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Abstract

It is well known that when the Lie algebra is of tyge D, E the Springer fiber above a
subregular nilpotent element is described by the Dynkin diagram and is called the Dynkin curve
of the Lie algebra. On the other hand, the closure of the minimal nilpotent orbit is obtained by
collapsing the zero section of a cotangent bundle of a projective spAcén this article, we
are interested in the study of the generalized Springer resolution ofAypes give a complete
description of the generalized Springer fiber above a generic singularities showing that it is
isomorphic to a Dynkin curve or to a projective space.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction and notations

In 1970, E. Brieskorn has discovered a connection between the rational double points
singularities with the complex Lie algebra theory, (&]). His result is the following:
let G be a simple algebraic group of type D, E with Lie algebra Li€¢G) = g. Let N/
be the nilpotent cone of. The variety\/ is exactly the closure of an unique nilpotent
orbit Oreq called theregular nilpotent orbit. There is an unique nilpotent orld_req
of codimension 2 inV" such thatOs_reg =N — Oreg (Os-reg is called thesubregular
nilpotent orbit). Let7, denote a transverse slice into the orbit Os_reg at the point
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x € Os_reg. Then(T NN, x) is a normal surface with an isolated rational double point

of type corresponding tg. Few years later EsnaullO] has obtained the same result
with a geometric point of view which consists to the study of the Springer resolution,
fo: T*(G/B) - N, whereB is a Borel subgroup o6 [23]: the Springer fiber above

x € Os_reg is well known as a finite union of projective lines which corresponds to the
Dynkin curveof g, and it was originally obtained by Tits (s¢26]); H. Esnault shows

that each projective line of the Springer fiber above a subregular nilpotent element has
a self-intersection-2, this proves that the Springer resolution restricts to the minimal
resolution of the generic singularities &f and shows again that these singularities are
rational double points of same type gs

On the other hand, there is an other interesting singularity arising from the closure of
the minimal nilpotent orbitOnmin in g corresponding to the unique (non-zero) nilpotent
orbit which is contained in the closure of all non-zero nilpotent orbit, &hgl, =
OnminU{0} is normal and has an isolated singularity. In cgse sl(n, C) such singularity
is exactly obtained by collapsing the cotangent bundl&®bt?, so the fiber above such
singularity is exactly the zero section of this cotangent bundle.

In the present work, we are interested in the study of the fibers ofyéimeralized
Springer resolution f, : T*(G/P) — O,, where P is a parabolic subgroup of a
semisimple complex algebraic groand O, denotes the Richardson orbit associated
to Lie(P) = p. Firstly, we obtain a result on the dimension of the fibers/fpf (cf.
Theorem2.1) which is a generalization of a Steinberg’s wdg6,27], the last result will
allow us to describe some irreducible components of the fiberg, dicf. Proposition
2.4). Next, we restrict our study to the caGe= SL(n, C); we will give a description of
the intersectior®, with the nilpotent radical ob (cf. Theorem3.3), this will help us to
describe the closure of the intersection of the nilpotent radical wfth everyadjacent
nilpotent orbit toO,, (cf. Theorem3.7), and we will give a complete description of the
generalized Springer fibers above the elements of such orbit (cf. Theh8rshowing
that those fibers are isomorphic to a Dynkin curve or to a projective space. Finally,
by adopting Esnault's work we will find in some cases that the generalized Springer
resolution restricts to the minimal resolution of some rational double points of Aype
(cf. Theorem4.6).

Let G be a semisimple (connected) complex algebraic group with Lie algebra
Lie(G) = g on which G acts by the adjoint action. Fix a Cartan subalgelpraet W
denote the associated Weyl group. We have the Chevalley—Cartan decomposigion of

g:beBZgw

aeR

whereR is the root system of relatively tol). Let S be a set of simple roots dR.
Denote Rt (resp.,R™) the positive roots (resp., negative roots) (w.BL. Let b :=
he > g, be the standard Borel subalgebra (w.BL. Let B be the Borel subgroup

aeRT

of G with Lie(B) = b. Let P be a standard parabolic subgroup with (He= p. The
parabolic subalgebra is determined by a subs§} C S. DenoteR,, the root subsystem
generated byS, and W, the subgroup ofl} generated by the simple reflexiong
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with o« € Ry. We also have

p=lhenwthl:=he Y g andn,:= Y g,
aeR, aeRT Ry

wherel,, is the Levi component and,, is the nilpotent radical ob. DenoteL, and
Uy, the connected algebraic subgroups @fwith Lie(Ly) = I, and LigUy) = .
Denote W5 (resp., 5»WW5) the set of the representatives of minimal length of the
classes oW/W, (resp., of W, \ W/W,). We have

W ={weW; w(Sp) c R, (1.1)

SoWS = {w e W; w(Sy) ¢ R andw™(Sy) € RF). (1.2)

For everyo € R denoteU,, the unique unipotent subgroup Gfsuch that Li€U,) = g,.
For everyw € W%, let n,, denote a representative of in Normg (by); define

Np(w) == {z e R" | w @) e R™ — Ry} (1.3)

and U, ,, the unipotent subgroup @ generated by the subgroups with « € Nyp(w).
We have the well-known Bruhat-Tits decomposition (§2ep.100). Every elemeng
in G can be uniquely written as the produygt= un,, p, with w € W, u ¢ Up,w, and
p € P, and we also have

G= |] PnuP. (1.4)

weSP WS

From general nilpotent orbit theory, recall that there is a unique nilpdgeatbit
O, such that the set), N, is open and dense in,. Moreover,O, N1, is exactly
a P-orbit and we have dif©,) = 2dim(n,) (cf. [19,26)). O, is called theRichardson
orbit associated tg.

Let Gx”n, be the space obtained as the quotientGok n, by the right action of
P given by (g, x).p := (gp, p~tx) with g € G, x € n, and p € P. By the Killing
form we get the following identificatioerPnp ~ T*(G/P). Let g x x denote the
class of(g,x) and 2 := G/P. The mapGxFny, - 2 x g, g *x > (gP, g.x) is an
embedding which identif;GxPnp with the following closed subvariety of’ x g (see
[21, p. 19):

Y ={(gP,x) | x € gmp}. (1.5)
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The mapf, : GxPny — G, g *x — g.x is called thegeneralized Springer resolution
and we have the following commutative diagram:

~

- @ @ @05 y
f A’z
g

where pr, is the second projection @P x g on g. The mapf, is proper (becaus€/P
is complete) and its image is exacty.n, = O,. Moreover, the fiber off, above
points of O, is finite; it is a birational map whew* C P, whereG* is the stabilizer
of x in G andx € Oy, this happens in the particular cage= B is a Borel subgroup
of G [26, Theorem 1, p. 129]and in this case the maf, is a desingularization of
the nilpotent cone\V of g and is called theSpringer resolution23].

