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Abstract

It is well known that when the Lie algebra is of typeA, D, E the Springer fiber above a
subregular nilpotent element is described by the Dynkin diagram and is called the Dynkin curve
of the Lie algebra. On the other hand, the closure of the minimal nilpotent orbit is obtained by
collapsing the zero section of a cotangent bundle of a projective spacePk . In this article, we
are interested in the study of the generalized Springer resolution of typeA, we give a complete
description of the generalized Springer fiber above a generic singularities showing that it is
isomorphic to a Dynkin curve or to a projective space.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and notations

In 1970, E. Brieskorn has discovered a connection between the rational double points
singularities with the complex Lie algebra theory, (cf.[5]). His result is the following:
let G be a simple algebraic group of typeA,D,E with Lie algebra Lie(G) = g. LetN
be the nilpotent cone ofg. The varietyN is exactly the closure of an unique nilpotent
orbit Oreg called theregular nilpotent orbit. There is an unique nilpotent orbitOs−reg
of codimension 2 inN such thatOs−reg= N − Oreg (Os−reg is called thesubregular
nilpotent orbit). LetTx denote a transverse slice ing to the orbitOs−reg at the point
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x ∈ Os−reg. Then(Tx ∩N , x) is a normal surface with an isolated rational double point
of type corresponding tog. Few years later Esnault[10] has obtained the same result
with a geometric point of view which consists to the study of the Springer resolution,
fb : T ∗(G/B) → N , whereB is a Borel subgroup ofG [23]: the Springer fiber above
x ∈ Os−reg is well known as a finite union of projective lines which corresponds to the
Dynkin curveof g, and it was originally obtained by Tits (see[26]); H. Esnault shows
that each projective line of the Springer fiber above a subregular nilpotent element has
a self-intersection−2, this proves that the Springer resolution restricts to the minimal
resolution of the generic singularities ofN and shows again that these singularities are
rational double points of same type asg.
On the other hand, there is an other interesting singularity arising from the closure of

theminimal nilpotent orbitOmin in g corresponding to the unique (non-zero) nilpotent
orbit which is contained in the closure of all non-zero nilpotent orbit, andOmin =
Omin∪{0} is normal and has an isolated singularity. In caseg = sl(n,C) such singularity
is exactly obtained by collapsing the cotangent bundle ofPn−1, so the fiber above such
singularity is exactly the zero section of this cotangent bundle.
In the present work, we are interested in the study of the fibers of thegeneralized

Springer resolution, fp : T ∗(G/P ) → Op, where P is a parabolic subgroup of a
semisimple complex algebraic groupG andOp denotes the Richardson orbit associated
to Lie(P ) = p. Firstly, we obtain a result on the dimension of the fibers offp, (cf.
Theorem2.1) which is a generalization of a Steinberg’s work[26,27], the last result will
allow us to describe some irreducible components of the fibers offp (cf. Proposition
2.4). Next, we restrict our study to the caseG = SL(n,C); we will give a description of
the intersectionOp with the nilpotent radical ofp (cf. Theorem3.3), this will help us to
describe the closure of the intersection of the nilpotent radical ofp with everyadjacent
nilpotent orbit toOp (cf. Theorem3.7), and we will give a complete description of the
generalized Springer fibers above the elements of such orbit (cf. Theorem3.9) showing
that those fibers are isomorphic to a Dynkin curve or to a projective space. Finally,
by adopting Esnault’s work we will find in some cases that the generalized Springer
resolution restricts to the minimal resolution of some rational double points of typeA
(cf. Theorem4.6).
Let G be a semisimple (connected) complex algebraic group with Lie algebra

Lie(G) = g on whichG acts by the adjoint action. Fix a Cartan subalgebrah. Let W
denote the associated Weyl group. We have the Chevalley–Cartan decomposition ofg:

g = h⊕
∑
�∈R

g�,

whereR is the root system ofg relatively to h. Let S be a set of simple roots ofR.
DenoteR+ (resp.,R−) the positive roots (resp., negative roots) (w.r.t.S). Let b :=
h⊕ ∑

�∈R+
g� be the standard Borel subalgebra (w.r.t.S). Let B be the Borel subgroup

of G with Lie(B) = b. Let P be a standard parabolic subgroup with Lie(P) = p. The
parabolic subalgebrap is determined by a subsetSp ⊂ S. DenoteRp the root subsystem
generated bySp andWp the subgroup ofW generated by the simple reflexionss�
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with � ∈ Rp. We also have

p = lp ⊕ np with lp := h⊕
∑

�∈Rp

g� and np :=
∑

�∈R+−Rp

g�,

where lp is the Levi component andnp is the nilpotent radical ofp. DenoteLp and
Up, the connected algebraic subgroups ofG with Lie(Lp) = lp and Lie(Up) = np.
DenoteWSp (resp., SpWSp ) the set of the representatives of minimal length of the
classes ofW/Wp (resp., ofWp \ W/Wp). We have

WSp = {w ∈ W; w(Sp) ⊂ R+}, (1.1)

SpWSp = {w ∈ W; w(Sp) ⊂ R+ andw−1(Sp) ⊂ R+}. (1.2)

For every� ∈ R denoteU� the unique unipotent subgroup ofG such that Lie(U�) = g�.
For everyw ∈ WSp , let nw denote a representative ofw in NormG(h); define

Np(w) := {� ∈ R+ | w−1(�) ∈ R− − Rp} (1.3)

andUp,w the unipotent subgroup ofG generated by the subgroupsU� with � ∈ Np(w).
We have the well-known Bruhat–Tits decomposition (see[2, p.100]). Every elementg
in G can be uniquely written as the productg = unwp, with w ∈ WSp , u ∈ Up,w, and
p ∈ P , and we also have

G =
∐

w∈SpWSp

PnwP. (1.4)

From general nilpotent orbit theory, recall that there is a unique nilpotentG-orbit
Op such that the setOp ∩ np is open and dense innp. Moreover,Op ∩ np is exactly
a P-orbit and we have dim(Op) = 2dim(np) (cf. [19,26]). Op is called theRichardson
orbit associated top.
Let G×Pnp be the space obtained as the quotient ofG× np by the right action of

P given by (g, x).p := (gp, p−1.x) with g ∈ G, x ∈ np and p ∈ P . By the Killing
form we get the following identificationG×Pnp � T ∗(G/P ). Let g ∗ x denote the
class of(g, x) andP := G/P . The mapG×Pnp → P × g, g ∗ x �→ (gP, g.x) is an
embedding which identifyG×Pnp with the following closed subvariety ofP× g (see
[21, p. 19]):

Y := {(gP, x) | x ∈ g.np}. (1.5)
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The mapfp : G×Pnp → G, g ∗ x �→ g.x is called thegeneralized Springer resolution
and we have the following commutative diagram:

G×Pnp
�

��

fp ����
��

��
��

�
Y

pr2����
��

��
��

g

(1.6)

wherepr2 is the second projection ofP×g on g. The mapfp is proper (becauseG/P
is complete) and its image is exactlyG.np = Op. Moreover, the fiber offp above
points ofOp is finite; it is a birational map whenGx ⊂ P , whereGx is the stabilizer
of x in G and x ∈ Op, this happens in the particular caseP = B is a Borel subgroup
of G [26, Theorem 1, p. 129], and in this case the mapfb is a desingularization of
the nilpotent coneN of g and is called theSpringer resolution[23].
In caseG = SL(n,C), the generalized Springer resolution is birational[3], moreover

every nilpotent orbit is a Richardson orbit for an appropriate parabolic subgroup of
SL(n,C) [6, p. 112]. So the generalized Springer resolutions are the desingularizations
of the closures of the nilpotent orbits.
Let x be a nilpotent element innp. By (1.6) we have

