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Abstract 

We introduce the negation CL of a complete lattice I as the concept lattice of the com- 
plementary context ( JL ,  ML,  ~) ,  formed by the join-irreducible elements as objects and the 
meet-irreducible elements as attributes. We show that the double negation CCL is always order- 
embeddable in L, and that for finite lattices, the sequence (C'k),eo) runs into a 'flip-flop' (i.e., 
C"L ~- C"+2k for some n). Using vertical sums, we provide constructions of lattices which 
are isomorphic or dually isomorphic to their own negation. The only finite distributive exam- 
ples among such 'self-negative' or 'self-contrapositive' lattices are vertical sums of four-element 
Boolean lattices. Explicitly, we determine all self-negative and all self-contrapositive lattices with 
less than 11 points. 
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O. Introduction 

The basic notions o f  Formal Concept Analysis are contexts ~ = (J,M,I)  and their 

concept lattices 13~ (see Section 1). Since every context ~ has a natural 'negat ion '  

C ~  obtained by passing to the complementary incidence relation, it is natural to ask 

for a corresponding notion of  'negation '  for complete lattices. Thus, the 'negative 

small contexts '  ( J L , . M L ,  ~ )  o f  complete lattices L, where J L  denotes the set of  

(completely)  join-irreducible elements and A4L the set o f  (completely)  meet-irreducible 

elements of  L, and their concept lattices 

CL = B(ZTL, ML, ~ )  

will be the main subject of  our studies in the present note. The lattice CL will be 

interpreted as the lattice-theoretical negation of  k, while its dual will be referred to as 
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the contraposition of k. (Notational remark: In [6], CL denotes the context (L,L, ~< ) 
and not the negation of L.) 

The investigation of the negation operator C was inspired by the following earlier 
observations (see [5]). The negation of the Aleksandrov completion (by lower ends) 
of a quasiordered set is dually isomorphic to the Dedekind-MacNeille completion (by 
cuts). For example, the Cantor Discontinuum D is the Aleksandrov completion of the 
rational line Q, while the unit interval I is the Dedekind-MacNeille completion of Q 
and, consequently, the negation of D. More generally, a complete lattice is a so-called 
Cantor lattice iff its negation is completely distributive. 

Heuristic considerations of [5] suggested that for any finite lattice k, the negation 

sequence (Cnk)n~o) should run into a 'flip-flop', i.e., a complete lattice isomorphic to its 
double negation. The general validity of that phenomenon was first established in [2], 
and a simplified proof will be given in Section 3. However, there exist infinite lattices 
L such that the lattices L, CL, C2L, C3L,... and their duals are mutually non-isomorphic 
(see Example 3.14). 

Using the fact that under mild restrictions the contraposition operator commutes 
with vertical sums, we shall construct in Section 4 certain self-negative and self- 

contrapositive lattices, i.e., lattices L that are isomorphic to their own negation or 
contraposition, respectively. Finite self-negative lattices do not occur frequently, and 
self-contrapositive lattices are still much rarer: among the 14570 non-isomorphic lat- 
tices that are MacNeille completions of posets with less than nine elements, there are 
61 self-negative and only 7 self-contrapositive lattices (see Tables 1 and 2). 

While we have found convenient criteria for a finite lattice to be a flip-flop (see 3. l 1 ), 
an open question is how to characterize (finite) self-negative or self-contrapositive 
lattices by simple conditions. 

1. Contexts and concept lattices 

For the readers convenience, we first recall a few basic notions and facts from Formal 
Concept Analysis (see [4, 5, 7, 8, 10] for more background). 

A context is a triple ~ =-(J,M,I),  where J and M are sets and I is a relation 
between J and M, i.e., I C J x M. The elements of J~ = J are interpreted as the 
objects, those of M~ = M as the marks  or attributes, and I~ = I as the incidence re- 

lation of ~. With each context ~, there is associated a Galois connection or polarity 

(el. [1]) 

~K: 7~J > T2M, A ,  ~ At  = { b E M [ V a E A : a l b } ,  

~ :  72M > 7~J, B ,  ~ BC = { a E J I V b E B : a l b } .  