In caseG = SL(n, C), the generalized Springer resolution is biratiof8| moreover
every nilpotent orbit is a Richardson orbit for an appropriate parabolic subgroup of
SL(n, C) [6, p. 112] So the generalized Springer resolutions are the desingularizations
of the closures of the nilpotent orbits.

Let x be a nilpotent element iny,. By (1.6) we have

GxPny, (1.6)

Py = fp_l(x) ={gPec?|xecgnyl

Py ={gPec?|gtxen ) (1.7)

Following [22], let G* be the stabilizer ok in G, G*° denote its neutral component
and A(x) := G*/G*° the component group. LECs}ser (resp.,{D;}1<i<m) denote
the set of the irreducible components #f (resp., ofG.x Nny). We have a surjective
maprn: H— {1,...,m} such that for every £i <m the setH; := n13G) is exactly
an orbit under the action ofi(x).

In caseG = SL(n, C), the subgrougG* C GL (r, C)* is always connected (it is an
open set of the spact € gl(n,C) | gx = xg}), then = is a bijection between the
irreducible components o, and the irreducible components 6f.x N ny.

Let us give a brief outline of the contents of the paper.

e In Section 2, we will give a fundamental result about the dimension of the general-
ized Springer resolution; this will help us to give a description of some irreducible
components of the generalized Springer fibers.

e In Section 3, we are interested in cae = SL(n, C). Our main result gives a
complete description of the generalized Springer fibers for elements adjacent
nilpotent orbit toOy,.
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e In Section 4, we adopt Esnault’'s work to show in some cases that the generalized

Springer resolution restricts to the minimal resolution of some rational double points
of type A.

2. Generalities

The Springer resolution has been intensively studied by many mathematicians as N.
Spaltenstein, G. Kempf, R. Steinberg, P. Slodowy,.... R. Steinberg has established the
following formula which related the dimension of the Springer fiber above a nilpotent
element with the dimension of the stabilizenoin G: dim(fb_l(x)) = %(dim(Gx)—r)),
wherer is the rank ofG (cf. [27, p. 133; 27, p. 217] By studying his proof we have
obtained the following generalization:

Theorem 2.1. For every element € O, = Im f, we have
dim( £, 1 (x) < 3(dim(G*) — dim(Iy)).

Proof. For everyx € 5p, denoteO, the G-orbit of x. Consider the subvariety of
g x # x 2 defined by

V:={(y,8.P.g P) O x P x P, yegmnnNg .l

ThenV is a closedG-variety and is a fibration abovw®, whose fibers are isomorphic
to 2, x #,. We deduce that

dim(V) = 2dim(Z,) + dim(O,). (2.1)
By the Bruhat-Tits decomposition we have a disjoint unior= || V. Letw €
weSP WS
S5 and letn,, be a representative @f in Normg (h), thenV,, := {(y, g.P, g.n,.P) €
V1. In particular, we have

dim(V) = max, _s,yys, dim(Vy).

We can identify V,, with a subvariety ofO, x [G/(P N ny.P)] by the following
morphism:

¢V — Ox x[G/(PNny.P),
(v,g.P,gny.P)— (y,g(PNny.P)).

Moreover, the projectiop : V,, — G/(P Nny.P) allows us to see that the fiber above
g(PNny.P) is exactly O, N gy Ngny, .1ty =~ O Nty Ny, Then'V, is a G-bundle
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above the spac& /(P Nn,.P) with the fibers isomorphic t@, N 1y Nyt We
deduce that

dim(Vy,) = dim(G) — dim(P N ny,. P) + dim(Oy N1y N 12y,.11). (2.2)
But
dim(P Nny.P) = dim(p N ny.p),
dim(p Nny,.p) = dimp Ny, Ly) + dimdd, N ny.at) + dim@, Nng, ).

The elementw € W permutes the roots, so,.l, =h® }_ g, and the linesy,,
aeRy

which are not contained ip are exactly those for which (o) € R~ —R;. We deduce
that

dim(p Nny,.ly) =dim(,) — carda € Ry; w(w) e R — Ry}
As w € SrW, for everyu € R} by (1.2 we havew(x) € RY, then
{e e Rp; w(w) eR*—R;}z{cxeR;; w(w) € R~ —R;}.
This remark gives us
dim(p N ny.1p) = dim(l,) — cardo € Ry w@ e R™ =Ry }
By symmetry we get
dim(p N ny,.ly) = dim(l,) — carda € R;r; w() e R — R; ). (2.3)
With the same argument we get

dim(l, Nny.atp) = cardf € Ry; f=w(@ ae R —R} )
= cardf e Rp; w () e RT =R} }

=cardfe R} w () eRY - R} }. (2.4)
With the same argument wity € S»WW5S (cf. 1.2) we get

dim(p Nny,-1.1y) = dim(ly) — cardoe € RY; w i (w) e RT — R; } (2.5)
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and

dim(l, Nn,-1.p) = cardf e R} w(p) e RY — Ry }. (2.6)
On the other hand,

2dim(p N ny.p) = dimp N ny.p) + dim® N ny,-1.p).
With (2.3), (2.4), (2.5 and @.6) we get
2dim(p N ny,.p) = 2dim(ly) + 2dim(ny, N ny.atp). (2.7)
With the relations Z.2) and @.3) we get
dim(V,,) = dim(G) — dim(ly) — dim(ity N 71y,.01) 4 dim(Ox N1ty N y,.1p).

As dim(ty, Nny,.np) —dim(O, Ny Nay,my) >0, with (2.1) and din(O,,) = dim(G) —
dim(G*) we deduce that

dim(Z;) < 3(dim(G*) —dim(lp)). O

Remark 2.2. The author thanks the anonymous referee for indicating that the last
theorem was a special case of a result obtained by Springef[44e&emma 4.2; 18,
Proposition 1.2}

Moreover, the above relation is an equality if dim N ny,.1p) — dim(O, N1y N
ny.p) = 0, so we have

Corollary 2.3. For every elementc € O, we have dim(fp‘l(x)) = %(dim(G") -
dim(l)) if and only if O, N1y Nny.my is dense iny, Ny, for an elementw e
Sprp'

An immediate application of this theorem is the possibility to describe certain irre-
ducible components of the fibers of the generalized Springer resoligion

Proposition 2.4. Let P be a standard parabolic subgroup. Let Q be a parabolic sub-
group which contains P and lep’ be a parabolic subgroup in the conjugacy class of
Q. DenotelLie(P) = p, Lie(Q) = q and Lie(Q’) = q'. Let ny be the nilpotent radical

of q'. Let O4 be the Richardson orbit associated ¢o Let x be a nilpotent element.
Then we have the following equivalences

(i) x e ng NOy.
(i) x € ny and dimQ/P) = dim(f,; (x)).
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(i) g.Q/P is an irreducible component of;l(x) where g is an element in G such
that g0g~ 1 = Q.
Proof. (i) = (ii) Let Sbe the set of simple roots &. DenoteS; :={o € S | & € Rq}.

