v(g) can be restated
in terms of antichains im™. Let An(A™) denote the set of all antichains iit. For a
moment, we assume that is not necessarily irreducible, anti=| |; A;, where eact;
is an irreducible root system and the rankAfis p;.

Conjecture6.1. There exists a natural involutory mapping
#:1An(AT) - An(AT)
such that the following hol ds faf € 2An(A™):

() r*= " nA)* and(I" N A;)* depends only ol N A;;

(i) #(' N A) +#(T*N A;) = p; forall i;

(iii) Supposel” contains a simple rootv. Write A(IT \ {«}) for the root subsystem
spanned by the set of simple rod¥s\ {«}. ThenI"'* c AT \ {«})* and moreover,
I'* =(I' \ {a})*, wherel" \ {«} is regarded as antichain im(I7 \ {a})™;

(iv) (Approximately a converse to the previous propert§. " c AT \ {«})", then
I'* = {a} U {the dual ofI" taken inA(IT \ {a})T});

(v) If Aisirreducible, then(AT (k))* = AT (h + 1 — k), whereh is the Coxeter number
of A (cf. Lemmad.5);

(vi) the distribution of long and short roots in the multigeét, I"*} is the same as idI.
(This condition is vacuous in the simply-laced case.
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Itis easy to see that the duality defined for the root systems oftypd,,, C,, satisfies
all these properties. Also, it is immediate that¢an uniquely be defined fdag,.

Now, we again assume that is irreducible. Clearly, a necessary condition for such a
duality to exist is that the number of antichains of cardinatitpught to be equal to the
number of antichains of cardinalify— k. This holds in all cases, where the corresponding
values are known, see belowil = 0, then the assertion follows from Proposition 2.10. In
casek = 1, one should be able to prove that the number of positive roots is equal to the
number of antichains of cardinalify — 1. Unfortunately, the only proof | know amounts
to a case-by-case verification.

For each simple Lie algebrg, we define an analogue of Narayana polynomial
as follows. Letdi(g) be the number of alhd-nilpotent ideals withk generators or,
equivalently, the number of at-element antichains is™. Then

P
No(@) =) _di(g)q" (6.2)

i=0

is said to be théarayana polynomial of typg (or, a generalized Narayana polynomial).
Clearly,do(g) = d,(g) = 1 andd1(g) =#A™. By Theorem 2.9¢,,_1(g) equals the number
of integral points lying on the edges of the simplexXexcept of the unique integral vertex).
Below, we list all generalized Narayana polynomials:

S 1 (p+1)(p+1) &

k=0

p 2
No, (@ =Ne,@) = (i) q":

k=0

NDp<q>=g)<<’,j)2— P (”;1> (’,ﬁ:i))qk.

NG, (q) =1+69 + %
NEy(q) = 1+ 24q + 552 + 2443 + ¢*;
NEg(q) = 1+ 369 + 20472 + 351g3 + 204" 4 369° + ¢°;
NE,(q) = 14 63 + 5467° + 1470;° + 1470 + 5464° + 63° + ¢ ;
Nig(q) = 1+ 120 4 15402 + 6120;° + 9518 + 6120;° 4 1540,° + 12057 + 45,

In type A, it is the usual Narayana polynomial (cf. Remark 4.7). The result for types
andC follows from [3, Corollary 5.8]. In that place, Athanasiadis computes the number
of non-nesting partitions oB, or C, whose ‘type’ has parts. However, it follows from

his previous exposition that a non-nesting partition whose typek hgsts is exactly an
antichain of cardinalityp — k. The case oD, is dealt with in [5]. Here one also has
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(7)? - (7 (4 1) is the number ohon-crossingartitions onD,, whose type has
parts [16 Section 4]. The case®@f is trivial and that ofF4 is relatlvely easy.
The case oE,, requires more work. The result can be obtained through the counting of
all integral points inD and use of Theorem 2.9.
Thus, all generalized Narayana polynomials are palindromic.
By [9], we haveN, (1) = #0(g) = 1/, hjeﬁl It would be interesting to find a
uniform expression for the coefficients of the generallzed Narayana polynomials.
Another intriguing feature is that there are nice formulae for the valGgs-1). ForA ,,
we refer again to Remark 4.7. TBg - or C,-case amounts to a well-known combinatorial

identity:

0, if p is odd

p 2
P
kzo(_l)k(k) - (_1)p/2<p1;2), if pis even

Combining the expressions fér, andB, cases, we obtain

0, if pis odd
Np,(=D) =1 _q\p/2 D\ _ p—2 o p/2o(P—2 P
& (=P [(p/z) 2<p/2_1)}—( 1)P/e2 02 ) if pis even

One may also observe thatjifis even, ther(—l)”/zj\fg(—l) is positive for all simple Lie
algebrag.
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