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Abstract 

Calibration modeling is necessary to implement spectroscopic measurement of soil properties. The aim of this study 
is to compare the performance of calibration models developed for an agricultural farmland using two 
spectrophotometers with different scanning ranges, e.g. 400-2100nm and 400-2500nm. Soil samples were collected 
from an experimental farm at Silsoe, Bedfordshire, United Kingdom. The targeted soil properties under investigation 
were total nitrogen (TN) and organic carbon (OC). Spectra were divided into a calibration set (75%) and an 
independent validation set (25%). A partial least squares regression (PLSR) with leave-one-out cross validation was 
carried out to build calibration models based on the two spectral ranges. Validation result shows that the PLSR 
models developed on the range of 400-2500nm outperform those on 400-2100nm. It suggests that wavelengths 
located in the spectral band of 2100-2500nm contribute to model calibration of soil N and C. It is concluded that 
spectroscopic calibration using 400-2500nm could produce higher prediction accuracy for soil N and C measurement 
at a farm scale than short spectral ranges. 
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1. Introduction 

Increasing attentions are paid to the development of fast measurement approaches of soil carbon (C), 
due to the growing concerns about the increase in atmospheric C content, which could be limited through 
soil C sequestration. Fast estimate of soil nitrogen also arouses intensive attentions from academia for 
precision management of nitrogen fertilizer inputs to farmland.  Due to spatial variability and non-linear 
temporal dynamics, accurate estimation of soil N and C requires measurement on numerous samples. This 
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would be impossible as standard procedures for soil N and C measurement are time-consuming and 
expensive[1]. Therefore, alternatives such as near-infrared diffuse reflectance spectroscopy (NIR-DRS) 
become welcome to scientists and engineers. NIR-DRS technique mainly measures overtones and 
combination bands of fundamental vibrations of O-H, N-H, and C-H bonds in the mid-infrared region.  

The factors affecting the accuracy of soil property measurement originate from soil heterogeneity [2], 
moisture content [3], soil texture [4,5], soil color [6],  model size [7], sample pretreatment [8,9], data 
preprocessing [10,11], and calibration procedures [12]. The effect of different spectral ranges for the 
prediction of soil properties has been examined [13,14]. Islam et al.[13] compared the ability of 
reflectance spectroscopy in the UV (250-400 nm), VIS (400-700 nm) and NIR (700-2500nm) to predict 
several soil properties including organic carbon (OC). Viscarra Rossel et al. [14] analyzed the capability 
of using VIS (400-700 nm), NIR (700-2500 nm), MIR (2500-25,000 nm) and combined VIS-NIR-MIR 
for simultaneous assessment of soil OC and other properties. They found the cross-validated prediction of 
soil OC based on the VIS and NIR range of similar accuracy (R2-adj of 0.60), but less accurate than the 
MIR and combined VIS-NIR-MIR models (R2-adj > 0.72).  

The objective of this study is to apply two commercial spectrophotometers with different scanning 
ranges to measure soil total nitrogen (TN) and organic carbon (OC) at a farm scale with an emphasis on 
comparing the performance of calibration models developed using different spectral ranges. 

2. Materials and methods 

2.1. Soil samples 

Soil samples were collected from the top layer of an experimental farm at Silsoe, Bedfordshire, United 
Kingdom. A total of 122 samples with variable proportions of sand, slit and clay were examined. Samples 
were air-dried at 40  for 24h, crushed and sieved to pass a 2-mm mesh. Plant residues and stones were 
removed. The sieved samples were then air-dried again at 40  for 48h. About 50 mg in each sample was 
used for the measurement of total nitrogen (TN) and organic carbon (OC) by a TrusSpecCNS 
spectrometer (LECO Corporation, St. Joseph, MI, USA) using the Dumas combustion method. 