Px := f−1
p (x) = {g.P ∈ P | x ∈ g.np },

Px = {g.P ∈ P | g−1.x ∈ np }. (1.7)

Following [22], let Gx be the stabilizer ofx in G, Gxo denote its neutral component
andA(x) := Gx/Gxo the component group. Let{C�}�∈H (resp.,{Di}1� i�m) denote
the set of the irreducible components ofPx (resp., ofG.x ∩ np). We have a surjective
map � : H → {1, . . . , m} such that for every 1� i�m the setHi := �−1(i) is exactly
an orbit under the action ofA(x).
In caseG = SL(n,C), the subgroupGx ⊂ GL (n,C)x is always connected (it is an

open set of the space{g ∈ gl(n,C) | gx = xg}), then � is a bijection between the
irreducible components ofPx and the irreducible components ofG.x ∩ np.

Let us give a brief outline of the contents of the paper.

• In Section 2, we will give a fundamental result about the dimension of the general-
ized Springer resolution; this will help us to give a description of some irreducible
components of the generalized Springer fibers.

• In Section 3, we are interested in caseG = SL(n,C). Our main result gives a
complete description of the generalized Springer fibers for elements in anadjacent
nilpotent orbit toOp.
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• In Section 4, we adopt Esnault’s work to show in some cases that the generalized
Springer resolution restricts to the minimal resolution of some rational double points
of type A.

2. Generalities

The Springer resolution has been intensively studied by many mathematicians as N.
Spaltenstein, G. Kempf, R. Steinberg, P. Slodowy,…. R. Steinberg has established the
following formula which related the dimension of the Springer fiber above a nilpotent
element with the dimension of the stabilizer ofx in G: dim(f−1

b
(x)) = 1

2(dim(G
x)−r)),

wherer is the rank ofG (cf. [27, p. 133; 27, p. 217]). By studying his proof we have
obtained the following generalization:

Theorem 2.1. For every elementx ∈ Op = Im fp we have

dim(f−1
p (x))� 1

2(dim(G
x)− dim(lp)).

Proof. For everyx ∈ Op, denoteOx the G-orbit of x. Consider the subvarietyV of
g× P × P defined by

V := {(y, g.P, g′.P ) ∈ Ox × P × P; y ∈ g.np ∩ g′.np}.

ThenV is a closedG-variety and is a fibration aboveOx whose fibers are isomorphic
to Px × Px . We deduce that

dim(V ) = 2dim(Px)+ dim(Ox). (2.1)

By the Bruhat–Tits decomposition we have a disjoint unionV = ∐
w∈SpWSp

Vw. Let w ∈
SpWSp and letnw be a representative ofw in NormG(h), thenVw := {(y, g.P, g.nw.P ) ∈
V }. In particular, we have

dim(V ) = maxw∈SpWSp dim(Vw).

We can identifyVw with a subvariety ofOx × [G/(P ∩ nw.P )] by the following
morphism:

� : Vw → Ox × [G/(P ∩ nw.P )],

(y, g.P, g.nw.P ) �→ (y, g(P ∩ nw.P )).

Moreover, the projectionp : Vw → G/(P ∩nw.P ) allows us to see that the fiber above
g(P ∩nw.P ) is exactlyOx ∩gnp∩gnw.np � Ox ∩np∩nw.np. ThenVw is aG-bundle
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above the spaceG/(P ∩ nw.P ) with the fibers isomorphic toOx ∩ np ∩ nw.np. We
deduce that

dim(Vw) = dim(G)− dim(P ∩ nw.P )+ dim(Ox ∩ np ∩ nw.np). (2.2)

But

dim(P ∩ nw.P ) = dim(p ∩ nw.p),

dim(p ∩ nw.p) = dim(p ∩ nw.lp)+ dim(lp ∩ nw.np)+ dim(np ∩ nw.np).

The elementw ∈ W permutes the roots, sonw.lp = h⊕ ∑
�∈Rp

gw(�) and the linesgw(�)

which are not contained inp are exactly those for whichw(�) ∈ R− −R−
p . We deduce

that

dim(p ∩ nw.lp) = dim(lp)− card{� ∈ Rp; w(�) ∈ R− − R−
p }.

As w ∈ SpWSp , for every� ∈ R+
p by (1.2) we havew(�) ∈ R+, then

{� ∈ Rp; w(�) ∈ R− − R−
p } = {� ∈ R−

p ; w(�) ∈ R− − R−
p }.

This remark gives us

dim(p ∩ nw.lp) = dim(lp)− card{� ∈ R−
p ; w(�) ∈ R− − R−

p }.

By symmetry we get

dim(p ∩ nw.lp) = dim(lp)− card{� ∈ R+
p ; w(�) ∈ R+ − R+

p }. (2.3)

With the same argument we get

dim(lp ∩ nw.np) = card{� ∈ Rp; � = w(�) � ∈ R+ − R+
p }

= card{� ∈ Rp; w−1(�) ∈ R+ − R+
p }

= card{� ∈ R+
p ; w−1(�) ∈ R+ − R+

p }. (2.4)

With the same argument withw ∈ SpWSp (cf. 1.2) we get

dim(p ∩ nw−1.lp) = dim(lp)− card{� ∈ R+
p ; w−1(�) ∈ R+ − R+

p } (2.5)
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and

dim(lp ∩ nw−1.np) = card{� ∈ R+
p ; w(�) ∈ R+ − R+

p }. (2.6)

On the other hand,

2dim(p ∩ nw.p) = dim(p ∩ nw.p)+ dim(p ∩ nw−1.p).

With (2.3), (2.4), (2.5) and (2.6) we get

2dim(p ∩ nw.p) = 2dim(lp)+ 2dim(np ∩ nw.np). (2.7)

With the relations (2.2) and (2.3) we get

dim(Vw) = dim(G)− dim(lp)− dim(np ∩ nw.np)+ dim(Ox ∩ np ∩ nw.np).

As dim(np ∩nw.np)−dim(Ox ∩np ∩nw.np)�0, with (2.1) and dim(Ox) = dim(G)−
dim(Gx) we deduce that

dim(Px)� 1
2(dim(G

x)− dim(lp)). �

Remark 2.2. The author thanks the anonymous referee for indicating that the last
theorem was a special case of a result obtained by Springer (see[24, Lemma 4.2; 18,
Proposition 1.2]).

Moreover, the above relation is an equality if dim(np ∩ nw.np) − dim(Ox ∩ np ∩
nw.np) = 0, so we have

Corollary 2.3. For every elementx ∈ Op we have: dim(f−1
p (x)) = 1

2(dim(G
x) −

dim(lp)) if and only if Ox ∩ np ∩ nw.np is dense innp ∩ nw.np for an elementw ∈
SpWSp .

An immediate application of this theorem is the possibility to describe certain irre-
ducible components of the fibers of the generalized Springer resolutionfp.

