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Abstract

We show how short inflation naturally arises in a non-minimal gravity theory with a scalar field without any po
terms. This field drives inflation solely by its derivatives, which couple to the matter only through the combinationḡµν =
gµν − 1

m4 ∂µφ∂νφ. The theory is free of instabilities around the usual Minkowski vacuum. Inflation lasts as long asφ̇2 > m4,

and terminates gracefully once the scalar field kinetic energy drops belowm4. The total number of e-folds is given by th

initial inflaton energyφ̇2
0 asN � 1

3 ln( φ̇0
m2 ). The fieldφ can neither efficiently reheat the universe nor produce the primo

density fluctuations. However this could be remedied by invoking the curvaton mechanism. If inflation starts whenφ̇2
0 ∼ M4

P
,

andm ∼ mEW ∼ TeV, the number of e-folds isN ∼ 25. Because the scale of inflation is low, this is sufficient to solve
horizon problem if the reheating temperature isTRH � MeV. In this instance, the leading order coupling ofφ to matter via
a dimension-8 operator1

m4 ∂µφ∂νφT
µν would lead to fermion–antifermion annihilation channelsf f̄ → φφ accessible to the

LHC, while yielding very weak corrections to the Newtonian potential and to supernova cooling rates, that are com
within experimental limits.
 2004 Published by Elsevier B.V.Open access under CC BY license.
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The recurring challenge to our attempts to und
stand Nature is the origin of hierarchies between
scales we observe. Familiar examples are the hie
chy between the Planck scaleMP ∼ 1019 GeV and the
electroweak scalemEW ∼ TeV,MP/mEW ∼ 1016, and
the hierarchy between the Planck scale and the pre
horizon scale,H0 ∼ 10−33 eV, MP/H0 ∼ 1061. These
problems are usually dealt with separately. In the
mer case, models of particle dynamics such as str
gauge field dynamics [1,2], supersymmetry [3]
large extra dimensions [4,5] are invoked to expl
the dichotomy between the Planck and electrow
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scales. In the latter case, the leading contender to
plain the horizon scale is inflation [6], which pos
that the universe has been blown up really large b
period of exponential expansion in the past, and t
subsequent expansion generates the rest of the h
chy betweenMP andH0. If inflation starts near the
Planck scale, it should blow up the universe by at le
N∗ ∼ 65 e-folds, or by a factor of at leasteN∗ ∼ 1028.
The approximate relationeN∗ ∼ (MP /mEW)2 is typi-
cally viewed as an accident. In fact, the usual mod
of inflation predict that the universe has expanded
much more than the current necessary minimum to
plain the present horizon scale [7]. This would indic
that there is nothing special about the present hor
scale. We just happen to make our observations n
license.
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but some other being could have seen a completely
ferent horizon scale at some other time, as the cos
evolution marches on.

Yet there are indications that we might live at
special moment in the history of the universe.
deed observations have uncovered the cosmic c
cidences: the current cosmological densities of v
ous forms of matter inhabiting our universe, such
dark energy, dark matter, baryons, photons and n
trini are within a few orders of magnitude of ea
other [8]. Some of the coincidences are presently v
mysterious, such as explaining the scale of dark
ergy from first principles. Other coincidences, such
the near equality of the energy densities of dark m
ter, baryons and photons, may be understood in p
cle physics models which contain weakly-interact
particles with masses and couplings set by the e
troweak scalemEW. Any definitive clue in favor of
spatial curvature within a few orders of magnitude
the critical density of the universe would further u
derscore that we live in a special epoch, requiring t
inflation were short. It should have ceased after
necessary minimum of e-folds was achieved, in
der to avoid completely flattening the spatial slic
Other clues of short inflation might emerge from o
serving non-trivial topology of the universe [9], lo
power in low � CMB multipoles [10], substructur
in the CMB [11] or holographic considerations [12
A natural explanation for such coincidences would
to relate the dynamics which control their evolutio
including cosmology, with a particular hierarchy
scales governing microphysics, such asMP/mEW.

Building models of inflation capable of stoppin
after few tens of e-folds has been especially hard
some models, see [13–16]). In this Letter, we cons
a mechanism where inflation can be very short. T
inflaton is a massless singlet pseudoscalar, wh
dynamics respects the shift symmetryφ → φ + C and
reflection,φ ↔ −φ. Its couplings to the matter sect
are introduced via a modification of the gravitation
coupling to matter, of the form

(1)ḡµν = gµν − 1

m4∂µφ∂νφ.

Here the metricgµν is the canonically normalized me
ric with the kinetic term given by the usual Einstei
Hilbert action, andφ is normalized as usual such th
it has dimension of mass. The mass scalem is the
coupling parameter of the inflaton sector to mat
which couples covariantly to the combination̄gµν .
We will discuss the acceptable range of values
it below. Theories with scalars coupled to matter
ways including (1) have been considered by Bek
stein in 1992 [17], who looked for generalizations
Riemannian geometry that do not violate the we
equivalence principle and causality. He found that
extensions of the standard general relativity based
coupling the matter to the combinations of the form
referred to asdisformal transformation

(2)ḡµν =A
(
φ, (∂φ)2)gµν − B(φ, (∂φ)2)

m4 ∂µφ∂νφ

preserve causality and the weak equivalence pri
ple. In contrast to conformal transformation, the d
formal transformation (2) does not preserve the an
between the geodesics ofgµν andḡµν . We confine our
attention to a specialized form (1), takingA = B = 1
(constants other than unity can be absorbed awa
rescalingMP andm), in order to enforce the symme
triesφ → φ + C, φ ↔ −φ which protect the inflaton
from the matter loop corrections. This implies the s
bility of the slow roll regime under the Standard Mod
radiative corrections.

