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Abstract We found that zaprinast, a well-known cyclic guano-
sine monophosphate-specific phosphodiesterase inhibitor, acted
as an agonist for a G protein-coupled receptor, GPR35. In our
intracellular calcium mobilization assay, zaprinast activated
rat GPR35 strongly (geometric mean EC50 value of 16 nM),
whereas it activated human GPR35 moderately (geometric mean
EC50 value of 840 nM). We also demonstrated that GPR35
acted as a Gai/o- and Ga16-coupled receptor for zaprinast when
heterologously expressed in human embryonic kidney 293
(HEK 293) cells. These findings will facilitate the research on
GPR35 and the drug discovery of the GPR35 modulators.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

The G protein-coupled receptors (GPCRs) are a large family

of cell surface receptors that account for over 30% of current

drug targets [1]. Sequencing of the human genome has led to

the discovery of novel GPCRs, and many of them are orphan

receptors for which the natural ligands have not yet been iden-

tified. To determine the biological functions of these orphan

GPCRs, identification of their natural ligands is the first step.

However, despite extensive attempts at receptor–ligand pair-

ing, a number of GPCRs are still orphan receptors. GPR35

[2] is one of these orphan GPCRs. It shares homology with

some of the purinergic receptors [2], GPR23/P2Y9 (the recep-

tor for lysophosphatidic acid) [3], and HM74 (the receptor for

nicotinic acid) [4]. Although chromosomal mapping and the

expression of GPR35 in a number of human tissues have been

investigated in previous studies [2,5,6], little is known about

this receptor.
Abbreviations: GPCR, G protein-coupled receptor; PDE, phosphodi-
esterase; HEK293, human embryonic kidney 293; hGPR35, human
GPR35; FLAG-hGPR35, FLAG-tagged human GPR35; rGPR35, rat
GPR35; DRG, dorsal root ganglion; cGMP, cyclic guanosine mono-
phosphate
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Here we report that zaprinast [7], a well-known cGMP spe-

cific-phosphodiesterases (cGMP-PDEs) inhibitor [8], acts as an

agonist for GPR35. The cyclic nucleotide phosphodiesterases

are a large group of structurally-related enzymes [9,10].

Among them, PDE4, PDE7, and PDE8 are specific enzymes

for cyclic adenosine monophosphate (cAMP), whereas

PDE5, PDE6, PDE9 are specific enzymes for cyclic guanosine

monophosphate [9,10]. Other PDEs have dual activities [9,10].

They differ in their mode of action, intracellular distribution,

tissue distribution, relative activities, and Km values [9,10].

Various stimuli induce cellular responses by increasing the

intracellular levels of cAMP and cGMP, and PDEs account

for degradation of these intracellular second messengers to ter-

minate the signals and the cellular responses [9,10]. Therefore,

regulation of PDEs activities is important to control the intra-

cellular second messenger levels and physiological responses,

and specific PDE inhibitors are utilized as both research tools

and remedies [10]. For example, sildenafil (Viagra�) is a po-

tent selective PDE5 inhibitor and an orally active drug for

erectile dysfunction [7]. Zaprinast, a lead compound for silde-

nafil, is known as a moderate inhibitor for cGMP-PDEs, espe-

cially PDE5 and PDE6 (IC50 values for PDE5, PDE6, PDE9

are 0.5–076, 0.15, and 35 lM) [7,11]. Zaprinast also inhibits

PDE10, and PDE11 weakly (IC50 values are 22 and 11–

33 lM, respectively) [11]. By using an intracellular calcium

mobilization assay, we show that zaprinast activates GPR35-

G protein pathways and this activity of zaprinast in this assay

is not attributable to inhibition of PDEs. We have also found

that GPR35 acts as a Gai/o- and Ga16-coupled receptor for

zaprinast when heterologously expressed in human embryonic

kidney 293 (HEK293) cells.
2. Materials and methods

2.1. Chemicals
Zaprinast, 8-bromoguanosine 3 0,5 0-cyclic monophosphate (8Bromo-

cGMP), T-0156 and T-1032 were purchased from Sigma.