2.2. Spectrophotometers and spectral acquisition 

About 5g in each sample was loaded into a static ring cup and measured separately by a mobile fiber-
type AgroSpec Vis-NIR spectrophotometer (Tec5 Co., Germany) with spectral range of 350-2200nm and 
a LabSpec 2500 spectrophotometer (ASD Inc. Boulder, CO, USA) with spectral range of 350-2500nm. 
Both instruments scan samples at 1-nm interval. A 100% white reference was used before spectral 
scanning. Ten scans were recorded for each sample, followed by another ten scans of the re-filled sample 
cup. The twenty scans were then combined and averaged as one sample. 

2.3. Data processing techniques 

The spectra were treated with the Unscrambler® (CAMO Inc., Oslo, Norway). Spectral pretreatment 
methods include moving average smoothing (MA), multiplicative scatter correction (MSC), standard 
normal variate (SNV), baseline offset correction (BOC), 1st and 2nd de-trending, 1st and 2nd derivatives and 
three types of spectral normalization. 

To eliminate the noise in spectra, only ranges of 400-2100nm and 400-2500nm were adopted in the 
study. After spectral transformation, the spectra were divided into a calibration set (70%) and an 
independent validation set (30%). The calibration spectra were subjected to a partial least squares 
regression (PLSR) with leave-one-out cross validation. The optimal number of latent variables (LVs) was 
determined by minimizing the predicted residual error sum of squares (PRESS). The performance of the 
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calibration models was assessed using the coefficient of determination (R2) and root-mean-square error  in 
calibration (RMSEC) and cross validation (RMSECV). The coefficient of determination (R2), root-mean-
square error of the prediction (RMSEP), Bias and residual predictive deviation (RPD) were used for 
evaluating prediction performance of the established PLSR models for the independent validation set. We 
adopted the criteria of classifying RPD values [15] as follows: an RPD value below 1.5 indicates that the 
calibration is not usable; an RPD value between 1.5 and 2.0 indicates a possibility to distinguish between 
high and low values; an RPD value between 2.0 and 2.5 makes approximate quantitative predictions 
possible. For RPD value between 2.5 and 3.0 and above 3.0, the prediction is classified as good and 
excellent, respectively. Generally, a good model would have high values of R2 and RPD, and low values of 
RMSEC, RMSECV, RMSEP and Bias. 

3. Results and discussion 

3.1. Reference measurement of soil properties 

Table 1 shows the sample statistics of calibration set and independent validation set. The two NIR-
spectrally active soil properties of TN and OC have similar coefficient of variation (CV) of 0.26-0.29 and 
high inter-correlation of 0.99. 

Table 1 Sample statistics for calibration and independent validation sets 

Soil 
properties 

Calibration set Independent validation set Inter-correlation 
 

Mean Range SDb CVc Mean Range SD CV TN/% OC/% 
TN (%) 0.20 0.09 - 0.31 0.057 0.29 0.20 0.12-0.30 0.055 0.28 1.00 0.99 
TC (%) 1.97 0.85 - 3.02 0.544 0.28 1.99 1.24-2.84 0.526 0.26  1.00 

b standard deviation; 
c coefficient of variation 

3.2. Spectral characteristics 

Figure 1 shows the spectra measured by two spectrophotometers. It is observed that spectra remain 
similar shapes in the common range of 400-2100nm. The extension part in the range of 2100-2500nm 
provided by ASD spectrophotometer exhibits new information unavailable in Tec5 instrument, which 
may allow for contributing more information to build accurate calibration models 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 Spectra measured by a mobile fiber-type AgroSpec Vis-NIR spectrophotometer (Tec5 Co., Germany) with spectral range of 

350-2200nm(left); and by a LabSpec 2500 spectrophotometer (ASD Inc. USA) with spectral range of 350-2500nm(right). 
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3.3. PLSR models on 400-2100nm 

Table 2 lists the results of the PLSR models developed for the prediction of TN based on original and 
transformed spectra. Except for 2nd derivative spectra, PLSR models for TN provided good performance 
with R2 of 0.81-0.86 and RMSECV of 0.021-0.025% for the cross-validation of calibration set, and R2 of 
0.84-0.89, RMSEP of 0.018-0.022% and RPD of 2.59-2.98 for the independent validation set.  