With the choice of the mass scalem ∼ mEW ∼ TeV,
the resulting dynamics is equivalent to low scale in
tion with V 1/4 ∼ TeV, lasting about 25 e-folds [18
This is just enough to solve the horizon proble
if the reheating isTRH � MeV [19]. The reheating
and the generation of density perturbations are h
ever involved. The fieldφ which drives inflation can
not efficiently reheat the universe, nor produce
scale-invariant spectrum of perturbations to match
COBE amplitude, because it is too weakly coupled
the Standard Model, and the scale of inflation is so l
The model also does not solve the curvature probl
because it requires the initial curvature of the unive
to be small in order not to prevent the onset of the l
scale inflation. However these problems are comm
in low scale inflation. The reheating and the genera
of density perturbations may be solved by invoki
a curvaton field [20]. We will outline a scenario th
could accomplish this. Solving the curvature probl
requires additional dynamics, such as a stage of
early inflation [21] or holographic considerations [2
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We define the theory by the action principleδS = 0,
where the action is

(3)

S =
∫

d4x

{√
g

[
M2

P

2
R − 1

2
(∂φ)2

]

−√
ḡLM

(
ψ,∂ψ, ḡµν

)}
,

whereg = det(−gµν), etc. Because of the shift sym
metry ofφ, general covariance and reflectionφ ↔ −φ

we can treat the matter LagrangianLM as fully quan-
tum, including all the Standard Model loop corre
tions. The shift symmetry operates as in the cas
pseudo-Nambu–Goldstone inflatons [23,24], excl
ing corrections which are polynomial inφ. The re-
flectionφ ↔ −φ precludes the operators of the for
∂µφj

µ where the scalar couples derivatively to so
conserved current. Finally, general covariance of
matter sector protects the universality of matter c
plings to onlyḡµν , which can be seen by rewriting th
action (3) in terms of only barred variables and rec
ing that by matter loops we mean these loop diagra
which involve only matter internal lines. Specifical
the Standard Model corrections do not change the c
pling constant 1/m4. Varying (3) yields the field equa
tions, which using the shorthandUµ = 1

m2∂µφ are

(4)

M2
PGµν = ∂µφ∂νφ − 1

2
gµν(∂φ)2 +

√
1− U2 T̄ µν,

(5)∇̄µT̄
µν = 0,

(6)∇2φ + 1

m4

√
1− U2 T̄ µν∇̄µ∇̄νφ = 0.

Eq. (4) is the modified Einstein’s equation, (5) stan
for the matter field equations, designating that
matter fields couple tōgµν , and (6) the inflaton field
equation, which includes the matter-inflaton derivat
couplings. Raising and lowering of the indices
unbarred tensors is to be done with(gµν, gµν), and
of barred tensors with(ḡµν, ḡµν). It is straightforward
to derive several useful relations between key ba
and unbarred quantities; using (1), one findsḡ = (1−
U2)g, ḡµν = gµν + 1

1−U2U
µUν , Ū2 = U2

1−U2 , Ūµ =
1

1−U2U
µ.

Before proceeding we ought to mention that
theories of this form have been considered in the c
text of the so-called variable speed of light cosmo
gies [25]. The motivation was to argue that if∂φ = 0,
the lightcones of the metricsgµν and ḡµν are differ-
ent, suggesting that the electromagnetic waves p
agate faster than gravity waves, with a speed wh
varies in space and time. This “superluminal” pro
agation of light is then supposed to solve the ho
zon problem without inflation, since it would seem
allow for communication at superhorizon scales.
strongly caution against considering the theory (1),
in this way. Namely, because theφ-field equation (6)
is homogeneous in∂φ, it admits solutionsφ = const,
which are identical toφ = 0 by the shift symmetry
This is the vacuum of the theory. In this vacuum th
is no difference in the propagation speed of any
citations in the theory, matter or gravitational. Th
the presence of two different lightcone structures,
for the graviton and another for the matter fields
an environmental effect, which emerges because
initial state of the universe began with∂φ = 0. This
is analogous to the propagation of light in a diele
tric, or to the propagation of massless charged
ticles in an external electric field. An observer w
sees that the trajectories of these probes deviate
the null geodesics in the vacuum does not invok
changing speed of light at a fundamental level to
plain this. Instead she notes that the probes inte
with the environment, which breaks Poincaré symm
try because∂φ = 0. The breaking is soft, in the sen
that as∂φ diminishes in the course of the evolutio
of the universe, the symmetries are restored. Thi
reminiscent to a spontaneously broken gauge sym
try, where because of the breaking the gauge fields
come massive, and their quanta propagate along t
like instead of null geodesics. Because in this c
the scalar field gradients∂φ = 0 break Poincaré sym
metry instead of the electromagnetic gauge sym
try, the photons remain massless and move along
geodesics, while the gravitons move along timel
geodesics. One ought to interpret the double lig
cone structure induced by∂φ = 0 as a signature o
the slow-down of gravitons due to their strong
teractions with∂φ, which makes the early univers
opaque to them. This helps with the horizon pro
lem not because it allows for superhorizon cor
lations, but because it arrests the gravitational
stability, preventing the growth of inhomogeneitie
However, in the frame where the matter fields
canonically normalized this looks precisely like infl
tion. Hence in what follows we adopt this view and f
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cus on the effective field theory description of infl
tion.