A concept of ~ is a pair (A,B)  with A = B  + and B ---A t. Ordered by 

(A,B) <<. (C,D).'. '.,At_C, 
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the concepts form a complete lattice, the concept lattice 13~. The basic functions 

7 = ? ~ :  J > B ~ ,  j L > ({j}T+,{j}T) 

and 

g = p ~ : M  >13~, m, >({m}l ,{m} H )  

satisfy the crucial equivalence 

7(/') ~< #(m) ~ j im.  

The following notations are convenient: 

AI = { m E M I j i m  for s o m e j  EA}, 

IB = {j E J [ j i m  for some m E B}. 

If x and y are elements of  an ordered set P = (P, ~< ), the set Tx = {x} ~< is called a 

principalfilter, the set l y =  ~< {y} a principal ideal, and their intersection [x, y]=Txf~J,y 
an interval. The ordered set OP  = (P, ~> ) with x >~ y iff y ~< x is the opposite or dual 
of  P. We call K2P = (P,P,  ~< ) the large context of  P. Passing from P to /~P ,  one may 
regard every ordered set as a context. Under this identification, for any subset A C P, 

the set of  upper bounds is A T, and the set of  lower bounds is A +. 

Now l e t / = ( L ,  ~< ) be an arbitrary complete lattice. The least and the greatest element 

of  / will be denoted by 0L and 1 L, respectively. By a .join base of  L, we mean a join- 
dense subset o f / ,  that is, a set J C_ L such that each element of  L is a join of  members 

of  J ;  an equivalent condition is that for all x ~ y i n / ,  there exists a j E J with j ~ x but 

j ~fi y. We call an element j E L completely join-irreducible (written V-irreducible) if  it 
belongs to each subset X of  L whose join it is. Meet bases (meet-dense subsets) and 

A-irreducible elements are defined dually. We denote by f f k  and 3 d k  the set of  all V- 

and A-irreducible elements of  L, respectively. Notice that our definition of  irreducibility 
excludes 0u from J k  and 1L from Jk,IL; furthermore, J k  is contained in every join 
base, and Adk in every meet base. I f  J k  is a join base and AAL is a meet base of  k 

then we speak of  a small-based lattice (in [5], small-based lattices are called doubly 
based). Clearly, every finite lattice is small-based. The context 8 L =  ( J k ,  AlL, ~< ) will 

be referred to as the small context or standard context of  t .  
Let us return to the basic functions 7 and p of  an arbitrary context ~ = (J,M,I). 

For the concept lattice /3~;, a join base and a meet base are given by the images 7[J] 
and p[M], respectively. The context ~ is said to be purified if  its basic functions 7 
and p are injective. If  ~ is purified with ?[J] = ( f B ~  and p[M] = Ad13~ then ~; is 
said to be reduced. The small context of  any small-based lattice is reduced, and on 

the other hand, the concept lattice of  any reduced context is small-based. Moreover, 
a complete lattice L is small-based iff it is isomorphic to 1381, and a context ~ is 
reduced iff it is isomorphic to 813~. In this sense, the operators 13 and 8 induce 
mutually inverse bijections between (the isomorphism classes of) reduced contexts and 
small-based lattices. 
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Natural candidates for morphisms between contexts are pairs o f  maps rather than 

single maps. We will not enter this theory more deeply, but some basic definitions and 
facts will be crucial for later results on negations of  contexts (cf. [4, 6]). 

Given two contexts ~ and E and two maps c~: JR ~ JL and fl: MR , Mr, we 
call the pair (p = (~, fl) a context morphism (from ~ into ]-). We say q0 is injective, 

surjective or bijective, respectively, if  the components ~ and fl have the corresponding 

property, and ~o is called a quasi-embeddin9 (o f  ~ in ]-) iLfor all j EJK and m EM0~, 

j I~ m .'. '.. ~(j')I~ fl(m). 