2.2. Cloning of rat GPR35 (rGPR35)
To generate cDNA templates for RT-PCR, 5 lg of total RNA from

rat colon (Clontech) was reverse-transcribed by using SUPERSCRIPT
Preamplification Systems (Invitrogen), and an aliquot (1 lL) of the
products was subjected to PCR. To amplify rGPR35, two primers
(5 0-TCCGTCAGATGAGCCCTAGGACC-30 and 5 0-CACAGGTTC
CTCTGGCCCTTGGCATG-3 0) were designed on the basis of the
nucleotide sequence of mouse GPR35 (GenBank Accession No.
BC027429), and PCR was performed under the following conditions:
94�C for 4 min followed by 35 cycles of 94 �C for 20 s, 50 �C for
blished by Elsevier B.V. All rights reserved.
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30 s, and 72 �C for 1 min, and finally 72 �C for 4 min. Subsequently,
the PCR products were separated by electrophoresis. Although some
non-specific amplification was observed, a product of the expected size
(900–1000 bp) was obtained. The fragment was gel-purified and TA-
cloned using TOPO TA Cloning Kit (Invitrogen). Then several of
the clones obtained were sequenced. Three independent experiments
were performed to determine the sequence of rGPR35 gene without
PCR errors (GenBank Accession No. AB240684).

2.3. Expression vectors
The original cDNA for human GPR35 (hGPR35) was isolated from

human dorsal root ganglion (DRG) cDNA library (Life Technologies)
using GENETRAPPER III cDNA Positive Selection System (Life
Technologies) and an oligonucleotide probe (5 0-ATG GTNYAYA
TGCCNGGNGAYG-30). Compared with the published sequence of
hGPR35 (GenBank Accession No. AF027957), the hGPR35 obtained
in this study had three non-synonymous single nucleotide polymor-
phisms (T108M, R174A, and R294S). Among them, T108M and
R294S have been reported previously [5], while R174A was registered
in the NCBI human genome database. The fragment for FLAG-tagged
human GPR35 (FLAG-hGPR35) was generated by using the follow-
A
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Fig. 1. Discovery of zaprinast as an agonist for hGPR35. (A) Expression of
HEK293 cells transiently coexpressing the receptor (FLAG-hGPR35 or wil
loaded with Fura-2, and then were exposed to zaprinast (broken line; addition
for FLAG-hGPR35 and wild-type hGPR35 were 5.2 and 1.9 lM, respectively
in HEK293 cells. The Fura-2-loaded HEK293 cells transiently coexpressin
exposed to zaprinast (broken line; addition of zaprinast).
ing pair of primers: 5 0-CCGGAATTCGCCACCATGGATTAC-
AAGGATGACGACGATAAGAATGGCACCTACAACACCTG-3 0

and 5 0-TCGTCTAGAATTAGGCGAGGGTCACGCACA-3 0. All of
cDNAs used in this study were subcloned into pcDNA3.1 (Invitrogen).

2.4. Cell transfection and calcium mobilization assay
Transfection of HEK293 cells was performed by using FuGENE 6

Transfection Reagent (Roche) according to the manufacturer’s instruc-
tions. In brief, 400000 cells were transfected with 40 lg of the expres-
sion vectors using 60 lL of FuGENE 6 Transfection Reagent. Two
days after transfection, the cells were washed twice with Hanks’ bal-
anced salt solution (HBSS) without CaCl2 or MgCl2 (Gibco) and
loaded with 5 lM Fura 2-AM (Dojindo) in HBSS containing 0.05%
Pluronic F-127 (Sigma) for 1 h at 37 �C. After the incubation, the cells
were harvested by centrifugation and diluted to 1–3 · 105 cells/mL in
HBSS containing CaCl2, MgCl2, and MgSO4 (Gibco). Then aliquots
of the cell suspension (90 lL) were dispensed into 96-well plates (Cos-
ter). Addition of 10 lL of each ligand solution and measurement of
intracellular calcium mobilization were performed with FDSS6000
(Hamamatsu Photonics). Concentration–response curves were deter-
mined using GraphPad Prism 3 (GraphPad Software).
FLAG-hGPR35 in HEK293 cells confirmed by Western blotting. (B)
d-type hGPR35) and/or Ga proteins (Gqs5,Gqi5,Gqo5, and Ga16) were
of zaprinast). Dose–response curves are shown in parallel. EC50 values
. (C) GPR35 acted as a Gai/o- and Ga16-coupled receptor for zaprinast
g FLAG-hGPR35 and a Ga protein (Gqs5,Gqi5,Gqo5, or Ga16) were
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Fig. 3. Effect of zaprinast on rat GPR35. Fura-2-loaded HEK293 cells
transiently coexpressing rat or human GPR35 and Gqi5 were exposed
to zaprinast and intracellular calcium mobilization was measured.
Concentration–response curves are from three independents experi-
ments with each point determined in quadruplicate.