Let us now establish when the model based
(3)–(6) is meaningful. Consider first the low ener
limit. As indicated above, we define the vacuum
settingφ = 0. For simplicity we further assume th
in the vacuumT̄µν = 0 and so gµν = ηµν , i.e., that
the vacuum is the usual Minkowski space. In orde
ensure its perturbative stability we must show tha
is a minimum energy state, without negative ene
excitations and/or runaway modes (i.e., ghosts
tachyons). Constructing the matter sector in the us
way ensures that there are no such degrees of free
in LM . The form of the gravitational action in (3
further guarantees that the metric degrees of free
are safe too. What remains to check is that the sc
φ does not produce instabilities. Now, if we consid
small perturbations of (6) around the vacuumφ =
T̄µν = 0, gµν = ηµν , we see that the scalarφ is just
a massless canonically normalized scalar field
without any pathologies. Thus the vacuum is stable

However there still might be runaway scalar mod
around some fixed classical background withT̄µν = 0.
Even if the vacuum were exactly stable, it wou
be disastrous if infinitesimally small distribution
of matter are not. To check this does not oc
we consider the spectral decomposition ofφ in the
presence of a point mass. This will be sufficie
since any other distribution of energy–momentum
be obtained by superposition and boosting of s
sources. Before looking at the details, however,
note that the dimensionless coefficient controll
the correction is given by∼ ρ/m4, whereρ is the
energy density of the distribution. If we smooth t
distribution over a whole Hubble volume, this reach
its upper value if the total massM is of the order of
the mass in the observable universe:M ∼ ρ0/H

3
0 ∼

M2
P /H0, which is at most∼ M2

PH2
0

m4 . This is smaller

than unity as long asm> 10−3 eV. In fact, we will see
below thatm is at leastmEW, and so the perturbatio
is really tiny, withξ at most 10−60. The parameterξ
approaches unity only in the limitρ → m4. From this
we expect that theφ excitations will not destabilize
the background as long as the densities are belowm4.
Similar conclusions remain true for localized sourc
too. To see this explicitly, we expand (6) around
point mass. Pickingφ = 0 and gµν = ηµν for the
background outside of the mass source, we find
equation for the excitations ofφ,

(7)∂2φ + 1

m4
Mδ(3)(�x)φ̈ = 0,

where M is the mass of the source at�x = 0 and
δ(3)(�x) is the Diracδ-function. Using (7), after simple
algebra we can write the matrix propagator equa
for ∆(ω, �k) = i〈φ(ω, �k)φ(0)〉 in momentum space,

(8)

(�k2 − ω2(1− ξ)
)
∆(ω, �k) + ξω2

∑
�q =�k

∆(ω, �q) = −i,

whereξ = MH3
0

m4 = MH0
M2

P

M2
PH2

0
m4 � 1, and we imagine

that the universe is a lattice of size 1/H0 with a lattice
spacing 1/Λ. We can solve Eq. (8) perturbative
usingξ as the expansion parameter, to find

∆(ω, �k)
= i

ω2(1− ξ) − �k2 + iε

(9)×
(

1+ ξ
∑
�q =�k

ω2

ω2(1− ξ) − �q2 + iε
+ · · ·

)
.

This shows that the full propagator in the prese
of a mass sourceM contains admixtures of all plan
wave modes with very slightly shifted frequenc
ω2 → ω2(1 − ξ). However whenξ � 1 all the poles
occur only whenω2 > 0, and thus there are n
runaway, exponentially growing modes. Moreover,
momenta on the lattice are�p = H0�n, where�n ∈ Z3,
and therefore at the polesω2(1− ξ)− �q2 = �p2 − �q2 =
H 2

0 (�n2
p − �n2

q). Henceξ ω2

ω2(1−ξ)−�q2+iε
is maximized

when �p2 − �q2 � |�n|H 2
0 � H0ω, reachingξω/H0 �

ξΛ/H0. Hence as long as the theory is cutoff a
scaleΛ � H0/ξ � MP the residues are positive, an
so there are no negative energy excitations eit
Thus the Minkowski vacuum of the theory (3)–(6)
perturbatively stable.

These conclusions are valid as long as the ene
density of the Standard Model matter in̄Tµν does not
exceedO(m4). As it increases towardsm4, the ex-
pansion parameterξ approaches unity and the pe
turbative analysis yielding (9) breaks down. This
not necessarily detrimental: it means that the the
based on (3) must be given a proper UV completi
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Thus to ensure the validity of the effective field th
ory description ofφ as defined by (3) we should cu
off the matter sector atλSM ∼ m. Once this is done
thegµν,φ sector may remain well-defined all the w
up to some high energy scaleΛ ∼ MP which regu-
lates the gravity-φ sector. Such frameworks were di
cussed in, for example, [26], who suggested that
Standard Model is completed by a TeV-scale lit
string theory, which couples to gravity that rema
weak up to the usual Planck scale. Note that altho
we imagine that∂φ can reach energy scales as h
asM2

P , this does not destabilize the Standard Mo
sector because it couples toφ only through ḡµν =
gµν + 1

1−(∂φ)2/m4∂
µφ∂νφ/m4. Therefore, the depen

dence on the cutoffΛ cancels to the leading order, e
tering only through terms∼ m4/Λ4, leavingm in full
control of the Standard Model as long as we ign
gravity andφ loops.

The inclusion of the Standard Model correctio
to thegµν,φ sector does not destabilize the lead
order terms ingµν,φ in (3). Because the Standa
Model is cutoff atm, and because it only couple
to ḡµν , general covariance implies that the Stand
Model corrections are organized as an expans
in the higher-derivative invariants of̄gµν . The only
dimensional scale weighing them ism:

(10)

Lcorrections=
√
ḡ

(
a0m

4 + a1m
2R̄ + a2R̄

2 + a3∇̄2R̄

+ a4

m2
R̄3 + · · ·

)
,

where the coefficientsa0, a1, a2, . . . are all numbers o
order unity. We can now add the leading order ter

for gµν andφ from (3),
√
g[M2

P

2 R − 1
2(∂φ)

2]. The full
effective Lagrangian rewritten in terms of the variab
ḡµν andφ becomes symbolically

(11)