Then S, is a basis of the root subsysteRy,. Relatively toS (resp.,S,), denotel (resp.,

l) the length function oV (resp.,)V,). Denoten® := 3" g,. Let w, the unique
aeR+

element inW, such that W(R{) = Ry . As Wy € Wy, then we have15, p. 114]
lq(Wq) = card{o € Ry | Wy (2) € Ry ) = cardR)).
But /; is only the restriction of on W, [15, p. 19] then we deduce that
Iq(Wq) = [(Wq) = cardfx e RT | wy'(@) e R7)).
As consequence we ha/e™ Nw,(R") = RT — R}. Denotew, the unique element

in W of minimal length in the double class of win W,\W/W,. Then we have
Wy = wiwqwz With wi, wo € W,. We deduce that for every e Rq+ we have

wqw2(2) € Ry. By the same argument we have;(R{ — Ry) = RS — R, we
deduce thatwq(R;r — R;,“) C Rp. As consequence we have
By Corollary 2.3 we have

dim(f, H(x)) = F(dim(G*) — dim(1,)).

With properties on Richardson orbit we can verify that difm) = dim(l,).

dim(f, H(x)) = 3(dim(ly) — dim(ly)) = dim(Q/P).
(i) = (iii) is trivial.
(iii) = (i) Say thatg.Q/P is an irreducible component qu_l(x) is equivalent to
say thatQ/P is an irreducible component qu(g*l.x), by (1.7) we haveg1.x € ny.

By (2.8 we can conjugateg—l.x with an element ofQ to assume that we have
g tx e nq (if not by (1.7) we would havef, *(x) = ¥), and we have

dim(Q/P) = dim(f, (x)).
Then we have

dim(ly) + 2dim( £, 1 (x)) = dim(G*) >dim(P¢ ).
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As consequence

dim(Q.(g"Lx)) = dim(Q) — dim(Q¢ )
> dim(Q) — (dim(lp) + 2dim( £, (x)) = dim(n,).

Now by properties on Richardson orbit we get the result. (]

Remark 2.5. Let x be an element ofi. A polarizationof x, is a Lie subalgebrg of g

such thatx(x, [q, q]) = 0 and 2dintq) = dim(g*) + dim(g) wherex( , ) is the Killing

form. Then every polarization is necessary a parabolic subalgebra and the nilpotent
elements which admit polarizations are exactly the nilpotent elements of Richardson
orbits, [7, p. 46] Then the above proposition says that the different polarizations of
which containp, give certain irreducible components 95{1(x).

3. Study in sl(n, C)

Now consider the cas& = SL(n, C) and g = sl(n, C). The subalgebrd (resp.,
b) can be identified with the subvariety which consists of the diagonal matrices (resp.,
upper triangular matrices) aofl(n, C). DenoteE; ; the elementary matrices. The one-
dimensional vector subspacgg are generated by the elementary matridggs with
i # j. For every XKi, j<n, denotep; ; the coordinate projection corresponding to the
line g, generated by the elementary matéx ;. The roots are given by the following
linear forms{p; ; —p; ;}, with i # j. The simple rootgo;};—1 . ,—1 are the linear form
{pi.i — pi+1i+1}i=1....n—1, and the Weyl group is identified with the symmetric group
S, [4, p. 250/251] Let s, be the elementary transposition &, which interchanges
k andk + 1.

The reasons to considsl(n, C) are on the one hand the generalized Springer reso-
lution is a desingularization, and on the other hand every nilpotent orbit is a Richardson
orbit for a suitable parabolic subalgebfé, p. 112]

Definition 3.1. A partition of n is a sequence of integes = (p1, p2, ..., p;) such
that p; >1 and Y\, p; = n.

The standard parabolic subalgebrasstif:, C) are in bijective correspondence with
the partitions ofn. If p = (p1, p2, ..., p;) is a partition ofn, then the corresponding
standard parabolic subalgebra has the following shape:

L1 x ... %

0 Lo =«
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where L; € GL p, xp, (C). Two partitionsp = (p1, p2, ..., p1) andd = (g1, 92, ..., q1)
of n are calledassociatedf there is permutatiom € &; such thaty; = ps(;). A partition
p = (p1, p2,..., p1) of nis said ordered if p1>p>>--- > p;. To the partitionp
corresponds th€oung diagranwhose rows are composed respectivelypof pa, ..., p;
squares. Ifp = (p1, p2, ..., p;) is an ordered partition af we define itsdual partition
as the partitionp = (p1, p2, ..., py) with p; := cardj; p;>i}. We can notice that
the dual partition is also ordered.

The nilpotent orbits insl(n, C) are parameterized by the ordered partitionsnof
[6, p. 32] corresponding to the lengths of the Jordan blocs arranged in decreasing
order; if p is an ordered partition oh, we denoteO, the corresponding nilpotent
orbit. We have the following identities (s¢6, p. 94):

j
dim(ker(x/)) = Z bi

i=1

and

rank(x/) = > p:. (3.1)

i>j

If p=(p1,p2...,p1) andq = (g1, 92, ..., qr) are two-ordered partition of, we
denotep>q if

J
Zpi > Z‘ﬁ for every ;. (3.2)
' i=1

If p>q, we will say that the partitionp dominatesthe partitionq.
The geometric interpretation of this order is given by

Proposition 3.2 (Gerstenhabef6, p. 95; 11]).

(i) p=q if and only if Op D Og.
(if) If p=q such that for every0q c O C Op we haveO = Oq or O = Op. Then we
have

Case 1 there is an integer i such thagby = gx for k #i,i +1andgq, = p; — 1
>qgiy1 = pi+1+ 1. Then we have:odimo—p(oq) =2.

Case 2 there is two integers < j such thatpy = gx for k #i,j andg; = pi—1=
q; = p; + 1. Then we havesodimo—p(oq) =2(j —1i).