Y. Taniguchi et al. / FEBS Letters 580 (2006) 5003–5008 5005
2.5. Western blotting
To confirm the expression of FLAG-hGPR35, 1.5 · 106 cells were

dissolved in 150 lL of Tris–SDS–BME sample loading buffer (Owl)
and analyzed by Western blotting. An aliquot (20 lL) of each sample
was separated by SDS–PAGE and blotted onto polyvinylidene difluo-
ride membranes. After blocking with TBS buffer containing 1.2%
bovine serum albumin, the blot was probed with anti-FLAG M2
monoclonal antibody (Sigma) and the anti-mouse secondary antibody
(Immunotech). The signal was visualized by using ECL Western blot-
ting detection reagents (Amersham). The size of FLAG-hGPR35 ob-
served in this study was about 31 kDa (Fig. 1A).

2.6. Tissue distribution of rGPR35
After euthanasia, DRG and spinal cord tissues were removed from a

10-week-old pregnant female Sprague–Dawley rat, and treated with
ISOGEN (Toyobo) to purify total RNAs (all animal experiments per-
formed in this study were approved by the Animal Ethics Committee
of the Nagoya Laboratories of Pfizer Japan, based on the internal
guidelines for animal experiments and adherence to Pfizer policy).
Total RNAs from other tissues were purchased from BD Clontech
or Unitech. To generate cDNA templates for RT-PCR, total RNA
(5 lg) was reverse-transcribed by using SUPERSCRIPT Preamplifica-
tion Systems. To assess possible contamination by genomic DNA, a
series of samples without reverse transcriptase (�RT) were prepared
in parallel as negative controls. Then 1 lL of each reverse-transcribed
sample was used as a template for subsequent PCR. PCR was per-
formed to amplify rGPR35 using two primers (5 0-AAATTGTAG-
CATCCTCCCGTGGCC-3 0 and 5 0-TATCTTGGCTCTTGTGGGG-
TGTGC-3 0) under the following condition: 94 �C for 4 min followed
by 35 cycles of 94 �C for 20 s, 58 �C for 30 s, and 72 �C for 1 min,
and finally 72 �C for 4 min. As a positive control, glyceraldehyde-3-
A
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Fig. 2. Cloning and tissue distribution of rGPR35. (A) Alignment of the dedu
distribution of rGPR35 (expected size; 887 bp) determined by semi-quantitati
reverse transcriptase was performed in parallel. GAPDH (expected size; 245
phosphate dehydrogenase (GAPDH) was also amplified by the same
PCR procedure (except that 30 cycles were performed) using the
following primers: 5 0-GTCTTCACCACCATGGAGAAGGCT-3 0

and 5 0-GTGATGGCATGGACTGTGGTCATGA-30. After PCR,
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the samples were separated by electrophoresis and DNA was visualized
by ethidium bromide staining. The PCR products were confirmed by
sequencing.
3. Results

3.1. Identification of zaprinast as an agonist for hGPR35

To discover ligands for GPR35, we prepared HEK293 cells

transiently coexpressing FLAG-hGPR35, three chimeric Ga
proteins (Gqs5, Gqi5, and Gqo5) [12], and promiscuous Ga16