Leff =√
ḡ

(
1√

1− (∂̄φ)2/m4

×
[
M2

P

2
R̄ − M2

P (∂̄φ)2

m4
R̄ − 1

2
(∂̄φ)2

]
+ a0m

4 + a1m
2R̄ + a2R̄

2 + a3∇̄2R̄

+ a4

m2 R̄
3 + · · ·

)
,

where we have ignored the tensor structure in

terms like
M2

P
4 ∂µφ∂φνR̄

µν , choosing to write them

m

instead as
M2

P

m4 (∂̄φ)2R̄, which is sufficient to analyz
their scaling, and relative importance in the effect
action with the Standard Model corrections includ
When∂φ < m2, the corrections are obviously sma
In the regime∂φ ∼ Λ2, in the background (27) eac
derivative contributes a power of̄H � m2/MP , and so
the expansion becomes a series of the form

(12)

Leff =√
ḡ

(
m2Λ2 + m4 + a0m

4 + a1
m6

M2
P

+ a2
m8

M4
P

+ a3
m8

M4
P

+ a4
m10

M6
P

+ · · ·
)
,

where the leading order terms∼ m2Λ2 and ∼ m4

come entirely from the classical background, a
the corrections affect the background only sligh
through the cosmological term∼ a0m

4, while all other
effects from terms∝ ak remain completely negligible
We stress however that in general the correcti
from the gµν,φ loops are not under control, and
understand what happens with them one must s
an embedding of the theory (3) into some mo
fundamental theory with a UV completion which
under control. That task is beyond the scope of
present work. We do see however, that like in natu
inflation scenarios [23], that the conditions for slo
roll regime are protected from the matter radiat
corrections.

The presence of a new degree of freedomφ leads
to many new processes, some of which could af
the low energy experiments. This yields importa
observational bounds onm. The strongest arises fro
collider data. The operator (15) opens up the chan
for annihilation of any two standard model fermio
into two φ’s, f f̄ → φφ. The cross-section for thi
process goes as

(13)σf f̄→φφ ∼ s3

m8 ,

where
√
s is the center-of-mass energy. Taking

√
s ∼

100 GeV and requiring thatσ � 1/m2
EW in order for

this channel not to be ruled out by present data,
find a bound

(14)m � mEW.

If this bound is saturated, the detection ofφ’s may be
within reach of the future colliders such as the LHC
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Fig. 1. Feynman diagrams for the force mediated byφ.

The massless scalarφ mediates a new force, tha
could be long-range, modifying the Newton’s la
Even though (1) preserves weak equivalence pri
ple, the force generated byφ should be constraine
by solar system tests of gravity just like in the us
Brans–Dicke theory. However in this case the corr
tions to the Newton’s law are very small, and the So
system tests are easy to pass. This can be seen a
lows. We can compute the potential fromφ exchange
using Feynman diagrams. Expanding (3) around
vacuum, we find that theφ-matter interaction vertex i
given by the dimension-8 operator

(15)LI = 1

m4∂µφ∂νφT
µν,

where we can drop the bar fromT µν whenever
we expand around the vacuum. The leading-or
diagrams correcting the Newtonian potential are gi
in Fig. 1.

The diagram in Fig. 1(a) involves a doubleφ
exchange. The loop integral is divergent and so
need to cut it off at some scaleΛ. The result is the
expansion

(16)Λ4 + Λ2�k2 + �k4 log�k2 + · · · .
Both of the cutoff-dependent terms are contact in
actions, corresponding to shrinking both, or one of
propagators in the loop to a point, and they should
subtracted away, leaving the∝ �k4 log�k2 term as the
physical loop contribution. This yields

(17)V1 ∼ 1

m8

m1m2

r7 = 1

M2
P

m1m2

r

M2
P

m8r6 ,

where the latter parameterization makes the comp
son with the experimental data more transparent.
cause of the rapid drop of this potential with d
l-

tance, the strongest bounds will come from the sh
est scales that have been probed so far, i.e., from ta
top experiments [27]. Thus takingr ∼ 0.1 mm, we

must choosem such that
M2

P

m8(0.1 mm)6 < 1/100. We find

(18)m8 � 108 M2
P

mm6 ,

or numericallym > MeV. Hence as long asm> MeV,
the force whichφ mediates is very weak, and sho
ranged. In fact, if we takem ∼ mEW, which as we
will see below is the strongest bound onm, the force
becomes strong only at distancesr � 40 fermi, where
the effect would, remarkably, appear as a sud
opening of six new dimensions. This is very simi
to the theories with large extra dimensions [4] or C
effects [28] in cutoff AdS braneworlds [29].

The diagram in Fig. 1(b) involves a singleφ
exchange between two massesm1,m2, with two
lines ending on the cosmological backgroundφ̇0. The
potential arising from this diagram is, after cancelli
the contact terms, the velocity-dependent contribu
to the potential, which arises because the coup
1
m4∂µφ∂νφT

µν vanishes in the static limit when th
mass sources are at rest:

(19)V2 ∼ φ̇2
0

m8

m1m2

r3
�v1 · �v2.

Because todaẏφ0 is at most of the order of
√
ρ0 ∼

MPH0,
φ̇2

0
m8 <

M2
PH2

0
m8 � 1

m2M2
P

. The bound (14) render

the effects of this term ignorable tiny at distanc
r > m−1.

The bounds which one obtains from astrophys
considerations are also consistent with (14). They a
because the coupling ofφ to the matter degrees o
freedom via the dimension-8 operator (15) leads
the φ production which could enhance the cooli
rates of astrophysical objects. The analysis is sim
to the one performed in theories with large ex
dimensions [4]. The leading order process that gove
the φ production isp → p + φ + φ, given by the
diagram in Fig. 2. Herep is a typical particle in
the supernova which is dressed by thermal effe
as denoted by the double-line in Fig. 2. Since it h
thermal width it can shake off twoφ’s, decreasing
its thermal energy. The “decay rate” governing t
process is easy to estimate from (15) simply
dimensional analysis. Since the typical kinetic ene
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Fig. 2. The process for thep → p + φ + φ “decay”.

of a particle in a star isE ∼ T , where T is the
temperature, and since the decay rate is proporti
to the square of the transition amplitude, and thus
1/m8, we find

(20)Γ ∼ T 9

m8 .