 
Table 2 PLSR models for soil TN with spectral range of 400-2100nm 

Spectral 
transformation LVs 

Calibration Cross-validation Independent validation 

R2 RMSEC R2 RMSECV R2 RMSEP Bias RPD
None 3 0.84 0.022 0.81 0.025 0.85 0.021 0.001 2.59

Max normalization 2 0.86 0.021 0.84 0.022 0.87 0.020 -0.003 2.77
Range normalization 3 0.87 0.020 0.85 0.022 0.88 0.019 -0.002 2.87

Mean normalization 2 0.88 0.020 0.86 0.021 0.89 0.018 -0.002 2.98
MA+SNV 3 0.87 0.020 0.86 0.021 0.88 0.019 -0.002 2.90
MA+MSC 3 0.86 0.021 0.85 0.022 0.87 0.019 -0.002 2.81

1st De-trending 2 0.84 0.023 0.83 0.024 0.88 0.019 -0.004 2.95
2nd De-trending 1 0.83 0.023 0.82 0.024 0.84 0.022 -0.004 2.57

BOC 3 0.85 0.022 0.83 0.023 0.85 0.021 -0.001 2.61
1stderivative 2 0.84 0.023 0.82 0.024 0.88 0.019 -0.003 2.98

2nd derivative 3 0.87 0.021 0.70 0.031 0.71 0.029 -0.004 1.87
 
Table 3 lists the results of the PLSR models developed for the prediction of OC based on original and 

transformed spectra. Except for original and 2nd derivative spectra, PLSR models for OC provided good 
performance with R2 of 0.82-0.87 and RMSECV of 0.199-0.236% for the cross-validation of calibration 
set, and R2 of 0.84-0.88, RMSEP of 0.177-0.194% and RPD of 2.50-2.93 for the independent validation 
set.  
 

Table 3 PLSR models for soil OC with spectral range of 400-2100nm 

Spectral 
transformation LVs 

Calibration Cross-validation Independe validation 

R2 RMSEC R2 RMSECV R2 RMSEP Bias RPD 
None 3 0.84 0.214 0.82 0.232 0.82 0.219 0.033 2.28 

Max normalization 3 0.87 0.194 0.86 0.207 0.86 0.194 0.011 2.65 
Range normalization 3 0.88 0.187 0.87 0.201 0.87 0.184 0.007 2.80 
Mean normalization 2 0.88 0.188 0.87 0.201 0.87 0.187 0.015 2.74 

MA+SNV 3 0.88 0.186 0.87 0.199 0.87 0.189 -0.090 2.74 
MA+MSC 3 0.88 0.190 0.86 0.204 0.86 0.191 -0.002 2.70 

1st De-trending 2 0.83 0.226 0.82 0.236 0.88 0.180 -0.022 2.89 
2nd De-trending 1 0.82 0.227 0.82 0.235 0.85 0.198 -0.029 2.64 

BOC 3 0.86 0.206 0.84 0.219 0.84 0.206 0.011 2.50 
1stderivative 2 0.83 0.221 0.82 0.234 0.88 0.177 -0.019 2.93 

2nd derivative 4 0.90 0.174 0.70 0.300 0.80 0.232 -0.005 2.22 

3.4. PLSR models on 400-2500nm 

Table 4 and 5 list the result of PLSR models developed for the prediction of TN and OC based on 
original and transformed spectra. Except for derivative spectra, PLSR models for TN provided excellent 
prediction performance with R2 of 0.87-0.92 and RPD of 3.00-3.63. Similarly, PLSR models for OC 
provided good and excellent performance with R2 of 0.86-0.90 and RPD of 2.69-3.21 for the independent 
validation set. 
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Table 4 PLSR models for soil TN with spectral range of 400-2500nm 

Spectral 
transformation LVs 

Calibration Cross-validation Independe validation 

R2 RMSEC R2 RMSECV R2 RMSEP Bias RPD 
None 6 0.90 0.018 0.85 0.022 0.88 0.019 -0.008 3.15 