Proposition 2.4. Let P be a standard parabolic subgroup. Let Q be a parabolic sub-
group which contains P and letQ′ be a parabolic subgroup in the conjugacy class of
Q. DenoteLie(P ) = p, Lie(Q) = q and Lie(Q′) = q′. Let nq′ be the nilpotent radical
of q′. Let Oq be the Richardson orbit associated toq. Let x be a nilpotent element.
Then we have the following equivalences:

(i) x ∈ nq′ ∩ Oq.
(ii) x ∈ nq′ and dim(Q/P ) = dim(f−1

p (x)).
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(iii) g.Q/P is an irreducible component off−1
p (x) where g is an element in G such

that gQg−1 = Q′.

Proof. (i) ⇒ (ii ) Let Sbe the set of simple roots ofR. DenoteSq := {� ∈ S | � ∈ Rq}.
ThenSq is a basis of the root subsystemRq. Relatively toS (resp.,Sq), denotel (resp.,
lq) the length function onW (resp.,Wq). Denoten+ := ∑

�∈R+
g�. Let wq the unique

element inWq such that wq(R+
q ) = R−

q . As wq ∈ Wq, then we have[15, p. 114]

lq(wq) = card({� ∈ R+
q | w−1

q (�) ∈ R−
q }) = card(R+

q ).

But lq is only the restriction ofl on Wq, [15, p. 19], then we deduce that

lq(wq) = l(wq) = card({� ∈ R+ | w−1
q (�) ∈ R−}).

As consequence we haveR+ ∩ wq(R+) = R+ − R+
q . Denotewq the unique element

in W of minimal length in the double class of wq in Wp\W/Wp. Then we have
wq = w1wqw2 with w1, w2 ∈ Wp. We deduce that for every� ∈ R+

q we have
wqw2(�) ∈ Rp. By the same argument we havew2(R+

q − R+
p ) = R+

q − R+
p , we

deduce thatwq(R+
q − R+

p ) ⊂ Rp. As consequence we have

np ∩ wq(np) = nq. (2.8)

By Corollary 2.3 we have

dim(f−1
p (x)) = 1

2(dim(G
x)− dim(lp)).

With properties on Richardson orbit we can verify that dim(Gx) = dim(lq).

dim(f−1
p (x)) = 1

2(dim(lq)− dim(lp)) = dim(Q/P ).

(ii ) ⇒ (iii ) is trivial.
(iii ) ⇒ (i) Say thatg.Q/P is an irreducible component off−1

p (x) is equivalent to

say thatQ/P is an irreducible component offp(g−1.x), by (1.7) we haveg−1.x ∈ np.
By (2.8) we can conjugateg−1.x with an element ofQ to assume that we have
g−1.x ∈ nq (if not by (1.7) we would havef−1

p (x) = ∅), and we have

dim(Q/P ) = dim(f−1
p (x)).

Then we have

dim(lp)+ 2dim(f−1
p (x)) = dim(Gx)�dim(P g−1.x).
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As consequence

dim(Q.(g−1.x)) = dim(Q)− dim(Qg−1.x)

� dim(Q)− (dim(lp)+ 2dim(f−1
p (x)) = dim(nq).

Now by properties on Richardson orbit we get the result. �

Remark 2.5. Let x be an element ofg. A polarizationof x, is a Lie subalgebraq of g
such that�(x, [q, q]) = 0 and 2dim(q) = dim(gx)+dim(g) where�( , ) is the Killing
form. Then every polarization is necessary a parabolic subalgebra and the nilpotent
elements which admit polarizations are exactly the nilpotent elements of Richardson
orbits, [7, p. 46]. Then the above proposition says that the different polarizations ofx
which containp, give certain irreducible components off−1

p (x).

3. Study in sl(n, C)

Now consider the caseG = SL(n,C) and g = sl(n,C). The subalgebrah (resp.,
b) can be identified with the subvariety which consists of the diagonal matrices (resp.,
upper triangular matrices) ofsl(n,C). DenoteEi,j the elementary matrices. The one-
dimensional vector subspacesg� are generated by the elementary matricesEi,j with
i �= j . For every 1� i, j�n, denotepi,j the coordinate projection corresponding to the
line g� generated by the elementary matrixEi,j . The roots are given by the following
linear forms{pi,i−pj,j }, with i �= j . The simple roots{�i}i=1,...,n−1 are the linear form
{pi,i − pi+1,i+1}i=1,...,n−1, and the Weyl group is identified with the symmetric group
Sn, [4, p. 250/251]. Let sk be the elementary transposition ofSn which interchanges
k and k + 1.
The reasons to considersl(n,C) are on the one hand the generalized Springer reso-

lution is a desingularization, and on the other hand every nilpotent orbit is a Richardson
orbit for a suitable parabolic subalgebra.[6, p. 112].

Definition 3.1. A partition of n is a sequence of integersp = (p1, p2, . . . , pl) such
that pi�1 and

∑l
i=1pi = n.

The standard parabolic subalgebras ofsl(n,C) are in bijective correspondence with
the partitions ofn. If p = (p1, p2, . . . , pl) is a partition ofn, then the corresponding
standard parabolic subalgebra has the following shape:




L1 ∗ . . . ∗
0 L2 ∗ ...

...
. . .

. . . ∗
0 . . . 0 Ll



,
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whereLi ∈ GLpi×pi (C). Two partitionsp = (p1, p2, . . . , pl) and q = (q1, q2, . . . , ql)

of n are calledassociatedif there is permutation� ∈ Sl such thatqi = p�(i). A partition
p = (p1, p2, . . . , pl) of n is said ordered if p1�p2� · · · �pl . To the partitionp
corresponds theYoung diagramwhose rows are composed respectively, ofp1, p2, . . . , pl
squares. Ifp = (p1, p2, . . . , pl) is an ordered partition ofn we define itsdual partition
as the partitionp̂ = (p̂1, p̂2, . . . , p̂t ) with p̂i := card{j ; pj � i}. We can notice that
the dual partition is also ordered.
The nilpotent orbits insl(n,C) are parameterized by the ordered partitions ofn

[6, p. 32] corresponding to the lengths of the Jordan blocs arranged in decreasing
order; if p is an ordered partition ofn, we denoteOp the corresponding nilpotent
orbit. We have the following identities (see[6, p. 94]):

dim(ker(xj )) =
j∑
i=1

p̂i

and

rank(xj ) =
∑
i>j

p̂i . (3.1)

If p = (p1, p2, . . . , pl) and q = (q1, q2, . . . , qk) are two-ordered partition ofn, we
denotep�q if

j∑
i=1

pi�
j∑
i=1

qi for every j. (3.2)

If p�q, we will say that the partitionp dominatesthe partitionq.
The geometric interpretation of this order is given by

Proposition 3.2 (Gerstenhaber[6, p. 95; 11]).

(i) p�q if and only if Op ⊃ Oq.
(ii) If p�q such that for everyOq ⊂ O ⊂ Op we haveO = Oq or O = Op. Then we

have:

Case: 1 there is an integer i such thatpk = qk for k �= i, i + 1 and qi = pi − 1
�qi+1 = pi+1+ 1. Then we havecodimOp

(Oq) = 2.
Case: 2 there is two integersi < j such thatpk = qk for k �= i, j and qi = pi−1=

qj = pj + 1. Then we havecodimOp
(Oq) = 2(j − i).