In a typical process eachφ carries off energy∼ T , and
thus the total energy loss per unit time of a star d

to theφ emission isĖT ∼ −N T 10

m8 ∼ −MS

mp

T 10

m8 , where
N ∼ MS/mp is the number of particles in a star
massMS . Because stars are typically predominan
made up of hydrogen,mp is the proton mass. Rathe
than analyzing all the sources of data, we merely qu
the strongest bound which comes from the supern
SN1987a. In order to agree with the observations,
total output ofφ’s cannot exceed the luminosity o
about 1053 erg/s ∼ 1032 GeV2. SinceMS ∼ M� ∼
1.6 × 1057 GeV andT ∼ 30 MeV, requiringĖT �
1032 GeV2 we find

(21)m � 30 GeV,

which is weaker than (14). Hence because of
bound (14) the supernova cooling is not significan
affected byφ emission. We note that similar boun
were also obtained from considering Goldstone bo
interactions in braneworlds [30]. Although these the
ries are different, the bounds are similar because o
Goldstone boson equivalence theorem.

We now turn to the cosmology of the model. L
us restrict to the spatially flat FRW backgrounds
now. Starting with the usual metrics forgµν , the line
element defining the graviton–inflaton geometry is

(22)ds2 = −dt2 + a2d �x2.

The translational symmetries require∂kφ = 0, and
hence using (3) we find that the metric in which t
Standard Model fields dwell is

ds̄2 = −
(

1+ φ̇2

m4

)
dt2 + a2d �x2

(23)= −dt̄ 2 + a2(t̄) d �x2,

where dt̄ = dt
√

1+ φ̇2/m4. In this case the field
equations (4)–(6) reduce to

3H 2 = 1

M2
P

(
ρφ + 1√

1− U2
ρ̄SM

)
,

ä

a
= − 1

6M2
P

(
ρφ + 3pφ + ρ̄SM√

1−U2

+ 3
√

1− U2p̄SM

)
,

dρ̄

dt̄
+ 3H̄ (ρ̄ + p̄) = 0, p̄SM = w̄ρ̄SM,

φ̈ + 3Hφ̇ − ρ̄SM

m4(1− U2)3/2

(
φ̈ − 3Hw̄

(
1−U2)φ̇)

(24)= 0,

where we are still employing the obvious notatio
without and with bars to distinguish the quantiti
built from metrics (22) and (23), and bearing
mind thatU2 = −φ̇2/m4 and ρφ = pφ = φ̇2. Here
we are approximating the Standard Model influen
with a perfect fluid, obeying the equation of sta
p̄SM = w̄ρ̄SM for somew̄. Note that the two next-to
last equations can be immediately integrated to y
ρ̄SM = ρ̄0

SM(a0/a)
3(1+w̄), where ρ̄0

SM is the initial
value of the Standard Model energy density when
description based on (24) became valid.

Although Eqs. (24) look quite formidable, it is ve
simple to deduce their qualitative properties. In
regimem4 � φ̇2 � Λ4 ∼ M4

P , one finds the following
inequalities:

ρ̄SM√
1− U2

� m2

φ̇
ρ̄SM � m4 < ρφ,

√
1− U2p̄SM � φ̇

m2 p̄SM � m2φ̇ < pφ = ρφ,

ρ̄SM

m4(
√

1− U2)1/2
� m2

φ̇

ρ̄SM

m4 � 1,

(25)
ρ̄SM

m4(
√

1− U2)3/2
� m6

φ̇3

ρ̄SM

m4 � 1.

Because of these inequalities, all of the Stand
Model contributions in (24) are completely sublead
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to the φ̇ sources in the regimem4 � φ̇2 � Λ4 ∼ M4
P .

This in fact is exactly a tell-tale sign of inflation: th
matter contributions become irrelevant as the inflati
ary dynamics sets in. Substituting these inequalitie
(24) we find the simple equations

3H 2 = 1

M2
P

φ̇2

2
,

(26)φ̈ + 3Hφ̇ = 0,

i.e., precisely the equations of a cosmology domina
by a stiff fluid pφ = ρφ = φ̇2/2. Assuming that ini-
tially the universe started with a Planckian curvatur
as in chaotic inflation [7], the solution is

a = a0

(
t

tP

)1/3

,

(27)φ = φ0 +
√

2

3
MP ln

(
t

tP

)
.

Even though the geometry of (27) is the same
the holographic cosmology background of [22], t
difference is that here the geometry is sourced
a simple scalar fieldφ whereas in the context o
holographic cosmology it emerges in response
a black hole gas. Thus the fluctuations around
background would be very different. Now, becau

φ̇ =
√

2
3MP/t , the matter frame metric is, using (23

(28)ds̄2 = −
(

1+ 2

3

M2
P

m4t2

)
dt2 + a2

0

(
t

tP

)2/3

d �x2,

or therefore, usingdt̄ = dt

√
1+ 2

3
M2

P

m4t2
�
√

2
3
MP

m2
dt
t

,

(29)ds̄2 = −dt̄ 2 + a2
0e

2
3

m2
MP

t̄
d �x2,

i.e., precisely the slow-roll inflation, with an almo
constant Hubble parameter,

(30)H̄ � m2

√
6MP

.