An injective quasi-embedding is called an embedding, a surjective one a quasi- 

isomorphism, and a bijective one an isomorphism. By definition, a map c~ between 
ordered sets P and O is an (order) embeddin9 iff (e, e)  is a context embedding o f /CP 

i n / 0 3 .  
Given any context morphism q~ = (e, fl) from ~ into D_, define two maps 

c~--*: 13~ ~ 13]-, (A ,B) ,  , (~[A] t~, ~[A]t), 

~ :  13~ ,13]-, (A,B ) , , (/~[B] +,/3[B]+t). 

It is evident that in this way we obtain a pair of  isotone, i.e., order-preserving maps 

from B ~  into 13]_ (which need not coincide, nor preserve joins or meets). For the 

subsequent theory of  iterated negations, we shall use the following rule, lifting context 

embeddings to the concept lattices (cf. [2, 4]): 

Proposition 1.1. For any quasi-embedding (~, fl) f rom a context ~ into a context E, 

the maps c~ ~ and f l~ are order embeddings f rom 13~ into 13]_. If, moreover, (c~,fl) is a 
quasi-isomorphism then ~--* = fl--* is an isomorphism between 13~ and 13]_; the inverse 
isomorphism sends a concept (C ,D)  o f  ]- to the concept ( e - I [c ] , f l - I [D] )  o f  K. 

As an application of  Proposition 1.1, we note: 

Corollary 1.2. For any subcontext ~ = (J ,M, I  M (J x M ) )  o f  a context 8_ = (K,N, I ) ,  
the inclusion maps ~: J ~--~ K and fl: M ~--~ N induce embeddings ~ and fl--* o f  13~ in 

130_. In particular, for  any complete lattice L =  (L, <~ ) and any context N =(J ,M,  <~ ) 
with J, M C L, the concept lattice B ~  is embedded in k by either o f  the maps 

V ~ , L : B ~  ~ L, (A,B) ,  , V A and A ~ , L : B ~  ~ L, (A ,B) ,  ' AB. 

Observe that if  a complete lattice K is (order) embedded in a complete lattice t by 
a map e then K is a retract of  l because either of  the maps 

c~V:k ,K ,  x ,  , V { y E K l e ( y ) < . x  }, 

is a retraction, i.e., isotone and left inverse to ~. 
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2. Negations and contrapositions 

With every context ~ = (J,M,I) there are associated three natural companions: 

the opposite or dual context O~i = (M,J,{(m,j)]tim}),  
the complementary or negative context C ~  = (J,M,(J x M ) \  I), 
and the contrapositive context CO~ = (M,J,(M × J ) \  {(m,j) l j lm}).  

See Fig. 1. 

I f  one of  the contexts ~,  C~,  O ~ ,  CO~ is purified then so are the others. However, 

complementation and contraposition may destroy reducedness. 

Via the operators S and B, negations and contrapositions may be lifted to the level 

o f  complete lattices. The negative (small) context of  a complete lattice L = (L, <~ ) is 

given by 

CSL = ( J L ,  A/(L, ~ )  

and the negation or complement of  k is the concept lattice 

CL =- 13CSL --/3(JL, A/(L, ~ ), 

while the contraposition COL is the negation of  the opposite lattice Ok  = (L, ~> ). 

Negation and contraposition is now applicable to lattices as well as to contexts. It will 

cause no confusion to use the same symbols C and 69 in both situations. 

I, 

5 

Fig. 1. A commutative cube of dualizations, negations and contrapositions. 
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The contraposition of L is isomorphic to the opposite of  the negation CL via the 

isomorphism 

COL ~ OCL, (A,B) , ~ (B,A). 

Moreover, the double negation C 2 L of any complete lattice L agrees, up to isomorphism, 
with the double contraposition: 

( CO )2L = COCOL ~_ COOCL = CCL = C2L. 

Certain classical completions of  (quasi-)ordered sets may be regarded as specific 

concept lattices, as explained, for example, in [5]. A join completion of an ordered set 

P is a complete lattice containing an isomorphic copy of P as a join base. The smallest 

join completion of P is the Dedekind-MacNeille completion or normal completion (by 
cuts), A/'P = {A~ IA C_ P}, and the largest one is the Aleksandrov completion (by lower 
ends), AP  = { <<. A I A C_ p}. Up to isomorphisms, they are the concept lattices of the 

large context /CP and of its contraposition, respectively: 

A/'P ~_ 15(P, P, <~ ) = 13~P, AP ~_ 13(P, P, ~ ) = I3COICP. 