Such partitions are called “adjacent”.
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We can see the two cases by theirs Young diagrams in the following manner:
Case: 1

p = q =

Case: 2

p = q =

The first case consists to move a box in a corner to the next row, and the second
case consists to move a box in a corner to the previous column.
If p is an ordered partition ofn, then the nilpotent orbitOp is the Richardson orbit

for every standard parabolic subalgebra whose corresponding partition is associated to
p̂ (cf. [6, p. 112]), in particular we haveOp = Op.
Let p be an ordered partition ofn and let p be the standard parabolic subalgebra

corresponding to the partition̂p. We have the decompositionp = lp ⊕ np. As the
subalgebra[np,np] is stable underLp which is a reductive group, there is a vector
subspaceVp such thatnp = Vp ⊕ [np,np] and Vp is stable underLp. In fact Vp is
unique, it is the direct sum of the subspacesg�, where� is the sum of simple roots
in Sp and of a unique simple root inS − Sp, [6, p. 123]. Here is the first important
result:

Theorem 3.3. Let p = (p1, p2, . . . , pl) an ordered partition of n. LetOp be the
nilpotent orbit corresponding top. Let p be the parabolic subalgebra corresponding
to p̂ = (p̂1, p̂2, . . . , p̂t ). Then we have:

(i) The subvarietyOp ∩ Vp is reduced to a uniqueLp-orbit which is open and dense
in Vp.

(ii) Op ∩ np = (Op ∩ Vp)⊕ [np,np] := {x + y; x ∈ Op ∩ Vp, y ∈ [np,np]}.

Proof. (i) Let x = x1 + x2 ∈ np = Vp ⊕ [np,np] be an element innp with x1 ∈ Vp
and x2 ∈ [np,np], then x ∈ Op if and only if [p, x] = np. Now Vp is stable under
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lp we have[lp, x1] ⊂ Vp, the condition

[p, x] = [lp, x1] + [lp, x2] + [np, x1] + [np, x2] = np

with

[lp, x1] ⊂ Vp,

[lp, x2] + [np, x1] + [np, x2] ⊂ [np,np]

implies [lp, x1] = Vp, but this last equality is equivalent to the fact that the orbitO2
of x1 underLp is open and dense inVp. So if we denotep : np = Vp ⊕ [np,np] →
Vp, x1+x2 �→ x1 the first projection, we getp(Op∩np) ⊂ O2, in particular we deduce
that Lp.p(Op ∩ np) = O2. We can easily verify that the elementsx1 ∈ Vp have the
following shape:




0 M1
1 0 . . . 0

0 0 M1
2

. . .
...

...
...

. . .
. . . 0

...
...

. . . 0 M1
t−1

0 0 . . . 0 0




(3.3)

with M1
i ∈ Matp̂i×p̂i+1(C) for 1�j� t −1, we can identifyVp � Matp̂1×p̂2(C)×· · ·×

Matp̂t−1×p̂t (C) and write

x1 = (M1
1, . . . ,M

1
t−1) ∈ Matp̂1×p̂2(C)× · · · ×Matp̂t−1×p̂t (C). (3.4)

Now it is easy to see that if we considerx1 ∈ Vp with the configuration (3.3), then
we have

x1
2 =




0 0 M2
1 0 . . . 0

0 0 0 M2
2

. . .
...

...
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . M2

t−2
...

...
...

. . .
. . . 0

0 . . . . . . . . . 0 0




(3.5)
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with M2
i := M1

i M
1
i+1 ∈ Matp̂i×p̂i+2(C), so we can writex21 = (M2

1, . . . ,M
2
t−2) ∈

Matp̂1×p̂2(C)× · · · ×Matp̂t−2×p̂t (C). Then by induction we can verify that

x1
k = (Mk

1, . . . ,M
k
t−k) ∈ Matp̂1×p̂k+1(C)× · · · ×Matp̂t−k×p̂t (C) (3.6)

with Mk
i := M1

i M
1
i+1 . . .M1

i+k−1. Suppose thatx1 is of maximal rank. As rank(x1) =∑
1� i� t

rank(M1
i ) and asM

1
i ∈ Matp̂i×p̂i+1(C) with p̂i�p̂i+1, we deduce that rank(x1) =

∑
i�2

p̂i . Likewise for every integerk, we have rank(xk1) = ∑
1� i� t−k+1

rank(Mk
i ), and as

Mk
i ∈ Matp̂i×p̂i+k (C) with p̂i� p̂i+k we get rank(Mk

i ) = p̂i+k, so we get rank(x1k) =∑
i�k+1

p̂i . By (3.1) and Proposition3.2, we deduce thatx1 ∈ O2 if and only if x1 ∈ Op

if and only if p(Op ∩ np) = O2 = Op ∩ Vp and this shows (i).
(ii) If we write x = x1+ x2 with x1 ∈ Vp and x2 ∈ [np,np], by the proof of (i) we

havex ∈ Op if and only if x1 ∈ Op, and the result follows. �

Remark 3.4. (i) The above theorem give a characterization of the elements of the
Richardson orbitOp; this will allow us to give a characterization ofnp − (Op ∩ np),
in particular this will help us to find out the irreducible components ofG.x ∩np when
x is in an adjacent orbit toOp (cf. Theorem3.7).
(ii) We can also notice that this result is not always true for an other parabolic

subalgebra corresponding to a partition associated top̂. In the proof we use the fact
that p̂ is ordered, this permits us to show thatOp ∩ Vp �= ∅.

Let M be an irreducible subvariety contained in the nilpotent coneN of sl(n,C).
As N is a finite union of nilpotent orbits, there is a unique nilpotent orbitOM such
thatOM ∩M is dense inM.

Definition 3.5. We will call OM the orbit induced byM.

Now let p�q be two adjacent ordered partitions ofn. Let p be the standard parabolic
subalgebra corresponding to the partitionp̂. As the image of the generalized Springer
resolution fp is exactlyOp = G.np (= Op), we deduce thatOq has a non-empty
intersection withnp. On the other hand asq is adjacent top, the orbitOq is necessarily
induced by every irreducible component ofnp − (Op ∩ np) for which the intersection
with Oq is non-empty.
DenoteM(m, n) := Matm×n(C). For every 0� l�min(m, n), denoteMl(m, n) :=

{x ∈ M(m, n) | rank(x)� l}; the subvarietyMl(m, n) is called adeterminantal variety,
it is an irreducible normal subvariety of codimension(m−l)(n−l) in M(m, n), moreover
Ml(m, n) coincides with the closure of the subvariety ofM(m, n) which consists of
matrices of rank equal tol [1, Chapter II].
For every 1�k� t − 1 let Yk denote the subvariety ofnp defined by

Yk := {x1+ x2 ∈ Vp + [np,np]; rank(M1
k ) < p̂k+1}. (3.7)
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We can notice thatYk is exactly the direct sum of a determinantal variety and a vector
space, therefore it is an irreducible normal subvariety of codimensionp̂k − p̂k+1 + 1
in np.

Remark 3.6. (i) By Theorem 3.3, the subvarietiesYk are exactly the irreducible
components ofnp− (Op ∩np). In casep̂k = 1, Yk is a hyperplane innp and coincides
with the nilpotent radical of a parabolic subalgebra ofsl(n,C) containingp.
(ii) Let p�q be two-adjacent ordered partitions ofn. If {Yk}k∈I denotes the set

of the irreducible components ofnp − (Op ∩ np) which induceOq, then we have
(Oq ∩ np) ⊂ ⋃

k∈I Yk, in particular every irreducible component ofOq ∩ np is (at
least) contained in a subvarietyYk for a certain k ∈ I , and for everyk ∈ I the
subvarietyYk contains a unique irreducible component ofOq ∩ np which is dense in
Yk. As consequence, we have an injection from the setI to the set of the irreducible
components ofOq ∩ np. In particular, there is an injection from the setI to the set of
the irreducible components off−1

p (x) for x ∈ Oq. In fact, we will see at the end of
the proof of Theorem3.9 that we have in fact a bijection between these two sets.