Thus the effective field theory description ofφ-
dominated cosmology is a low scale inflation. An
dication of the presence of an inflationary attracto
theories which in the matter frame metric contain s
ilar operators to those present here was noted in [
Whenm ∼ mEW ∼ TeV, the Hubble scale during in
flation isH̄ ∼ mm−1, i.e., Veff ∼ TeV4, corresponding
to TeV scale inflation as in the examples of [18]. W
stress that this mechanism of inflation is different th
the so-calledk-inflation [32]. This can be readily see
by rewriting the theory (3) completely in terms of th
metricḡµν to which the matter couples, and noting th

it contains operators∝ M2
P

m4 ∂µφ∂νφR̄
µν , which play a

key role here and are absent ink-inflation.
The inflationary stage terminates gracefully b

cause as the time goes on,φ̇ ∼ MP/t decreases. Whe
it reachesm2, inflation ceases. Indeed, in the regim
φ̇2 < m4, becauseφ is completely without a poten
tial, its energy density scales as 1/a6, and so the scal
factor rapidly changes behavior, scaling as some
power oft after inflation, whileφ̇ is diluted very fast.
It is straightforward to determine the duration of t
inflationary phase. Using the form of the solution (2
during the inflationary regime, we can rewrite the sc
factor as a function ofφ̇: a = a0(φ̇0/φ̇)

1/3, where
φ̇0 ∼ M2

P is the initial value of the inflaton gradien
Thus, the total amount of inflation is given by the nu
ber of e-folds

(31)N = ln
aexit

a0
� 1

3
ln

φ̇0

m2
.

Taking the initial condition for the inflaton to corre
spond to the Planckian energy density,ρ0 � φ̇2

0 ∼ M4
P

[7], and choosingm � mEW ∼ TeV to saturate (14) we
get

(32)N � 2

3
ln

MP

m
� 25.

This suffices to solve the horizon problem if the
heating temperature after inflation is∼ MeV, be-
cause inflation started late, with the initial horiz
size ∼ H̄−1 ∼ mm. In this case the formula linkin
the number of e-folds needed for the post-inflation
entropy production to the reheating temperature
the scale of inflation [19],N � 67 − ln(MP /m) −
1
3 ln(m/TRH), gives exactlyN � 25 for m ∼ mEW ∼
TeV andTRH ∼ MeV, agreeing with (32). Ifm >mEW,
inflation would be shorter, reducing its efficiency f
solving the horizon problem.

The processes of reheating and generation of
primordial density fluctuations are somewhat involv
We first discuss the nature of the problems, and t
turn to a specific solution based on another li
field [20]. Since the inflaton energy density after
flation scales as 1/a6, after inflation the cosmologica
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evolution rapidly falls under the control of the matt
sector. However, inflaton reheating is very inefficie
The symmetriesφ → φ + C, φ ↔ −φ which protect
the inflaton from the Standard Model corrections p
vent strong inflaton-matter couplings and hamper
heating. This is similar to other non-oscillatory mo
els of inflation, where the inflaton after inflation do
not fall into a minimum of a potential [33]. In fac
this model is an extreme non-oscillatory model, b
cause the matter couples only to the metricḡµν . Thus
the only particle production is gravitational, driven
the evolution of the vacuum of the quantum field th
ory of matter in theḡµν background. This means th
the reheating temperature is given by [34]

(33)TRH ∼ H̄ ∼ m2

MP

.

RequiringTRH � MeV in order to have nucleosynthe
sis, one needsm � 105 TeV, reducing the number o
e-folds to∼ 17. This is too few e-folds to accomm
date a solution of the horizon problem, but could
useful for other model building purposes.

In the usual potential-driven models of inflation, t
inflaton quantum fluctuations on the potential plate
generate density perturbations, which later serve a
seeds for structure formation in the post-inflation
universe [35,36]. The key reason why this mec
nism for generation of density perturbations is s
cessful is that during inflation the inflaton fluctuatio
are imprinted on the background as curvature inho
geneities which are stretched to scales greater tha
apparent horizon, where they freeze out: their am
tude rapidly approaches a constant value, leadin
δρ/ρ ∼ H 2/φ̇ ∼ const. Thus the resulting spectru
is scale-invariant, fixed by inflationary dynamics, a
protected from the details of subsequent evolution

Our analysis shows that this does not hap
with the φ-field fluctuations in this model, contrar
to the claims of [25]. The problem is that in th
case the curvature perturbations never freeze out.
reason is quite simple: the canonically normaliz
fluctuations couple to the background metricgµν ,
and the background is given by (27), witha ∼ t1/3.
This is a decelerating geometry, singular att = 0 and
with the apparent horizon given bylH = 3t , which
is spacelike. Since the wavelength of the fluctuati
obeysλ = λ0a/a0 = λ0(t/t0)

1/3, it grows more slowly
than the horizonlH as time goes on. The evolutio
Fig. 3. Apparent horizonslH = H−1, lH̄ = H̄−1 and the wave-
lengthλ of a typical fluctuation ofφ as functions of timet .

of the horizons and a characteristic wavelength
given in Fig. 3. So a fluctuation which originat
inside the horizonlH remains inside of it forever. Th
fact that its wavelength will become greater than
apparent horizon in the matter frame,lH̄ = H̄−1, is
of little dynamical consequence since in this fra
the fluctuations do not have canonical kinetic term
This only serves to set the proper normalization
the momenta, and wavelengths, of the fluctuati
after inflation. The perturbations which are genera
from the quantum fluctuations ofφ will therefore
continue being redshifted away, and will end up be
exponentially small.