Such partitions are called “adjacent”
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We can see the two cases by theirs Young diagrams in the following manner:
Case 1

Case 2

The first case consists to move a box in a corner to the next row, and the second
case consists to move a box in a corner to the previous column.

If p is an ordered partition ofi, then the nilpotent orbi®), is the Richardson orbit
for every standard parabolic subalgebra whose corresponding partition is associated to
p (cf. [6, p. 112), in particular we haved, = Oy.

Let p be an ordered partition afi and letp be the standard parabolic subalgebra
corresponding to the partitiop. We have the decompositiop = [, @ n,. As the
subalgebrany,, ny] is stable underL, which is a reductive group, there is a vector
subspaceV,, such thatn, = V, @ [y, np] and V,, is stable underL,. In fact V,, is
unique, it is the direct sum of the subspaegs whereo is the sum of simple roots
in S, and of a unique simple root i — Sy, [6, p. 123] Here is the first important
result:

Theorem 3.3.Let p = (p1, p2,..., p;) an ordered partition of n. LetO, be the
nilpotent orbit corresponding t@. Let p be the parabolic subalgebra corresponding
to p = (p1, p2, ..., pr). Then we have

(i) The subvarietyOp NV}, is reduced to a unique.,-orbit which is open and dense
in Vy.

Proof. (i) Let x = x1 4+ x2 € ny =V, @ [np, np] be an element imy, with x; € V,,
and xz € [y, np], thenx e Op if and only if [p, x] = n,. Now V, is stable under
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I, we have[ly, x1] C V,, the condition
[p, x] = [lp, xa] + [Ty, x2] + [p, x1] + [np, x2] =1
with
[Ip, x1] C Vp,
(Tp, x2] + [y, x1]1 + [Ny, x2] C [y, 1p]

implies [I,, x1] = Vj, but this last equality is equivalent to the fact that the otjt
of x; underL, is open and dense i,. So if we denotep : n, = V, ® [y, ny] —
Vp, x1+x2 — x1 the first projection, we gep(OpNny) C O, in particular we deduce
that L,.p(Op N nyp) = O2. We can easily verify that the elementg € V,, have the
following shape:

o M o ... o0
0 0 M}
: 0 (3.3)
0o M!,
o 0 ... 0 O

with M} € Mat;, .. 5, , (C) for 1< j <t —1, we can identifyV,, ~ Mat, . 5,(C) x - - - x

Mat;, ;.5 (C) and write

x1=(M7i,..., M} }) e Mat (C) x -+ x Mat,

Pr—1X Py

(©). (3.4)

PLX P2

Now it is easy to see that if we considef € V, with the configuration 3.3), then
we have

0 0 M 0 ... O
0 0 0 M2

w2 = (3.5)
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with M? = MlM L. e Maty,;.,(C), so we can writex? = (MZ,..., M2 ,) €
Matplxpz(tfj) x .- x Matp, .5 (C). Then by induction we can verify that
xif = MY, ME) e Mat s (C) x - x Maty, 5, (C) (3.6)

with M¥ := M: ‘ML, ... M}, . Suppose that; is of maximal rank. As rank) =

1<Zi:<z rank(Mil) and asM}' € Mat;, . ;,,,(C) with p;>p; 1, we deduce that rartk;) =
> pi. Likewise for every integek, we have rankx’{) = > rank(Mi"), and as
i>2 1<i<t—k+1
Mf e Matj, . .., (C) with p; > p; i we get rankM¥) = piix, SO we get ranke*) =
>~ pi- By (3.1) and Propositior8.2, we deduce that; € O3 if and only if x; € Op
i >k+1
if and only if p(Op Nny) = O2 = Op NV, and this shows (i).
(i) If we write x = x1 4+ x2 with x1 € V,, and x; € [y, np], by the proof of (i) we
havex € Op if and only if x1 € Op, and the result follows. [

Remark 3.4. (i) The above theorem give a characterization of the elements of the
Richardson orbitO,,; this will allow us to give a characterization of, — (Op N 11p),
in particular this will help us to find out the irreducible componentsGof N1, when
x is in an adjacent orbit t@, (cf. Theorem3.7).

(i) We can also notice that this result is not always true for an other parabolic
subalgebra corresponding to a partition associatefl. t;m the proof we use the fact
that p is ordered, this permits us to show th@ NV, # 0.

Let M be an irreducible subvariety contained in the nilpotent caheof sl(n, C).
As N is a finite union of nilpotent orbits, there is a unique nilpotent o®j; such
that Oy N M is dense inM.

Definition 3.5. We will call Oy, the orbit induced byM.

Now let p>q be two adjacent ordered partitionsrofLet p be the standard parabolic
subalgebra corresponding to the partitipnAs the image of the generalized Springer
resolution f, is exactly Op =Gny (= (’)p) we deduce thatDq has a non-empty
intersection withit,. On the other hand ag is adjacent tg, the orbitOq is necessarily
induced by every irreducible component wf — (Op N1y) for which the intersection
with Oq is non-empty.

Denote M (m, n) := Mat,,x,(C). For every G</<min(m, n), denote M;(m, n) :=
{x € M(m, n) | rank(x) </}; the subvarietyM;(m, n) is called adeterminantal variety
it is an irreducible normal subvariety of codimensi@n—/)(n—!) in M (m, n), moreover
M;(m, n) coincides with the closure of the subvariety &f(m,n) which consists of
matrices of rank equal tb[1, Chapter Il]

For every K k<t — 1 let Y; denote the subvariety of, defined by

={x1+x2€ Vp + [p, mpls rank(MliL) < Pr+1}- (3.7)
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We can notice that is exactly the direct sum of a determinantal variety and a vector
space, therefore it is an irreducible normal subvariety of codimengjor pry1 + 1
in ny.

Remark 3.6. (i) By Theorem 3.3 the subvarietiest; are exactly the irreducible
components oft, — (OpNny). In casep, = 1, Y is a hyperplane imy, and coincides
with the nilpotent radical of a parabolic subalgebrasft:, C) containingp.

(i) Let p>q be two-adjacent ordered partitions of If {Y;}xc; denotes the set
of the irreducible components af, — (Op N np) which induce Oq, then we have
(Og N1y) C Upes Yi, in particular every irreducible component 6fg N ny, is (at
least) contained in a subvariety;, for a certaink € I, and for everyk € I the
subvarietyY; contains a unique irreducible component@§ N ny, which is dense in
Yx. As consequence, we have an injection from thelsit the set of the irreducible
components of0q Nny. In particular, there is an injection from the deto the set of
the irreducible components qf;l(x) for x € Oq. In fact, we will see at the end of
the proof of Theoren8.9 that we have in fact a bijection between these two sets.