[12], because the downstream signaling molecules of GPR35

were unknown at that time. The chimeric Ga proteins and

Ga16 are used to redirect Gas- and/or Gai/o-mediated signals

to the Gaq signaling pathway, thus allowing evaluation of

the activity of most GPCRs by a calcium mobilization assay

using the above-mentioned G proteins [12]. After cells were
human GPrat GPR35 + Gqi5
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loaded with Fura-2, about 1000 compounds were assayed by

using the FDSS6000 to monitor intracellular calcium mobiliza-

tion. Among them, zaprinast (a well-known PDEs inhibitor)

induced intracellular calcium mobilization in HEK293 cells

coexpressing FLAG-hGPR35 and the four exogenous G pro-

teins (Fig. 1B), while there was little change of calcium in

the control transfectant only expressing the chimeric Ga pro-

teins and Ga16 (Fig. 1B). Further analysis showed that zapri-

nast induced intracellular calcium mobilization in the

transfectant coexpressing FLAG-hGPR35 and the four exoge-

nous Ga proteins in a concentration-dependent manner

(Fig. 1B). A similar result was obtained in an experiment using

wild-type hGPR35 (Fig. 1B). These results suggest that zapri-

nast is an agonist for hGPR35.

Next, we examined which of the Ga proteins was involved in

mediation of the signaling. When FLAG-hGPR35 was co-

expressed in HEK293 cells with Gqi5, Gqo5, or Ga16, zaprinast
R35 + Gqi5 Gqi5 only
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induced intracellular calcium mobilization (Fig. 1C). However,

no response to zaprinast was observed in either cells expressing

Gqs5 and FLAG-hGPR35 or cells expressing FLAG-hGPR35

alone (Fig. 1C). These results show that hGPR35 functions

as a Gai/o- and Ga16-coupled receptor for zaprinast in

HEK293 cells.
3.2. Cloning and tissue distribution of rGPR35

Next, we have cloned rGPR35 to evaluate the effect of zapri-

nast on this receptor. To identify and isolate rGPR35 cDNA

clone, we designed a pair of primers based on the sequence

of mouse GPR35, and the entire ORF of rGPR35 was ampli-

fied by RT-PCR using these primers. Then the PCR product of

the expected size was TA-cloned and sequenced. The PCR

product contained a 921-bp ORF of rGPR35 (data not

shown). The amino acid sequence of the cloned rGPR35

showed 72% and 85% identity with human and mouse

GPR35, respectively (Fig. 2A). We also investigated tissue dis-

tribution of rGPR35 by semi-quantitative RT-PCR (Fig. 2B).

Consistent with previous studies preformed in human [5,6], we

detected expression of rGPR35 in lung, stomach, small intes-

tine, colon, and skeletal muscle. In addition, a relatively high

level of expression in uterus and DRG, as well as moderate

expression in brain, cerebrum, heart, liver, bladder, and spinal

cord, was shown in this study (Fig. 2B).
3.3. Zaprinast as a potent agonist for rGPR35

To confirm that zaprinast was an agonist for rGPR35,

HEK293 cells transiently coexpressing rat or human GPR35

and Gqi5 were prepared, and the transfectants were exposed

to zaprinast (Fig. 3). In this assay, zaprinast caused the mod-

erate activation of hGPR35 (geometric mean EC50 value of

840 nM), while zaprinast had a potent effect on the transfec-

tant co-expressing rGPR35 and Gqi5 (geometric mean EC50 va-

lue of 16 nM). These results suggest that the zaprinast is able

to act as a potent agonist for rGPR35.
3.4. PDE5/PDE6 inhibitors without GPR35 agonist activity