To see this we use the gauge-invariantcosmolog
perturbation theory [35,36]. Although the dynam
of the perturbations will be governed by a lineariz
theory which will differ significantly from the standar
perturbation theory during inflation, because of
couplings in (1), because the theory is gener
covariant we can use the formalism of [35] to ident
the gauge invariant potentials. In the longitudin
gauge the background+ perturbations are defined by

ds2 = a2(η)
[−(1+ 2Ψ (η, �x))dη2

+ (
1+ 2Φ(η, �x))d �x2],

(34)φ = φ(η) + δφ(η, �x).
The conformal timeη is related to the usual comovin
FRW timet by dt = a dη, which givest = tP (

3η
2tP

)3/2,
anda(η),φ(η) are obtained from (27). The potentia
Φ,Ψ and the inflaton perturbationδφ are related
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by momentum conservation asΨ = −Φ, φ′δφ =
−2m2

P (Φ ′ + HΦ), where H= a′/a, and primes
denote derivatives with respect toη. One then define
the curvature perturbations as the perturbations
the isodensity spatial slices. In terms of the gau
invariant potentialΘ = Φ − H

φ′ δφ they are

(35)
δR3

R
= 1

3a2H 2
�∇2Θ(η, �x).

The canonically normalized scalar field correspond
to this perturbation is

(36)ϕ = aδφ − aφ′

H Φ = −ZΘ.

Following a common practice we have definedZ =
aφ′
H = aφ̇

H
[36]. Expanding in Fourier modes, and usi

the definition of the power spectrumP(k)δ(3)(�k −
�q) = k3

2π2 〈Θ�k(η)Θ
†
�q (η)〉 yields

(37)P(k)δ3(�k − �q) = k3

2π2

(
H

φ̇

)2〈ϕ�k
a

ϕ
†
�q
a

〉
,

where〈O〉 stands for the quantum expectation va
of the 2-point operatorO in the quantum state of in
flation. The curvature perturbation in the gravitatio
frame is( δρ

ρ
) ∼P1/2(k).

However, we are interested in the curvature per
bation as seen in the matter frame, in terms of the v
ables adopted to the metric̄gµν . From the relation (1)
and the background solution (27) it is straightforwa
albeit tedious to compute the relation of the curvat
perturbations in the gravitational frameΘ and the mat-
ter frameΘ̄. Keeping terms up to linear order in pe
turbations, redefining the conformal time according
dη̄ =√

1+ φ′2/m4dη, and then performing an infin

itesimal diffeomorphismdη̄ → dη̄ + φ′δφ
a2m4

√
1+φ′2/m4

,

we find that in the limitφ̇2 � m4, valid during infla-
tion, they obey the relationship

Θ̄ = Θ + m4

φ̇2

H
φ′ δφ + 1

3am2

d

dη̄

(
m4

φ̇2
δφ

)

(38)+O
((

m4

φ̇2

)2)
.

Hence to the leading order̄Θ = Θ, and so we
can simply computeΘ in the gravitational frame
where the scalar and graviton modes have canon
kinetic terms, and carry over the result to the ma
frame. The main difference between the frames ar
because in the matter frame we should compare
curvature perturbationΘ to the background curvatur
of the matter frame metric̄gµν . This yields

(39)
δρ̄

ρ̄
�
(
R

R̄

)1/2
δρ

ρ
�
(
H

H̄

)
δρ

ρ
.

We can now estimate the perturbations in the lo
wavelength limit.

Since (27) implies thatZ ′′/Z = − 1
4η2 to the

leading order, one sees that the Fourier modes oϕ

obey the field equation

(40)ϕ′′
�k +

(
k2 + 1

4η2

)
ϕ�k = 0,

with the solutions

(41)ϕ�k =
√

η

tP

(
A�kJ0(kη) + B�kY0(kη)

)
,

where J0, Y0 are Bessel functions of index zer
Because inflation progresses ast grows, the long
wavelength limit behavior of the modes is encoded
the limit kη � 1. Because in this limit

J0 →
√

2

πkη
cos

(
kη − π

4

)
,

(42)Y0 →
√

2

πkη
sin

(
kη − π

4

)
,

the mode functions behave as

(43)ϕ�k → 1√
k

(
a�ke

−ikη + a
†
�ke

ikη
)
,

where we have defineda�k, a
†
�k from A�k,B�k in an

obvious way. Therefore in the limitkη � 1 after a
simple algebra we get

(44)P(k) → k2

M2
P

n(k)

(
tP

t

)2/3

,

and therefore, using (27) and (39) and defining
physical momentum of the fluctuationsp = k/a,

(45)
δρ̄

ρ̄
� p

H̄
n1/2(p)e−3H̄ t̄ .

Here n(p) is the occupation number of modes as
function of their momentum in the initial state
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inflation 〈 〉. From this formula we see that unle
the initial state ofφ is very precisely fine-tuned suc
that n(p) = α/p2, the spectrum of fluctuations wi
not be flat. This is very hard to justify because
the limit t → tP the solution is singular, and th
fluctuations ofφ are random, and very large. Mo
importantly, the curvature fluctuations do not free
out as inflation proceeds. Indeed, if inflation la
N = H̄ t̄exit ∼ 25 e-folds, the amplitude of densi
perturbations in horizon-size modes, which were
first to leave the matter-frame apparent horizonlH̄ ,
is diluted by the factor(e25)3 = e75 ∼ 1032 by the
time inflation terminates:δρ̄/ρ̄ ∼ 10−32. Thus these
fluctuations are much too small when compared to
COBE amplitudeδρ̄/ρ̄ ∼ 10−5, and cannot give rise
to the observed structure in the universe. Howeve
least they do not destabilize inflation once it sets in

A cure to the problems of reheating and genera
of density perturbations may be the curvaton mec
nism [20]. In this case the curvaton should be a v
light field σ , with a massµ � H̄ ∼ m2/MP . If it is
stuck at a large vev initially, sayσ ∼ MP , it will re-
main there all the way through inflation. It will giv
rise to a small cosmological term,∼ µ2M2

P � m4,
which however does not significantly affect the ba
ground as we have discussed following Eq. (12). O
inflation terminates andH̄ starts to decrease,σ will
begin to roll towards its minimum. It will have initia
energy densityρχ ∼ µ2σ 2

0 ∼ H̄ 2M2
P ∼ m4, and will

immediately take over the control of the cosmolo
cal evolution fromφ, scaling like cold dark matter. I
could reheat the post-inflationary universe efficien
if it couples to a fermion fieldψ in the matter secto
with a Yukawa coupling

(46)(mψ − gσ)ψ̄ψ.