Theorem 3.7. With the notations above. Denoig := min{j; p; # ¢;} and mg :=
min{j > io; p; # ¢,}. Then the irreducible components af, — (Op N np) which
induce Oq are all isomorphic and are the subvarieti¢¥; };, < <mo—1. Moreover we
have dim(Oq N 1ty) = 3dim(Og).

Proof. We will consider two cases:
(i) Casepy > g1: let x = x1 + x2 a nilpotent element int,, wherex; € V, with
the formula

x1= (M3, ..., M} ) e Mat (C) x -+ x Maty

Pr—1% Pr (C)

p1X% p2
(cf. (3.4) andx; € [y, ny]. By Remark3.6 (i), x € n, —(OpNny) if and only if there
is an integerj € {1,...,¢ — 1} such that rankM}) < pj+1. By hypothesisp1 > g1,
and by Propositior8.2 we get

p1—1 if k=1,
gr=14 p2+1 if k=2, (3.8)
Dk otherwise

With the dual partition we getji, = 2, pi, = 1, gx = pi for everyip < k <t

and g, = 0, p, = 1, in particular we deduce that for evely<i<r — 1 we have

Mkl e C. So for everyip<k<t —1, Yi = {py.;,,;, = 0} Nmy is a hyperplane in

np with I := Y~ p; (cf. Remark3.6 (i)), so Yx is exactly the nilpotent radical of

J<k

the standard parabolic subalgebra corresponding to the set of simpleSiooty, };

now we can verify that such standard parabolic subalgebras correspond to partitions
associated taj. So these subvarietief;};, <« <,—1 induce the nilpotent orbi0q.

Now, we have to show that the other irreducible components,of (Op N11,) do not
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induce Oq. Considerk < ip such that rankMkl) < pr+1, by (3.6) we necessary have
rank(M¥) = rankMiM2 ... M}) < pji1. In particular we have rank/) < 3" p;. By

i>j
(3.0, x € Oq if and only if rankx’/) = Y g;. But j < ig, then p; = ¢; for every
i>j
i<j < ip, as consequenc®_ ¢; = >_ p; and the result follows.
i>] i>]
(i) Casep1 = q1: we havegi, — 1 = piy = pig+1 = -+ = Pmo-1=2 and gm, =

Pmo — 1. DenoteX; := {x € 1y | rank(Mkl) = pry1—1}. Then by[1, p. 71] we have
Yi = Xi. (3.9)

But for everyio<k<mgo—1, we can verify thatX; Nnj # @, wherep is the standard
parabolic subalgebra corresponding to the partitiga, ..., pr—1, px + 1, prr1 — 1,
Pri2, ..., p1), and the last partition is associated to the partifioBy this remark and
by (3.9 we deduce that} induces a nilpotent orbi® c O_q. Let ny be the nilpotent
radical of the standard Borel subalgeliraThen we have difn, N O) = %dim(@)
[22]. As Y, C iy C np,, we deduce that

dim(¥;) < 3dim(0) < 3dim(Og) = dim(n;)

the last equality comes from the properties of Richardson orbits. But we have noticed
that the partition(pa, ..., pk—1, px + 1, pxk+1 — 1, pr+2, ..., p;) is associated td|, we
deduce that

dim(nﬁ) = dim(np) — pr+ prr1— 1
As the varietyY; is of codimensionp; — pix+1 + 1, (cf. p. 450, then we have
dim(¥y) = 2dim(0) = 3dim(Oq)

we deduce thaD = O

To finish the proof we have to verify that the other irreducible compon&ntslo
not induceOq for j<iop—1 ormp<j. But it is exactly the same reasoning as for the
case (i) which consists to verify that dimv) < ) ¢; for every element € Y;.

1>

Finally, if mo = io + 1 there is a unique irred]ucible componentigf — (Op N 1ny)
which inducesOq, and if mo>ip + 2 for everyig<i, j <mg we havep; = p; and
as consequence the matric{eﬁ,}}iogkgmo_l are square matrices of same length; we
deduce that the subvarieti¢®};, <t <mo—1 are all isomorphic. [

Let o € S—S, be a simple root. Denot&, the minimal standard parabolic subgroup
associated to the simple roat

Definition 3.8. A projective lineof type « is a subset ofG/P of the formg.P,P/P,
whereg € G.
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We can remark thaP,P/P ~ P,/P,N P. But P,N P = B, becausex is not in S.
So we getP,P/P ~ P,/B ~ P Two projective lines of the same type are disjoint
or are equal and two projective lines of different types have at most a common point
[26, p. 146]

Theorem 3.9 (Main theoren). With the notations of the last theorem. et q be two
adjacent ordered partitions. Let € Ogq N ny.

@ If codimo—p(oq) = 2, then fp‘l(x) is a finite union of projective lines: for every

i € X, <k Pulip<k<mo-1 there is a unique projective line of typg in fp‘l(x).
Moreover fp—l(x) is the union of these projective lines which intersect themselves
transversely. Finally the projective lines of type; and o; have a non-empty
intersection if and only ifi = 3, <, pu and j = 3, <, pu With I = k£ 1. In
particular, f;l(x) is isomorphic to the Dynkin curve i —;,.

(i) If codimo—p((’)q) > 2, then fp‘l(x) is reduced to a unique irreducible component

isomorphic to the projective spad@’io=?mo*1,

Proof. Like for the proof of the last theorem we will consider two cases.
(i) Casep1 > q1: for every > p,<k<n — 1, denoteq, the standard parabolic
u<ip
subalgebra whose associated parabolic subg@ups given by the subset of simples
roots S, U {o}. We notice thatQ./P ~ P, P/P. Moreover, these standard parabolic
subalgebras are associated to the dual partifjofef. Proof of the last theorem), by
Proposition2.4 we deduce tha;fp_l(x) is a union of projective lines of type; for

> pu<k<n—1, and for every type; we find a unique projective line of the same
u<ip

type.

Finally, for every Y p, <k,l<n —1 such thatk —/|>2 we can remark that the

u<ip

intersection of the two hyperplanggy r+1 = 0} N ny and {p; ;41 = 0} N1y in 1y,
is exactly the nilpotent radical of a standard parabolic corresponding to a partition
associated td = (41,42, --.,Gip. 2,1, 1,...,1). Then we havet>§ andt # §. As
consequence, we deduce tiia Nn, Nng, = @, By Proposition2.4 the corresponding
projective linesgy.P, P/P andg;.P, P/P in fp—l(x) have an empty intersection.