To further support our findings in this study, we evaluated

the effect of phosphodiesterase inhibitors of a different chemi-

cal class on HEK293 cells transiently coexpressing either rat or

human GPR35 and Gqi5. T-0156 and T-1032 are known as po-

tent PDE5 inhibitors (IC50 values are 0.23 and 1 nM, respec-

tively) [11,13,14] and also inhibit PDE6 (IC50 values are 56

and 28 nM, respectively) [11,13,14]. T-0156 and T-1032 are

structurally different from zaprinast, a cGMP analog

(Fig. 4A) [13,14]. As shown in Fig. 4B, T-0156 (10lM) and

T-1032 (10 lM) did not induce substantial intracellular cal-

cium mobilization in HEK293 cells transiently coexpressing

either rat or human GPR35 and Gqi5, although zaprinast did

so. These results indicate that T-0156 and T-1032 do not act

as GPR35 agonists, and support our conclusion that the effect

of zaprinast on intracellular calcium mobilization is attribut-

able to its agonist activity for GPR35, not to inhibitory activity

for PDE5/PDE6. In addition, we also confirmed that 8-bro-

moguanosine 3 0,5 0-cyclic monophosphate (8Bromo-cGMP), a

membrane-permeable analogue of cGMP, did not induce the

intracellular calcium mobilization in these transfectants

(Fig. 4B), suggesting that elevation of intracellular cGMP level

was unlikely to be responsible for the intracellular calcium

mobilization in this assay system.
4. Discussion

In this study, we demonstrated that zaprinast (a cGMP-PDE

inhibitor) induced the intracellular calcium mobilization in the

cells coexpressing GPR35 and Gqi5, Gqo5, or Ga16. Induction of

intracellular calcium mobilization by zaprinast in the GPR35-

expressing transfectants was due to selective activation of the

GPR35-Ga (Gqi5, Gqo5, or Ga16) signaling pathway, rather

than inhibition of phosphodiesterases (PDE5, PDE6, PDE9,

PDE10, and PDE11), direct activation of Ga proteins, or

non-selective stimulation of endogenous GPCR-Ga signaling

pathway, because expression of both GPR35 and Ga proteins

(Gqi5, Gqo5, or Ga16) was necessary preconditions for this ac-

tion of zaprinast (Figs. 1B, C, and 3). Thus, these observations

strongly suggest that zaprinast acts as an agonist for GPR35.

Zaprinast potently induced intracellular calcium mobilization

in the transfectant coexpressing rGPR35 and Gqi5 with an

EC50 value of 16 nM (Fig. 3), while effects of zaprinast on

PDEs are moderate or weak (see Section 1). In addition, the

selective PDE5/PDE6 inhibitors T-0156 and T-1032 did not

have any effect on the transfectants coexpressing GPR35 and

Gqi5 (Fig. 4B). Furthermore, 8Bromo-cGMP did not induce

intracellular calcium mobilization in our assay (Fig. 4B). These

facts also support our conclusion.

Several recent reports have suggested that zaprinast may

possess pharmacological activities other than PDEs inhibition.

For example, Wibberley et al. demonstrated a nitric oxide

(NO)-independent role for zaprinast in the regulation of ure-

thral sphincter tone [15]. Yoon et al. reported that intrathecal

zaprinast had an antinociceptive effect in the rat formalin test,

and that this effect was not related to the NO-cGMP-potas-

sium channel pathway [16]. Because cGMP PDEs are deeply

involved in the NO-cGMP signaling pathway (NO activates

soluble guanylyl cyclase to increase the intracellular cGMP le-

vel, while cGMP PDE terminates NO/cGMP-dependent sig-

nals by degrading cGMP) [17], these NO/cGMP-independent

effects of zaprinast may be mediated by GPR35 activation.

Numerous reports about pharmacological studies of PDEs

inhibition by zaprinast have been published [7]. However, it

may be necessary to repeat those experiments with different

structural classes of selective PDE inhibitors since the

GPR35 agonist activity of zaprinast was revealed in this study.

It is important to note that zaprinast is a lead compound for

sildenafil (Viagra�) [7], indicating that zaprinast has favorable

chemical properties for drug design. It may be feasible to iden-

tify potent and selective agonists and/or antagonists for

hGPR35 without phosphodiesterase inhibitory activity from

among compounds related to zaprinast. In fact, we have al-

ready identified a number of GPR35 agonists with different po-

tency and species selectivity among zaprinast derivatives

(Taniguchi et al, Patent Application WO2005085867(A2)),

suggesting that zaprinast may serve as a lead compound to de-

velop drugs that modulate GPR35 activity.

During the review process of this manuscript, Wang et al.

reported that kynurenic acid was a natural ligand for

GPR35 [18]. They independently showed that GPR35 acted

as a Gai/o- and Ga16-coupled receptor using kynurenic acid,

which was consistent with our results obtained with zaprinast.

However, affinity of kynurenic acid for GPR35 is relatively low

(EC50 values of 7.4–39.2 lM) [18]. Thus, other chemical

classes of natural ligand with higher affinity may be expected.

Because GPR35 shares homology with GPCRs belonging to
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the P2Y family [2] and zaprinast is a xanthine derivative [7],

our findings may provide a hint to discover the natural ligand

for GPR35.
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