Max normalization 5 0.91 0.017 0.88 0.020 0.91 0.016 -0.005 3.60 
Range normalization 5 0.91 0.017 0.89 0.019 0.91 0.016 -0.005 3.49 
Mean normalization 4 0.91 0.017 0.88 0.019 0.91 0.016 -0.005 3.58 

MA+SNV 3 0.90 0.018 0.89 0.019 0.92 0.015 -0.004 3.63 
MA+MSC 4 0.91 0.017 0.88 0.020 0.88 0.019 -0.006 3.00 

1st De-trending 5 0.91 0.017 0.88 0.020 0.87 0.020 -0.009 3.06 
2nd De-trending 3 0.87 0.020 0.85 0.022 0.89 0.018 -0.006 3.19 

BOC 4 0.87 0.020 0.84 0.023 0.88 0.018 -0.005 3.08 
1stderivative 2 0.88 0.020 0.82 0.024 0.82 0.023 -0.006 2.47 

2nd derivative 1 0.67 0.032 0.54 0.039 0.54 0.037 -0.004 1.49 
 
By comparison, these models for TN and OC developed on spectral range of 400-2500nm outperform 

those on spectral range of 400-2100nm (Table 2 and 3). The result is line with the report by Mouazen et 
al.[15], in which they compared the performance of two commercially-available spectrophotometers with 
different wavelength ranges for the measurement of selected soil attributes including total carbon (TC) 
and total nitrogen (TN). They found that the best accuracy is obtained when using a full wavelength range 
of 451-2459 nm, as compared to a short wavelength range of 401-1770 nm. 
 

Table 5 PLSR models for soil OC with spectral range of 400-2500nm 

Spectral 
transformation LVs 

Calibration Cross-validation Independe validation 

R2 RMSEC R2 RMSECV R2 RMSEP Bias RPD 
None 4 0.89 0.177 0.88 0.191 0.86 0.188 0.009 2.76 

Max normalization 3 0.92 0.154 0.91 0.167 0.89 0.163 0.009 3.18 
Range normalization 5 0.93 0.145 0.91 0.165 0.89 0.165 0.004 3.13 
Mean normalization 4 0.92 0.157 0.90 0.173 0.89 0.171 -0.012 3.03 

MA+SNV 3 0.92 0.152 0.91 0.163 0.90 0.161 -0.003 3.21 
MA+MSC 4 0.92 0.152 0.90 0.169 0.88 0.175 0.002 2.96 

1st De-trending 2 0.88 0.188 0.87 0.197 0.86 0.193 -0.007 2.69 
2nd De-trending 4 0.91 0.160 0.90 0.177 0.87 0.184 0.012 2.81 

BOC 4 0.89 0.174 0.88 0.190 0.87 0.181 0.005 2.86 
1stderivative(7) 2 0.89 0.174 0.86 0.207 0.83 0.208 -0.003 2.48 

2nd derivative(7) 2 0.82 0.232 0.58 0.356 0.59 0.325 -0.004 1.59 

4. Conclusions 

In this study, the visible-near-infrared (VIS-NIR) spectroscopy was applied to build calibration models 
for predicting soil total nitrogen (TN) and organic carbon (OC) at a farm scale. Two spectrophotometers 
were used to obtain different ranges of spectral data. Model performance was compared between two 
spectral ranges, e.g., 400-2100nm and 400-2500nm. Calibration models were built using a partial least 
squares regression (PLSR) with leave-one-out cross validation. Validation result of the established models 
shows that PLSR models for soil TN and OC developed on the range of 400-2500nm outperform those on 
the range of 400-2100nm. It suggests that wavelengths located in the spectral band of 2100-2500nm 
contribute to model calibration of soil TN and OC. It is concluded that spectroscopic calibration using 400-
2500nm could produce higher prediction accuracy for soil N and C measurement than short spectral ranges. 
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