(i) Case p1 = g1, by Proposition3.2 if codimo—p(oq) =2 we getp, = =
DPmo—1 = Dmo =2, and if codim@((’)q) > 2 thenmo = ip + 1 and we getp;, >
Pig+1=>2.

By Theorem3.7, the irreducible component§’ };, < <mo—1 0f 1y —(OpNny) induce
the nilpotent orbitOy. Fix an integerio <k <mg— 1, we now compute the irreducible
component off;l(x) corresponding to the subvariei; (see Remark3.6 (ii)).

Denoteb := p; anda := pyr1, We haveb>a and we geth = a in casemg>ip+2.

Denotei := )_ p, and leto; the corresponding simple root. Consider= x1 + x2 €
u<k

Y N Og, with x1 = (M7, ..., M} }) € Vy = Maty,,5,(C) x --- x Mat; ;5 (C) (cf.
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(3.3 and @.4)) andxz € [y, np]. By (3.9 we have to choos&M,;L of rank a — 1; for
our computation we will choose; with

Mkl =E i1+ E 142+ -+ E q12ita-1, (3.10)

which is of ranka — 1, i.e., Mk1 has the following shape:

b Mt
0

L 0
-0
M= b 10

¥ 0 1
% BE 0..... 0
N |

a

a (3.11)

Let w := wiwowz € W be the element of the symmetric group defined by
W1 = (Si—q+18i—a - - - Si—b+1) (Si—a+28i—a+1- - - Si—p+2) - - - (Si—18i—2 . . . Si—(b—a)—1)»
W2 i= Sita—1Si+a—2 - - - Si+1,
W3 = Si—(b—a)Si—(b—a)+1---Si-
Remark thatw is written with the simple transpositions
Si—b+1s Si—b+25 -+ s Si+a—25 Si+a—1,
then we deduce that
Now)yc{f| =0y +oys1+- -+, i—b+1l<u<v<i+a—1}. (3.12)

For everyi —b+1<m<i—a+1, consider the roop,, := oy + o1+ + %ita—1;
then we get:

w7, = wytwy twi B,
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1

-1 -1

W3 W, (Om+a—1+ Amta + -+ %ita—1)
-1

= Wg (%mta—1+ Omta + -+ + %).

Moreover by constructioms is written in a reduced form, then by Sprind@b, p. 142]
we have

Ny(w3) = {omia—1+ tnta+---+0 | i—b+1<m<i —a+1}. (3.13)

We deduce that

wi(p,) < 0. (3.14)

Let w be the representative of minimal length of the classwoin YW/W,, then we
can verify that

Npw) = (e RT =Ry | w(B) <0) (3.15)
by (3.14 we deduce that
(B | i —b+1<m<i—a+1) C Np(w)). (3.16)
By (3.12 and @.15 we get

Noyw)C{f | f=ou+ouyr+ -+ i—b+1l<u<i<v<i+a—1}.
(3.17)

On the other hand, by3(10 we have

a-2

1
M = Z Ei-kitk+1 € 8o @ Qo g o101 D B Boyppttaiiass (3.18)
k=0

For every 06Xk <a — 2 we have

1 1

-1 1 -1 -1
W (Ei—fitk+1) = Wy Wy Wy (Ej_kitk+1)

-1 -1
= wz wy (Eiitk+1)

“1r. . -1 —
= w3 (Eiitkt2) € w3 (gdi+.--0fi+k+1) - gwgl(ai+...oc,-+k+1)'
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By (3.13 we haveu)gl(oci + ...0i1x+1) > 0. In particular we deduce that €
ny Ny, Wheren,, is a representative ab in Normg (b). Let

i—a+1 i—a+1
u .= (Idn + Z imEm,H—a—l ) € l_[ U“m+"'+“i+a’ (319)
m=i—b+1 m=i—b+1

with /,, € C. By (3.16 we haveu € Uy ,. Recall that if v € Us andY € 9 where
y, 0 are two roots, thewm.Y € Zt>ogy+t_5, [26, p. 80] with (3.18 and B.19 we have

uMlu=! = M}, and by 8.17 we deduce that
uxu~t e My N7y, 1. (3.20)
By Theorems2.1 and 3.7 we have

dim(f; 1) < 3(dim(G) — dim(ly)) = 3(dim(G) — dim(Ogq) — dim(l))
< 3(dim(Op) — dim(Og)) = 3(dim(Op) — 2dim(Og N 11y))
< dim(ny) — dim(Oq N ny) = codimy, (Yx) =b —a + 1.

As card{f,, | B = tm+omp1+- -+ %iyq 1, i—b+1<m<i+a—-1}) =b—a+1,
and with @.20 we deduce that dinfgl(x)) = b—a+1 and the irreducible component
of fp—l(x) corresponding td’; is given by the closure irG/P of the subvariety

i—a+1
Id, + Z /lmEm,i+afl)an/P
m=i—b+1
i—a+1
= nwlnwz(ldn + Z imEm+a—1,i+1)nw3P/P-
m=i—b+1

Let r; denote the simple reflexion which interchangkand d + 1 of the symmetric
group &, with z =b —a + 2 and letF; ; denote the elementary matrix ii(z, C).
Consider P, the maximal parabolic subgroup BL(z, C) whose corresponding Weyl
subgroup ofS; is generated by, ..., r,—2. Then we have the following isomorphism:

i—a+1
(Id, + Z imEm+a—1,i+l)nw3P/P
m=i—b+1
z—1
~ (Id:+ Y dmFn)ryry.r,y P/ P

m=1
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But the right member is exactly the big cell BL(z, C)/P;, then we deduce that the
irreducible component oﬁ‘*l(x) corresponding toYy is isomorphic toSL(z, C)/ P,
which is exactly the prolecnve space of the hyperplane@zintherefore this irreducible
component is isomorphic t#* ! = pr—ett

If b =a we havew] = s;_44+15i—q42-..5i—1 andwz = s; and we get

(Idy + jin—a+l,i+a—1)nw P/P = Nw, (Id, + iEi,i+a—1)nw2nsi P/P
= nwlnwz(ldn + /IEi,i—}-l)nSiP/P'

Therefore the corresponding irreducible component is a projective line ofotype

Let us show now that ifk—1|>2, thenY, NY;NOq = @. As [k—1|>2 we havep;, =
Pigt1 ="+ = Pmp—1 =a. Letx =x1+x2 € %, NY;, with x1 = (M, ..., M} ) eV,
(cf. (3.9 and @.4) and x2 € [ny, mp]. In particular, we have rakal) < a and
rank(Mll) < a. Let g be an element ifP. We can write:

L1 *x ... x
0 L
g= ;
*
0 ... 0 L
0 LiMiL> * *
0 0 LoM3L3
gug t=|": : % (3.21)
0 LiaM!, L,
0 0 0 0

with L; € GL(p;, C). Because ofk—I|>2 and rankM}) < a, rankM}) < a, we can
chooseLy, Ly_1, L; and L;_1 such that the first column ot MiLs_1 and L;M}L;—q

in gag~1 is zero, in particular we gegog™! € n; wherep is the standard parabolic
subalgebra corresponding to the partition

(P1o-vs Pr—1, Pk + L Pk—1— 1, pr—2, -« s Pi—1, i+ L pi—1 — 1, pi—2, ..., Pr),

which is associated to the ordered partition

(ﬁl?"‘7ﬁi0—lva+17a+17a7"'1a7a_19a_1113n10+11""ﬁl)
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and the last partition strictly dominates the partition

qz(ﬁls~~~aﬁi0—laa+1aasa7-~'sa7ﬁmo+l7"'1]31)'

As consequence we fin, N'Y; N Og = ¥, this means that the irreducible components
in fpfl(x) corresponding td’; and ¥; are disjoint.

Let us show now that we have a bijection between the set of the irreducible com-
ponentsY; which induceOq and the set of irreducible components Gf N n, (cf.
Remark 3.6 (ii). By Theorem 3.7 we have Oq N1y C Uy <k <mo—1 Y&» @S cONse-
quence every irreducible component @f N, is contained in a subvariety; for a
certain integerio <k <mg — 1, then it suffices to show in each subvarigty we only
have a unique irreducible component @f Nn,. Case (i) is trivial because properties
concerning Richardson orbit. Case (ii): 1&; D;be two irreducible components of
Oq N1y contained inYy. Let x = x1 +x2 € D; (resp.,y = y1 + y2 € D;) with
x1 € Vp andxz € [1np, np] (resp.,y1 € Vp and y» € [1np, 1p1). By conjugatingx (resp.,

y) by an appropriate element € P (resp.,g’ € P) with a good choice of the Levi
component ing (resp., ing’) (cf. (3.21), we can suppose that the writing Mkl in
x1 (resp.,y1) has the configuration3(11) p. 453 The calculus which followed shows
that the irreducible component§ andC; of fp—l(x) corresponding tdD; and D; are
isomorphic and as consequenfg and D; are isomorphic. Ast; induces the orbit
Oq, one of the irreducible component 6f; N1, contained inY; is necessary dense
in Yy, if D; is dense inY, we have the same property f@;, so we necessary have
D; =D;.

In ca]ses (i) and (ii), iffk — 1|>2 then the irreducible components gf{,‘l(x) as-
sociated corresponding tg, and Y; have an empty intersection. On the other hand
the generalized Springer resolutigf is birational and its image Inf, = G.np is a
normal variety[3, p. 448] by main Zariski Theorenfl2, p. 280] the fibers off, are
connected, in particular we deduce that the projective Iineggjﬁ(x) corresponding
to Y, and Y; have a non-empty intersection if and onlyiif=1[ 4+ 1, and the proof is
complete. O

4. Application to the study of a germ’s surface singularity

By keeping the notations of the last Section pet q be two-adjacent ordered parti-
tions with codinb—p(Oq) = 2. Letx be an element ir0q. This Section consists to rely

the description of the singularity(’)_pm Ty, x), where T, is a transverse slice ig to
the orbit Oy at the pointx to the study of the fibeg‘;l(x).

Definition 4.1. Let M be aG-variety. A transverse slice iM to the orbit ofx at the
point x, is a locally closed subvariety, of M such that:

(@) x e Ty;
(b) the morphismp : G x Ty, - M, (g,Y) — g.Y is smooth;
(c) Ty has the minimal dimension for properties (a) and (b).
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As we work with C, then dim(7T,,) = codimy,; (G.x), moreover ifM is smooth then
T, is necessary smootf20, p. 61]

To give such a transverse slice it is enough to take a vector sub§paetich is
supplementary to the tangent space of the orbik @t the pointx.

Let x € Oq. By Jacobson-Morozov Theorem , there is a semisimple elememnd
a nilpotent elemeny in g such that

[hax] = sz [hv )’] = _Zys [X, y] :h

Then by Representation theory €2, C) the subvarietyl, := x+¢g” is supplementary
in g to the orbit of Oq at the pointx, whereg” is the centralizer o in g. Denote:

M:=0pNT, and M := f;X(S).

Definition 4.2.

(@) Let M be a complex algebraic variety. A desingularizationMfis a morphism
n: M — M such thatr is a proper birational morphism and th&t is a smooth
variety.

(b) The normal varietyM has rational singularities if for every desingularization
M — M we haveRr,(O,;) = {0}.

We have the following result:

Lemma 4.3.

(i) M cC OpUOg;
(i) The morphismfw : M — M is a desingularization of M

Proof. (i) Let us show that the elements M come fromOp and Oq. Let g =P V;

the decomposition ofi as sum of irreducible representations forx, i, y >~ sl(2, C).
Every V; contains a unique vector ling; such[y, g;] = 0 (cf. [14, p. 33), denote

n; € Z the eigenvalue otud, for the subvarietyg;. By [14, p. 33]we haveg” =

@D g;. Denotel : C* — G the unique parameter subgroup associated to the semisimple
elementh and letz = x+v € x+g”. We can suppose that is the direct sum of certain

vector spaceg, with o € R™, [6, p. 45/46] we havey e g_, = Y g, then we
a(h)=—2

haven; <0. If we write v =Y z; with z; € g;, then we havel(r).z = 2x + Sz,
where z; € g;, and because of nilpotent orbits are stable un@érwe deduce that
zeM, t € CH Pl ™).z = x4 Y 1Mz € SN O,. This shows thak is in the
closure of the orbit of every element 8. But x € Oq which is adjacent ta@0p, we
deduce thatM C Op U Oq.

(if) By construction we have locally >~ T, x O, and(’)_p is locally isomorphic to

M x Oq. As M = £ (M), we have

M ={((Y,g.P); Y €SN gy}
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and locally 7*(G/P) is isomorphic to the spac#l x Og. In particular M is smooth.
And the mapfle is proper becaus& /P is complete; sofW M —> M is a
desingularization oM. O

Lemma 4.4 (Hinich [13, p. 302). (M; x) is a normal surface with a rational singu-
larity.