The following relationship between the two extremal join completions has been stated 

in [5]. 

Proposition 2.2. For any poset P, the normal completion is the contraposition of  the 

Aleksandrov completion, i.e., ./V'P ~ COAP. In particular, any complete lattice L is 

isomorphic to the contraposition COAL. 

Example 2.3. For each ordinal number t¢ (considered as an ordered set), the comple- 

tion A~c is isomorphic to ~c+l. From 2.2, we get the isomorphism 

CO(~c+I) _~ Af~c _~ ~c for each successor ordinal ~c. 

In particular, if L is a finite chain with n + l  elements and n > 0 then CL and COl- are 
chains with n elements. On the other hand, 

C O ( ~ + I )  -~ A/'t¢ "~ ~c+l if ~c is 0 or a limit ordinal. 

Example 2.4. Let L be a complete lattice which is not small-based (like the real unit 
interval) and consider the lattice K = AnL. For every k < n, the k-th negation (resp. 
contraposition) of K is small-based, being isomorphic to An-kk or to A"-kOL,  while 
the n-th negation CnK -~ O~L is not small-based. 

In the next section, we shall investigate negation sequences ( C " L ) ~  of complete 
lattices L. Examples 2.5 and 2.6 below are symptomatic for the behavior of such se- 
quences: up to isomorphism, the negation sequence in Example 2.5 becomes stationary, 
while the negation sequence in Example 2.6 ends with an oscillating pai r . 
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Example 2.5. A kite loses its tail by iterated negation or contraposition. 

For any ordinal K, let K~ denote the 'kite' ~c ~ 2 2 obtained by putting the 'rhomb' 

K0=2 2 above ~c. Then the contraposition of KK is isomorphic to K~-I if ~c is a successor 

ordinal, and it is isomorphic to KK itself if r¢ is 0 or a limit ordinal (see 4.1 and 2.3). 

OK2 

K2 

CO 

K1 K0 ~ CK0 "-" COKo 

Here and in the following, symbol sequences of the form X ~ >Y mean YFX -~ Y. 

Example 2.6. Consider, for an arbitrary cardinal number to, the free completely dis- 

tributive lattice generated by ~c elements, FCD(~c), and the antichain (to,--). While 
(for rc > 1) the normal completion N'( tc ;=)  adds a least and a greatest element, the 

Aleksandrov completion A(tc, = )  is (isomorphic to) the power set 79(K). Each of these 

lattices is self-dual, and it is well known that FCD(~:) ~- .A79(tc) ~- .AA(t¢,=). By 

applying Proposition 2.2, we get the transformation rule 

FCD(~c) ~ 7~(K) <co> A/'(~c, = )  

and, by self-duality, the corresponding rule with C instead of CO. Especially, for K = 3 

we have the following diagram: 

FCD(3) !o(3) A/'(3, =) 

Notice that the non-distributive lattice M3 = .Af(3, =) is a retract of the distributive 

lattice FCD(3), but there is no lattice homomorphism from FCD(3) onto M3. 

3. Double negation 

From any reasonable negation operator one will expect that every object in the 

domain of the operator is at least comparable (in some obvious order) with its double 
negation, and one will be primarily interested in those objects which are isomorphic 
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to their double negation. We are now going to investigate such situations in the realm 

of contexts and complete lattices. 
A complete lattice I_ that is isomorphic to its double negation CCI_ will be referred 

to as a flip-flop (lattice). While trivially any context ~ is identical with its double 
complementation CC~, it is not clear a priori which complete lattices I_ are flip-flops. 