Theorem 3.7.With the notations above. Denotei0 := min{j ; p̂j �= q̂j } and m0 :=
min{j > i0; p̂j �= q̂j }. Then the irreducible components ofnp − (Op ∩ np) which
induce Oq are all isomorphic and are the subvarieties{Yk}i0�k�m0−1. Moreover we
havedim(Oq ∩ np) = 1

2dim(Oq).

Proof. We will consider two cases:
(i) Casep1 > q1: let x = x1 + x2 a nilpotent element innp, wherex1 ∈ Vp with

the formula

x1 = (M1
1, . . . ,M

1
t−1) ∈ Matp̂1×p̂2(C)× · · · ×Matp̂t−1×p̂t (C).

(cf. (3.4)) andx2 ∈ [np,np]. By Remark3.6 (i), x ∈ np−(Op∩np) if and only if there
is an integerj ∈ {1, . . . , t − 1} such that rank(M1

j ) < p̂j+1. By hypothesisp1 > q1,
and by Proposition3.2 we get

qk =


p1− 1 if k = 1,
p2 + 1 if k = 2,
pk otherwise.

(3.8)

With the dual partition we get̂qi0 = 2, p̂i0 = 1, q̂k = p̂k for every i0 < k < t

and q̂t = 0, p̂t = 1, in particular we deduce that for everyi0�k� t − 1 we have
M1
k ∈ C. So for everyi0�k� t − 1, Yk = {plk,lk+1 = 0 } ∩ np is a hyperplane in

np with lk := ∑
j �k

p̂j (cf. Remark3.6 (i)), so Yk is exactly the nilpotent radical of

the standard parabolic subalgebra corresponding to the set of simple rootsSp ∪ {�lk };
now we can verify that such standard parabolic subalgebras correspond to partitions
associated toq̂. So these subvarieties{Yk}i0�k� t−1 induce the nilpotent orbitOq.
Now, we have to show that the other irreducible components ofnp− (Op ∩np) do not



N.G.J. Pagnon /Advances in Mathematics 194 (2005) 437–462 451

induceOq. Considerk < i0 such that rank(M1
k ) < p̂k+1, by (3.6) we necessary have

rank(Mk
1) = rank(M1

1M
1
2 . . .M

1
k ) < p̂j+1. In particular we have rank(xj ) <

∑
i>j

p̂i . By

(3.1), x ∈ Oq if and only if rank(xj ) = ∑
i>j

q̂i . But j < i0, then p̂i = q̂i for every

i�j < i0, as consequence
∑
i>j

q̂i = ∑
i>j

p̂i and the result follows.

(ii) Casep1 = q1: we haveq̂i0 − 1 = p̂i0 = p̂i0+1 = · · · = p̂m0−1�2 and q̂m0 =
p̂m0 −1. DenoteXk := {x ∈ np | rank(M1

k ) = p̂k+1−1 }. Then by[1, p. 71], we have

Yk = Xk. (3.9)

But for everyi0�k�m0−1, we can verify thatXk ∩np̃ �= ∅, wherep̃ is the standard
parabolic subalgebra corresponding to the partition(p̂1, . . . , p̂k−1, p̂k + 1, p̂k+1 − 1,
p̂k+2, . . . , p̂l), and the last partition is associated to the partitionq̂. By this remark and
by (3.9) we deduce thatYk induces a nilpotent orbitO ⊂ Oq. Let nb be the nilpotent
radical of the standard Borel subalgebrab. Then we have dim(nb ∩ O) = 1

2dim(O)
[22]. As Yk ⊂ np ⊂ nb, we deduce that

dim(Yk)� 1
2dim(O)� 1

2dim(Oq) = dim(np̃)

the last equality comes from the properties of Richardson orbits. But we have noticed
that the partition(p̂1, . . . , p̂k−1, p̂k + 1, p̂k+1− 1, p̂k+2, . . . , p̂l) is associated tôq, we
deduce that

dim(np̃) = dim(np)− p̂k + p̂k+1− 1.

As the varietyYk is of codimensionp̂k − p̂k+1+ 1, (cf. p. 450), then we have

dim(Yk) = 1
2dim(O) = 1

2dim(Oq)

we deduce thatO = Oq.
To finish the proof we have to verify that the other irreducible componentsYj do

not induceOq for j� i0− 1 or m0�j . But it is exactly the same reasoning as for the
case (i) which consists to verify that dim(xj ) <

∑
i>j

q̂i for every elementx ∈ Yj .

Finally, if m0 = i0 + 1 there is a unique irreducible component ofnp − (Op ∩ np)
which inducesOq, and if m0� i0 + 2 for every i0� i, j�m0 we havep̂i = p̂j and
as consequence the matrices{M1

k }i0�k�m0−1 are square matrices of same length; we
deduce that the subvarieties{Yk}i0�k�m0−1 are all isomorphic. �
Let � ∈ S−Sp be a simple root. DenoteP� the minimal standard parabolic subgroup

associated to the simple root�.

Definition 3.8. A projective lineof type � is a subset ofG/P of the form g.P�P/P ,
whereg ∈ G.
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We can remark thatP�P/P � P�/P� ∩P . But P� ∩P = B, because� is not in Sp.
So we getP�P/P � P�/B � P1. Two projective lines of the same type are disjoint
or are equal and two projective lines of different types have at most a common point
[26, p. 146].

Theorem 3.9 (Main theorem). With the notations of the last theorem. Letp�q be two
adjacent ordered partitions. Letx ∈ Oq ∩ np.
(i) If codimOp

(Oq) = 2, then f−1
p (x) is a finite union of projective lines: for every

i ∈ {∑u�k p̂u}i0�k�m0−1 there is a unique projective line of type�i in f−1
p (x).

Moreover, f−1
p (x) is the union of these projective lines which intersect themselves

transversely. Finally, the projective lines of type�i and �j have a non-empty
intersection if and only ifi = ∑

u�k p̂u and j = ∑
u� l p̂u with l = k ± 1. In

particular, f−1
p (x) is isomorphic to the Dynkin curve inAm0−i0.

(ii) If codimOp
(Oq) > 2, then f−1

p (x) is reduced to a unique irreducible component

isomorphic to the projective spacePp̂i0−p̂m0+1.