Proof. We can remark thatp‘l(o_p) = G x M and we have two smooth morphisms
@ :GxM — Op andpry: Gx M — M at the point(1g, x). We deduce thatOp, x)

is normal if and only if the surfacéM, x) is normal[8]. By [3,16] it was shown that
every closure of nilpotent orbit isl(n, C) is normal. As consequencéV, x) is a
normal surface with an isolated singularity.

By Theorem 5 in[9] we deduce thaG x M has rational singularities.

The following diagram

id><fp

GxM ———————

\/

is a simultaneous desingularization of the fiberspgf By Theorem 3 in[9] we can
deduce thaM has rational singularities. [

Definition 4.5. A f : M — (M, x) desingularization of a normal surface with a rational
singularity x is called minimal if every irreducible component of the exceptional fiber
f~1(x) has a self-intersection number different -ofl.

The minimal desingularization exists up to isomorphism and every desingulariza-
tion of (M, x) factorizes through the minimal desingularization. Moreover, the normal
surfaces with a rational singularity for which every irreducible component of the ex-
ceptional fiber has a self-intersectier2 are well known and are obtained as quotients
of C? by finite subgroups oSL(2, C), [20, p. 72] Such singularities are callesimple
or rational doublepoints and are classified by the familids, D,, Eg, E7, Es.

Here is the main theorem of this last Section.

Theorem 4.6.Let p = (p1, p2,..., p1) =9 = (¢1, 92, -..,qx) two adjacent ordered
partitions such that:odimo—p(oq) =2 and p1 > ¢q1. Let p be the standard subalgebra
corresponding to the partitiofd. Denoteip := min{j; p; # ¢; } and mo := min{; >
io; pj #q; }. Letx € Oq, and T,, be a transverse slice inl(n, C) to the orbit Oq
at the point x Let M : O_pm T, and M := f;X(M). Then

(i) The morph|smfp|M M — M is the minimal desingularization of the surface M
(i) The surface(M, x) is a normal surface with a simple singularity of typg,,—i,.
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The following calculus is exactly the same for which H. Esnault has done in the
particular subregular case (sg®; 20, p. 88). The reasoning is done in a more general
context but we can apply only for the cape > ¢1:

By Theorem3.9, fp‘l(x) is a finite union of projective lines of type; with i

{ > Pulio<k<mo—1. TO prove the theorem it remains to compute the self-intersection
u<k

numbers of these projective lines M, ie. to compute1(Py, P/ P, M) the first Chern

class of the normal bundle of each of these projectives Iine’@!.irDenoteN(Pai PP/

the normal bundle of the projective ling, P/P in M.If A C B C C are three smooth
varieties then we have the short exact sequence of normal bundles:

0— NA/B — NA/C — NB/C|A — 0.

We apply the last short exact sequence of normal bundles to the three smooth
varietiesP,, P/P C M C T*(G/P); but we have seen thdt*(G/P) is locally trivial
(it is locally isomorphic toM x Oq), as consequence the restrict normal bundle of
M in T*(G/P) is isomorphic to the tangent bundle 61y, the last one is trivial if
we consider a small neighborhood ®fin T,. As consequence we have to compute
c1(Pi/P,T*(G/P)).

Lemma 4.7. Let P be standard parabolic subgroup of a semisimple complex algebraic
group G. Lete; € S — S, and denoteP; the parabolic subgroup corresponding to
the subset of simple rootS, U {o;}. Then the natural ma@*(G/P) =~ G><‘°np —
G/P;,(g.P,Y) — g.P; is a locally trivial G-fibration and we can identifﬁx”np

with the fiber bundleG < F;, where F; := P;xPny, n, is the nilpotent radical of
Lie(P).

Proof. The natural morphism
¢:T*(G/P)~Gx"ny — G/Pi, (g.P,Y) > g.P;
is G-invariant so we haves x 1, ~ Gx P F;, where F; = ¢~ (e) [21, p. 26] It is
easy to verify that
F, = {(g.P,Y) e GxPnp; Yegny,andg.P C P; }

~ Pixpnp. O

We can remark that the projective linB P/P ~ P;/P is contained inF;. As
consequence we have /P C F; C T*(G/P) three smooth varieties. We deduce that
the normal bundle of;/P in T*(G/P) is an extension of the normal bundle Bf/ P
in F; and of the restrict normal bundle &; in T*(G/P). But

T*(G/P) ~ Gx"ny — G/P,



N.G.J. Pagnon/Advances in Mathematics 194 (2005) 437-462 461

is a locally trivial fibration over a smooth basis, then the restrict normal bundle of
F; in T*(G/P) is trivial because it is isomorphic to the trivial bundle with fiber the
tangent space t6;/P; at the pointe, so its Chern classes are trivial.

We have to computey(P;/P, F;).

Lemma 4.8. With the above notations. Let € n,. Let P, P/P a projective line in
[y tx). Theney(Py, P/ P, T*(G/P)) = 2.

Proof. It remains to computey (P, P/P, PixPnp). Let ny, denote the nilpotent
radical of Lig(P;). Then we have the followindP-invariant short exact sequence:

0— 1y, — 1y — np/ny, — 0.
As consequence we deduce that the short exact sequence of bundles:
0— P,~><Pnp’_ — P,~><Pnp — P,-xP(np/npi) — 0.

But theP-modulen,, is obtained as the restriction of tig-modulen,, , then the bundle
PixPnpi is trivial. Moreover by hypothesis, /1, is vector space of dimension 1 on
which P acts via the simple roat;: if we write P = Lp.Up WhereLp = C.(Lp, Lp)

is the Levi component oP with C (resp., (Lp, Lp)) the center (resp., the derived
subgroup) ofL p and Up is its nilpotent radical. The subgroupr and (Lp, Lp) have

no characters, the action & on n,/n,, (induced by the adjoint action) comes from
the action ofC, therefore this action is reduced to the action of the maximal torus
whose Lie algebra i§, and the differential of the action of the maximal torus is exactly
given by the simple root;. Then we have

PixF(np/np.) ~ SL(2, C)xB2np ~ T*(SL(2, C)/Bo)

where B> is the Borel subgroup o6L(2, C) andny is the nilpotent radical of LieB2).
But SL(2,C)/B2 ~ Pl As consequence we get

c1(P/P, PixPry) = ct(T*(PY) =-2. O

Remark 4.9. Our approach is another way to get Theorér8 (i) which was already
obtained in[17].
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