Example 3.1. Two pairs of flip-flops: 

In order to show that every complete lattice I_ admits order embeddings (but in 
general no join- or meet-embeddings) of its double negation CCL in t., we have to 
analyze the so-called arrow relations of the negative context C 8 l  = (,TL,.MI_, ~) .  
They are defined as follows (cf. [5] or [8]): for any j c Jl_ and m E A/It., 

j J m e==~ j <~ m and Vkcff l_ :  (Adk M Tk c .Adk N Tj ~ k ~m),  

j / ~  me==> j ~< m and Vn E M L :  ( J L N  ~.n C J L A  .~m ~ j ~ n ) ,  

where C denotes proper inclusion. These conditions may be simplified in case of 

small-based lattices (cf. [5]). 

Lemma 3.2. I f  j is a V-irreducible element and m is a A-irreducible element of  a 
small-based lattice I_ then 

j J m e = = ~ [ j , m ] A J l . = { j }  and j / ~ m ~ [ j , m ] f q A d l . = { m } .  

Hence, j ~./ m means that j is a maximal V-irreducible element with j <~ m, and 

J 7 m means that m is a minimal A-irreducible element with j <~ m. 

The following facts are borrowed from Hilfssatz 13 in [8]: 

Lemma 3.3. For any complete lattice I_, an element of  the negation CL is V-irredu- 

cible iff it is of  the form 7csL(J') for some j E J M L ,  and dually. I f  I_ is finite then 
J may be replaced with ~.'~, where j~.'~m means j~ /m and j T m .  

These observations suggest to consider, for any complete lattice l ,  the subcontext 
S 'L = (J tL, .M'L,  ~< ) of 8L with 

J ' L  = J . M L  = 70SL - I [JCL]  and .M'L = f f L Z  = ktCSL-l[2MCL]. 
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Observe that if 1L is V-irreducible then 7CSL(1 L ) is the bottom element of CL. Hence 
1L is never an element of ,.7~L and, dually, 0L never belongs to A4~L. 

Proposition 3.4. For any complete lattice L, a quasi-isomorphism ~ ~ = (TL' ~L) from 
S'L onto CSCL is given by 

41. /L. J tL > JCL, j ,  7CSLU), 

I~L : M ' L  ~ 3,4CL, m ,  [.tCSL(m ). 

I f  L is small-based then q~L is an tsomorph&m. 

ProoL As the image of 7CSL is a join base of CL =/3CSL, we know that ,.TCL is 
contained in 7CSL[,,TL]. Hence, 7CSL[ff~L] coincides with JCL. Together with the dual 
fact, this shows that r/[ is a surjective context morphism. For any j E 3"~L and m E A,'//L, 
we have: 

j <~ m-C==~(j,m) ¢ ICSL "" ~" 7¢SL(J)~cLI.tcSL(rn) 

]CSL(j) IcscL ~CSL(m). 

If L is small-based then SL and CSL are purified, hence r/[ is bijective. 

Now we are ready for the announced embedding theorem: 

Theorem 3.5. For any complete lattice L, its double negation CCL /s &omorphic to 
the concept lattice I3StL and order embeddable in L, hence a retract of L 

Proof. Proposition 1.1 together with 3.4 yields an isomorphism 7[ -~ = #[-~ between 
13S'1_ and CCL = BCSCI_. By Corollary 1.2, we have order-embeddings VS'L,L and 
AS'L,L from 13SIL into L. Composing them with the inverse of the established iso- 
morphism between BSt l  and CCL, one obtains two explicit embeddings of CCL in L, 
namely 

]~L: COL , L, (C,D), VYCSL-I[c] 

and 

ML: CCL ~ L, (C,D), AI~csL-I[D]. [] 

In general, the embeddings FL and ML do not agree, nor do they preserve (finite) 
joins, nor meets. In order to verify that claim, consider once more the 'kites' Kn of 
Example 2.5. 
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Example 3.6. The order embeddings FK,, and MK,,: 

K4 ' CCK4 ~- K2 
MK~ 

A straightforward computation shows that the embeddings FK,, and ME,, coincide for 
n ~> 2, but they never preserve all joins, nor all meets. 