Proof. Like for the proof of the last theorem we will consider two cases.
(i) Casep1 > q1: for every

∑
u� i0

p̂u�k�n − 1, denoteqk the standard parabolic
subalgebra whose associated parabolic subgroupQk is given by the subset of simples
roots Sp ∪ {�k}. We notice thatQk/P � P�kP/P . Moreover, these standard parabolic
subalgebras are associated to the dual partitionq̂ (cf. Proof of the last theorem), by
Proposition2.4 we deduce thatf−1

p (x) is a union of projective lines of type�k for∑
u� i0

p̂u�k�n−1, and for every type�k we find a unique projective line of the same
type.
Finally, for every

∑
u� i0

p̂u�k, l�n− 1 such that|k − l|�2 we can remark that the
intersection of the two hyperplanes{pk,k+1 = 0} ∩ np and {pl,l+1 = 0} ∩ np in np
is exactly the nilpotent radical of a standard parabolic corresponding to a partition
associated tôt = (q̂1, q̂2, . . . , q̂i0,2,1,1, . . . ,1). Then we havêt� q̂ and t̂ �= q̂. As
consequence, we deduce thatOq ∩nqk ∩nql = ∅, By Proposition2.4 the corresponding
projective linesgk.P�kP/P and gl.P�l P /P in f−1

p (x) have an empty intersection.
(ii) Casep1 = q1, by Proposition3.2 if codimOp

(Oq) = 2 we get p̂i0 = · · · =
p̂m0−1 = p̂m0�2, and if codimOp

(Oq) > 2 then m0 = i0 + 1 and we getp̂i0 >

p̂i0+1�2.
By Theorem3.7, the irreducible components{Yk}i0�k�m0−1 of np−(Op∩np) induce

the nilpotent orbitOq. Fix an integeri0�k�m0− 1, we now compute the irreducible
component off−1

p (x) corresponding to the subvarietyYk (see Remark3.6 (ii)).
Denoteb := p̂k anda := p̂k+1, we haveb�a and we getb = a in casem0� i0+2.

Denotei := ∑
u�k

p̂u and let�i the corresponding simple root. Considerx = x1+ x2 ∈
Yk ∩ Oq, with x1 = (M1

1, . . . ,M
1
t−1) ∈ Vp � Matp̂1×p̂2(C) × · · · ×Matp̂t−1×p̂t (C) (cf.
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(3.3) and (3.4)) and x2 ∈ [np,np]. By (3.9) we have to chooseM1
k of rank a − 1; for

our computation we will choosex1 with

M1
k = Ei,i+1+ Ei−1,i+2 + · · · + Ei−a+2,i+a−1, (3.10)

which is of ranka − 1, i.e.,M1
k has the following shape:

b

a

M1
k

�i 1
1

1
0

0
0

0

0

0
0

a

a

bM1
k =

(3.11)

Let w := w1w2w3 ∈ W be the element of the symmetric group defined by

w1 := (si−a+1si−a . . . si−b+1)(si−a+2si−a+1 . . . si−b+2) . . . (si−1si−2 . . . si−(b−a)−1),

w2 := si+a−1si+a−2 . . . si+1,

w3 := si−(b−a)si−(b−a)+1 . . . si .

Remark thatw is written with the simple transpositions

si−b+1, si−b+2, . . . , si+a−2, si+a−1,

then we deduce that

Nb(w) ⊂ {� | � = �u + �u+1+ · · · + �v, i − b + 1�u�v� i + a − 1}. (3.12)

For everyi− b+1�m� i− a+1, consider the root�m := �m + �m+1+ · · ·+ �i+a−1;
then we get:

w−1(�m) = w−1
3 w−1

2 w−1
1 (�m)
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= w−1
3 w−1

2 (�m+a−1+ �m+a + · · · + �i+a−1)

= w−1
3 (�m+a−1+ �m+a + · · · + �i ).

Moreover by constructionw3 is written in a reduced form, then by Springer[25, p. 142]
we have

Nb(w3) = {�m+a−1+ �m+a + · · · + �i | i − b + 1�m� i − a + 1}. (3.13)

We deduce that

w−1(�m) < 0. (3.14)

Let w be the representative of minimal length of the class ofw in W/Wp, then we
can verify that

Np(w) = {� ∈ R+ − Rp | w−1(�) < 0} (3.15)

by (3.14) we deduce that

{�m | i − b + 1�m� i − a + 1} ⊂ Np(w)}. (3.16)

By (3.12) and (3.15) we get

Np(w) ⊂ {� | � = �u + �u+1+ · · · + �v, i − b + 1�u� i�v� i + a − 1}.
(3.17)

On the other hand, by (3.10) we have

M1
k =

a−2∑
k=0

Ei−k,i+k+1 ∈ g�i ⊕ g�i−1+�i+�i+1 ⊕ · · · ⊕ g�i−a+2+···+�i+a−1. (3.18)

For every 0�k�a − 2 we have

w−1(Ei−k,i+k+1) = w−1
3 w−1

2 w−1
1 (Ei−k,i+k+1)

= w−1
3 w−1

2 (Ei,i+k+1)

= w−1
3 (Ei,i+k+2) ∈ w−1

3 (g�i+...�i+k+1) = g
w−1
3 (�i+...�i+k+1).
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By (3.13) we havew−1
3 (�i + . . . �i+k+1) > 0. In particular we deduce thatx ∈

np ∩ nw.np, wherenw is a representative ofw in NormG(h). Let

u := (Idn +
i−a+1∑

m=i−b+1
�mEm,i+a−1 ) ∈

i−a+1∏
m=i−b+1

U�m+···+�i+a , (3.19)

with �m ∈ C. By (3.16) we haveu ∈ Up,w. Recall that if v ∈ U� and Y ∈ g	, where
	, � are two roots, thenv.Y ∈ ∑

t�0 g	+t.�, [26, p. 80], with (3.18) and (3.19) we have
uM1

k u
−1 = M1

k , and by (3.17) we deduce that

uxu−1 ∈ np ∩ nw.np. (3.20)

By Theorems2.1 and 3.7 we have

dim(f−1
p (x)) � 1

2(dim(G
x)− dim(lp)) = 1

2(dim(G)− dim(Oq)− dim(lp))
� 1

2(dim(Op)− dim(Oq)) = 1
2(dim(Op)− 2dim(Oq ∩ np))

� dim(np)− dim(Oq ∩ np) = codimnp(Yk) = b − a + 1.

As card({�m | �m = �m+�m+1+· · ·+�i+a−1, i−b+1�m� i+a−1}) = b−a+1,
and with (3.20) we deduce that dim(f−1

p (x)) = b−a+1 and the irreducible component
of f−1

p (x) corresponding toYk is given by the closure inG/P of the subvariety

(Idn +
i−a+1∑

m=i−b+1
�mEm,i+a−1)nwP/P

= nw1nw2(Idn +
i−a+1∑

m=i−b+1
�mEm+a−1,i+1)nw3P/P.

Let rd denote the simple reflexion which interchangesd and d + 1 of the symmetric
groupSz, with z = b − a + 2 and letFi,j denote the elementary matrix insl(z,C).
ConsiderPz the maximal parabolic subgroup inSL(z,C) whose corresponding Weyl
subgroup ofSz is generated byr1, . . . , rz−2. Then we have the following isomorphism:

(Idn +
i−a+1∑

m=i−b+1
�mEm+a−1,i+1)nw3P/P

� (Idz +
z−1∑
m=1

�mFm,z)nr1r2...rt−1Pz/Pz.
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But the right member is exactly the big cell inSL(z,C)/Pz, then we deduce that the
irreducible component off−1

p (x) corresponding toYk is isomorphic toSL(z,C)/Pz
which is exactly the projective space of the hyperplanes inCz, therefore this irreducible
component is isomorphic toPz−1 = Pb−a+1.
If b = a we havew1 = si−a+1si−a+2 . . . si−1 andw3 = si and we get

(Idn + �Ei−a+1,i+a−1)nwP/P = nw1(Idn + �Ei,i+a−1)nw2nsiP/P

= nw1nw2(Idn + �Ei,i+1)nsiP/P.