As the fieldσ moves towards the minimum, withi
a time∼ 1/µ it will scan all possible values. Whe
it reachesχ = mψ/g it will copiously preheat the
fermions ψ through the parametric resonance p
nomenon [37]. One can give a crude estimate of
number density of fermionsnψ produced in this way
by recalling that the decay rate ofχ into two fermi-
ons isΓ ∼ g2µ, and that the number density ofχ ’s
is nχ � µσ 2, so that using the continuity equation f
the fermion number density,1

a4
d
dt̄
(a4nψ) ∼ Γ nχ [37].

The fermion production lasts a fraction of 1/µ so that
the resulting fermion number density is

(47)nψ � µm2
ψ.

When the fieldσ settles down in the minimum
the fermion energy density will beρψ ∼ nψmψ ∼
µm3

ψ . The fermionsψ need to quickly decay into th
Standard Model particles to complete the rehea
process. Takingmψ ∼ m, the reheating temperature
given by

(48)TRH ∼ (
µm3

ψ

)1/4 ∼
(

m

MP

)1/4

m,

or TRH � 100 MeV if m ∼ mEW ∼ TeV, which may
be sufficient to have conditions for a successful nu
osynthesis. The proper treatment of non-linear effe
may further enhance the reheating efficiency [3
There may also be other possibilities for curvaton
heating, as discussed in [38].

The same field may also produce the required d
sity fluctuations. During inflation, because the cur
ton dwells in the matter frame geometry defined
ḡµν , its fluctuations freeze out just like the fluctuatio
of any light scalar during inflation. They obey a fie
equation [20]

(49)
d2σ�k
dt̄ 2

+ 3H̄
dσ�k
dt̄

+
(

k2

a2(t̄ )
+ µ2

)
σ�k = 0,

and thus in the limitk2/a2 � 1 they yieldσ�k → α�k +
β�k/a3. The perturbations are Gaussian, and start
as isocurvature perturbations, which however are c
verted into adiabatic perturbations after inflation [2
giving a nearly scale-invariant spectrum with the a
plitude

(50)P1/2 ∼ r
H̄

πσ∗
,

where r is the curvaton fraction of the total energ
density after inflation, andH̄ and σ∗ are the values
of the Hubble parameter and the curvaton near the
of inflation. In the case of low scale inflation, one mu
also ensure that the curvaton mass changes rapid
ter inflation in order not to spoil nucleosynthesis [3
but such models are possible in principle.

So far we have been ignoring the curvature pr
lem. The model of inflation discussed here does
solve it. This is reminiscent of other models of lo
scale inflation. None of them are stand-alone soluti
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of the curvature problem. If inflation begins at a sc
H̄ � MP , something else must have kept the u
verse from collapsing until it reached the age∼ H̄−1,
where late inflation can begin. Thus for low scale
flation to start,k/a2 must be very small. Howeve
since the solution (27) is decelerating when expres
in terms of the metricgµν , the curvature problem
here is more severe than in other low scale in
tion models. To see this, note that in order to
a sufficiently small curvature today, we must ens
roughly k/a2

now � H 2
0/100, and therefore at the en

of inflation the curvature term must satisfyk/a2
exit �

mH0/100. Hence using the solution (27), we see t
since initiallyH � MP , we must have k/(a2

0M
2
P ) �

(MP /m)4/3(mH0/M
2
P )/100∼ 10−57, which is a bit

better than the required amount of fine tuning with
any inflation. However one still needs to explain t
origin of such a small number. Problems with curv
ture were noticed in [40]. There are several differ
possibilities for ensuring thatk/a2 is small at the on-
set of low scale inflation. One possibility is to ha
an early stage of inflation, driven by some other gr
itationally coupled scalar, followed by the low sca
inflation [21]. Such models might arise in the co
text of little string theories at a TeV [26], where th
early inflation would take a Planck-scale universe a
blow it up to TeV−1 size while generating the Planc
electroweak hierarchy. Another possibility might
the holographic cosmology [22]. In that case, the v
early universe would start in the most entropica
dense state, with a nearly vanishing curvature, wh
would evolve towards the regime of low density whe
conventional evolution can take place [22].

In closing, we have shown that a theory of gra
ity based on a special case of Bekenstein’s dis
mal couplings, where matter couples to a combi
tion gµν − 1

m4∂µφ∂νφ, gives rise to an epoch of sho
low scale inflation. Hereφ is a pseudoscalar field
which is invariant underφ → φ + C, φ ↔ −φ. These
symmetries protect the inflaton sector from the St
dard Model radiative corrections. The leading or
coupling of φ to the matter fields is via the unive
sal dimension-8 operator1

m4∂µφ∂νφT
µν . Because of

such couplings, the presence ofφ is not in violation
of any experimental bounds, even though it is ma
less, and may even lead to new signatures acces
to future collider experiments whenm ∼ TeV. For that
value of the massm the number of e-folds of inflation
is N ∼ 25, which is just enough to solve the horiz
problem. The fluctuations ofφ do not give rise to the
satisfactory spectrum of density perturbations, and
couplings are too weak for efficient reheating, but b
of these problems can be solved by adding other l
scalar(s) such as the curvaton [20]. It would be in
esting to explore further implications of this mech
nism and see if it can arise from some fundame
theory.
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