Therefore the corresponding irreducible component is a projective line of type�i .
Let us show now that if|k−l|�2, thenYk∩Yl∩Oq = ∅. As |k−l|�2 we havep̂i0 =

p̂i0+1 = · · · = p̂m0−1 = a. Let x = x1+ x2 ∈ Yk ∩ Yl , with x1 = (M1
1, . . . ,M

1
t−1) ∈ Vp

(cf. (3.3) and (3.4)) and x2 ∈ [np,np]. In particular, we have rank(M1
k ) < a and

rank(M1
l ) < a. Let g be an element inP. We can write:

g =




L1 ∗ . . . ∗
0 L2

. . .
...

...
. . .

. . . ∗
0 . . . 0 Lt



,

g�g−1 =




0 L1M
1
1L2 ∗ . . . ∗

0 0 L2M
1
2L3

. . .
...

...
...

. . .
. . . ∗

...
...

. . . 0 Lt−1M1
t−1Lt

0 0 . . . 0 0




(3.21)

with Li ∈ GL (p̂i ,C). Because of|k− l|�2 and rank(M1
k ) < a, rank(M1

l ) < a, we can
chooseLk,Lk−1, Ll andLl−1 such that the first column ofLkM1

k Lk−1 andLlM1
l Ll−1

in g�g−1 is zero, in particular we getg�g−1 ∈ np̃ where p̃ is the standard parabolic
subalgebra corresponding to the partition

(p̂1, . . . , p̂k−1, p̂k + 1, p̂k−1− 1, p̂k−2, . . . , p̂l−1, p̂l + 1, p̂l−1− 1, p̂l−2, . . . , p̂t ),

which is associated to the ordered partition

(p̂1, . . . , p̂i0−1, a + 1, a + 1, a, . . . , a, a − 1, a − 1, p̂m0+1, . . . , p̂t )
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and the last partition strictly dominates the partition

q̂ = (p̂1, . . . , p̂i0−1, a + 1, a, a, . . . , a, p̂m0+1, . . . , p̂t ).

As consequence we findYk ∩ Yl ∩ Oq = ∅, this means that the irreducible components
in f−1

p (x) corresponding toYk and Yl are disjoint.
Let us show now that we have a bijection between the set of the irreducible com-

ponentsYk which induceOq and the set of irreducible components ofOq ∩ np (cf.
Remark 3.6 (ii)). By Theorem 3.7 we haveOq ∩ np ⊂ ⋃

i0�k�m0−1 Yk, as conse-
quence every irreducible component ofOq ∩ np is contained in a subvarietyYk for a
certain integeri0�k�m0 − 1, then it suffices to show in each subvarietyYk we only
have a unique irreducible component ofOq ∩ np. Case (i) is trivial because properties
concerning Richardson orbit. Case (ii): letDi Djbe two irreducible components of
Oq ∩ np contained inYk. Let x = x1 + x2 ∈ Di (resp., y = y1 + y2 ∈ Dj ) with
x1 ∈ Vp and x2 ∈ [np,np] (resp.,y1 ∈ Vp and y2 ∈ [np,np]). By conjugatingx (resp.,
y) by an appropriate elementg ∈ P (resp.,g′ ∈ P ) with a good choice of the Levi
component ing (resp., ing′) (cf. (3.21)), we can suppose that the writing ofM1

k in
x1 (resp.,y1) has the configuration (3.11) p. 453. The calculus which followed shows
that the irreducible componentsCi andCj of f−1

p (x) corresponding toDi andDj are
isomorphic and as consequenceDi and Dj are isomorphic. AsYk induces the orbit
Oq, one of the irreducible component ofOq ∩ np contained inYk is necessary dense
in Yk, if Di is dense inYk we have the same property forDj , so we necessary have
Di = Dj .
In cases (i) and (ii), if|k − l|�2 then the irreducible components off−1

p (x) as-
sociated corresponding toYk and Yl have an empty intersection. On the other hand
the generalized Springer resolutionfp is birational and its image Imfp = G.np is a
normal variety[3, p. 448], by main Zariski Theorem[12, p. 280], the fibers offp are
connected, in particular we deduce that the projective lines inf−1

p (x) corresponding
to Yk and Yl have a non-empty intersection if and only ifk = l ± 1, and the proof is
complete. �

4. Application to the study of a germ’s surface singularity

By keeping the notations of the last Section letp�q be two-adjacent ordered parti-
tions with codimOp

(Oq) = 2. Let x be an element inOq. This Section consists to rely

the description of the singularity(Op ∩ Tx, x), whereTx is a transverse slice ing to
the orbitOq at the pointx to the study of the fiberf−1

p (x).

Definition 4.1. Let M be aG-variety. A transverse slice inM to the orbit ofx at the
point x, is a locally closed subvarietyTx of M such that:

(a) x ∈ Tx;
(b) the morphism
 : G× Tx → M, (g, Y ) �→ g.Y is smooth;
(c) Tx has the minimal dimension for properties (a) and (b).
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As we work withC, then dim(Tx) = codimM(G.x), moreover ifM is smooth then
Tx is necessary smooth[20, p. 61].
To give such a transverse slice it is enough to take a vector subspaceTx which is

supplementary to the tangent space of the orbit ofx at the pointx.
Let x ∈ Oq. By Jacobson–Morozov Theorem , there is a semisimple elementh and

a nilpotent elementy in g such that

[h, x] = 2x, [h, y] = −2y, [x, y] = h.

Then by Representation theory ofsl(2,C) the subvarietyTx := x+gy is supplementary
in g to the orbit ofOq at the pointx, wheregy is the centralizer ofy in g. Denote:

M := Op ∩ Tx and M̂ := f−1
p (S).

Definition 4.2.

(a) Let M be a complex algebraic variety. A desingularization ofM is a morphism
� : M̂ → M such that� is a proper birational morphism and thatM̂ is a smooth
variety.

(b) The normal varietyM has rational singularities if for every desingularization� :
M̂ → M we haveR1�∗(OM̂

) = {0}.
We have the following result:

Lemma 4.3.

(i) M ⊂ Op ∪ Oq;
(ii) The morphismfp|M̂ : M̂ → M is a desingularization of M.

Proof. (i) Let us show that the elements inM come fromOp andOq. Let g = ⊕
Vi

the decomposition ofg as sum of irreducible representations for< x, h, y >� sl(2,C).
Every Vi contains a unique vector linegi such [y, gi] = 0 (cf. [14, p. 33]), denote
ni ∈ Z the eigenvalue ofadh for the subvarietygi . By [14, p. 33] we haveg

y =⊕
gi . Denote� : C∗ → G the unique parameter subgroup associated to the semisimple

elementh and letz = x+v ∈ x+gy . We can suppose thatgy is the direct sum of certain
vector spacesg� with � ∈ R−, [6, p. 45/46], we havey ∈ g−2 = ∑

�(h)=−2
g�, then we

haveni�0. If we write v = ∑
zi with zi ∈ gi , then we have�(t).z = t2x + ∑

tni zi ,
where zi ∈ gi , and because of nilpotent orbits are stable underC∗ we deduce that
z ∈ M, t ∈ C∗, t2�(t−1).z = x + ∑

t2−ni zi ∈ S ∩ Oz. This shows thatx is in the
closure of the orbit of every element ofM. But x ∈ Oq which is adjacent toOp, we
deduce thatM ⊂ Op ∪ Oq.
(ii) By construction we have locallyg � Tx × Oq, andOp is locally isomorphic to

M × Oq. As M̂ = f−1
p (M), we have

M̂ = {(Y, g.P ); Y ∈ S ∩ g.np}
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and locallyT ∗(G/P ) is isomorphic to the spacêM × Oq. In particularM̂ is smooth.
And the mapfp|M̂ is proper becauseG/P is complete; sofp|M̂ : M̂ → M is a
desingularization ofM. �

Lemma 4.4 (Hinich [13, p. 302]). (M; x) is a normal surface with a rational singu-
larity.

Proof. We can remark that
−1(Op) = G×M and we have two smooth morphisms

| : G×M → Op andpr2 : G×M → M at the point(1G, x). We deduce that(Op, x)

is normal if and only if the surface(M, x) is normal [8]. By [3,16] it was shown that
every closure of nilpotent orbit insl(n,C) is normal. As consequence(M, x) is a
normal surface with an isolated singularity.
By Theorem 5 in[9] we deduce thatG×M has rational singularities.
The following diagram

G× M̂

id×fp|M̂
��

p′
1 ����

��
��

��
�

G×M

p1����
��

��
��

�

G

is a simultaneous desingularization of the fibers ofp1. By Theorem 3 in[9] we can
deduce thatM has rational singularities. �

Definition 4.5. A f : M̂ → (M, x) desingularization of a normal surface with a rational
singularity x is called minimal if every irreducible component of the exceptional fiber
f−1(x) has a self-intersection number different of−1.

The minimal desingularization exists up to isomorphism and every desingulariza-
tion of (M, x) factorizes through the minimal desingularization. Moreover, the normal
surfaces with a rational singularity for which every irreducible component of the ex-
ceptional fiber has a self-intersection−2 are well known and are obtained as quotients
of C2 by finite subgroups ofSL(2,C), [20, p. 72]. Such singularities are calledsimple
or rational doublepoints and are classified by the familiesAr,Dr,E6, E7, E8.
Here is the main theorem of this last Section.

Theorem 4.6. Let p = (p1, p2, . . . , pl)�q = (q1, q2, . . . , qk) two adjacent ordered
partitions such thatcodimOp

(Oq) = 2 and p1 > q1. Let p be the standard subalgebra

corresponding to the partition̂p. Denotei0 := min{j ; p̂j �= q̂j } andm0 := min{j >
i0; p̂j �= q̂j }. Let x ∈ Oq, and Tx be a transverse slice insl(n,C) to the orbitOq

at the point x. Let M := Op ∩ Tx and M̂ := f−1
p (M). Then

(i) The morphismfp|M̂ : M̂ → M is the minimal desingularization of the surface M.
(ii) The surface(M, x) is a normal surface with a simple singularity of typeAm0−i0.
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The following calculus is exactly the same for which H. Esnault has done in the
particular subregular case (see[10; 20, p. 88]). The reasoning is done in a more general
context but we can apply only for the casep1 > q1:
By Theorem3.9, f−1

p (x) is a finite union of projective lines of type�i with i ∈
{ ∑
u�k

p̂u}i0�k�m0−1. To prove the theorem it remains to compute the self-intersection

numbers of these projective lines in̂M, i.e., to computec1(P�i P /P, M̂) the first Chern
class of the normal bundle of each of these projectives lines inM̂. DenoteN

(P�i P /P )/M̂

the normal bundle of the projective lineP�i P /P in M̂. If A ⊂ B ⊂ C are three smooth
varieties then we have the short exact sequence of normal bundles:

0→ NA/B → NA/C → NB/C |A → 0.

We apply the last short exact sequence of normal bundles to the three smooth
varietiesP�i P /P ⊂ M̂ ⊂ T ∗(G/P ); but we have seen thatT ∗(G/P ) is locally trivial
(it is locally isomorphic toM̂ × Oq), as consequence the restrict normal bundle of
M̂ in T ∗(G/P ) is isomorphic to the tangent bundle ofOq, the last one is trivial if
we consider a small neighborhood ofx in Tx . As consequence we have to compute
c1(Pi/P, T

∗(G/P )).

Lemma 4.7. Let P be standard parabolic subgroup of a semisimple complex algebraic
group G. Let�i ∈ S − Sp and denotePi the parabolic subgroup corresponding to
the subset of simple rootsSp ∪ {�i}. Then the natural mapT ∗(G/P ) � G×Pnp →
G/Pi, (g.P, Y ) �→ g.Pi is a locally trivial G-fibration and we can identifyG×Pnp
with the fiber bundleG×PiFi , where Fi := Pi×Pnp, np is the nilpotent radical of
Lie(P ).

Proof. The natural morphism

� : T ∗(G/P ) � G×Pnp → G/Pi, (g.P, Y ) �→ g.Pi

is G-invariant so we haveG×Pnp � G×PiFi , whereFi = �−1(e) [21, p. 26]. It is
easy to verify that

Fi = {(g.P, Y ) ∈ G×Pnp; Y ∈ g.np and g.P ⊂ Pi }
� Pi×Pnp. �

We can remark that the projective linePiP/P � Pi/P is contained inFi . As
consequence we havePi/P ⊂ Fi ⊂ T ∗(G/P ) three smooth varieties. We deduce that
the normal bundle ofPi/P in T ∗(G/P ) is an extension of the normal bundle ofPi/P
in Fi and of the restrict normal bundle ofFi in T ∗(G/P ). But

T ∗(G/P ) � G×Pnp → G/Pi
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is a locally trivial fibration over a smooth basis, then the restrict normal bundle of
Fi in T ∗(G/P ) is trivial because it is isomorphic to the trivial bundle with fiber the
tangent space toG/Pi at the pointe, so its Chern classes are trivial.
We have to computec1(Pi/P, Fi).

Lemma 4.8.With the above notations. Letx ∈ np. Let P�i P /P a projective line in
f−1
p (x). Thenc1(P�i P /P, T

∗(G/P )) = −2.

Proof. It remains to computec1(P�i P /P, Pi×Pnp). Let npi denote the nilpotent
radical of Lie(Pi). Then we have the followingP-invariant short exact sequence:

0→ npi → np → np/npi → 0.

As consequence we deduce that the short exact sequence of bundles:

0→ Pi×Pnpi → Pi×Pnp → Pi×P (np/npi ) → 0.

But theP-modulenpi is obtained as the restriction of thePi-modulenpi , then the bundle
Pi×Pnpi is trivial. Moreover by hypothesisnp/npi is vector space of dimension 1 on
which P acts via the simple root�i : if we write P = LP .UP whereLP = C.(LP ,LP )

is the Levi component ofP with C (resp., (LP , LP )) the center (resp., the derived
subgroup) ofLP andUP is its nilpotent radical. The subgroupUP and (LP , LP ) have
no characters, the action ofP on np/npi (induced by the adjoint action) comes from
the action ofC, therefore this action is reduced to the action of the maximal torus
whose Lie algebra ish, and the differential of the action of the maximal torus is exactly
given by the simple root�i . Then we have

Pi×P (np/npi ) � SL(2,C)×B2n2 � T ∗(SL(2,C)/B2)

whereB2 is the Borel subgroup ofSL(2,C) andn2 is the nilpotent radical of Lie(B2).
But SL(2,C)/B2 � P1. As consequence we get

c1(Pi/P, Pi×Pnp) = c1(T
∗(P1)) = −2. �

Remark 4.9. Our approach is another way to get Theorem4.6 (ii) which was already
obtained in[17].
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