While C'K0 is isomorphic to the rhomb K0, a different situation occurs with KI: 

I'K1 MKI 
Kl CCK1 ~- Ko K1 - -  CCK1 ~_ Ko 

Here we have CCKI -~ CK1 - K0, and we obtain two distinct embeddings FK, and 
MK, of CCKI in Kl. The map FK, does not preserve all meets, while MK, does not 
preserve the join of the empty set. 

The next example shows that, in general, there need not exist any join- or meet- 

preserving embeddings of CCL in L. 

Example 3.7 (o f  3.13 and 4.1). For the lattice L below, the double negation CCI_ ad- 
mits ( 4 ! ) 2 -  - 576 equivalent order embeddings in L. None of them preserves joins or 
meets (consider the middle element !), while the corresponding retractions do preserve 
arbitrary joins and meets (but see 2.6). 

L CCL 

Call a complete lattice L coreduced if the negative context CSL is reduced. An 
important consequence of Proposition 3.4 is 

Corollary 3.8. The fol lowing s tatements  on a complete lattice L are equivalent: 
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(a) L is coreduced. 
(b) ~1[ is an isomorphism between the small context 8 L  and the context C S C L  

(c) SL is purified and agrees with S'L. 

(d) J L  = J M L  and J L J  = M L  in the purified negative context CSL 
Each o f  these conditions implies that CSL is isomorphic to SCL. 

The next theorem exhibits a large class of flip-flop lattices: 

Theorem 3.9. For a small-based lattice L, the following conditions are equivalent: 

(a) L is coreduced. 

(b) L is a flip-flop, and CL is coreduced and small-based. 

(c) 8CL ~_ CSL, and CL is small-based. 

(d) For each j E i lL,  there is an m E .A4L with D',m] • J L =  {j), and dually. 

Proof. (a)==~ (c): Apply 3.8. The equation JCL  = 7CSL[JL] and its dual imply that 

CL is small-based. 
(c) ==~ (b): CSCL -~ SL is reduced (since L is small-based). Hence, CL is coreduced, 

and further, CCL = t3CBCL ~_ B S L  ~- L. 
(b) ~ (a): Apply (a)==:>(b) to CL instead of L. 
(a) ~=~ (d) follows from the corresponding equivalence in 3.8 by 3.2. [] 

Although we shall see below that every finite flip-flop is coreduced, there exist 

infinite small-based flip-flop lattices which fail to be coreduced. 

Example 3.10. Let • be any limit ordinal (for example the ordered set co of natural 
numbers). Then, by 2.3, the lattice l = tc+l is a small-based flip-flop. But L cannot 
be coreduced since its bottom element is A-irreducible. 

Examples of a coreduced lattice which is not a flip-flop and of a flip-flop which is 
not small-based will be given in Section 4. 

Theorem 3.9 can be improved essentially for finite lattices (where the symbol ~t 

assigns to each set its cardinality). 

Theorem 3.11. The following statements on a finite lattice L are equivalent: 

(a) L is coreduced. 

(b) L is a flip-flop. 
(c) 8CL ~_ CSL. 
(d) JL = J M L  and JLJ = M L  in CSL. 

(e) ~ J k  = ~ J C L  and ~AAL = ~AACL. 

(f) ~ J L  + ~J~L = ~ffCL + ~A,'ICL. 

(g) ~L = ~CCL. 
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Proof. (a)¢==~ (c) is clear by the corresponding equivalence in 3.9 and finiteness of 
L. Using 3.3, one derives (a)¢=~ (d) follows from the corresponding equivalence in 
3.8. As every finite lattice is small-based, the maps 7c8L and I~cst are injective, i.e., 
the context CSL is purified. Now, since J C L  is a finite subset of 7cs t [J I ]  and dually 
for .AA, condition (a) is equivalent to (e). 

By Theorem 3.9, (b) follows from (a). As gift.>>, gJCl>>. ~ffCCI by 3.4, condition 
(b) implies (e), and (f) is just another formulation of (e). If (g) holds then every 
embedding of CCI in L is an isomorphism. Hence 3.5 yields the implication ( g ) ~ ( b ) ,  
and the converse is trivial. [] 

Condition (d) of the above theorem is a convenient criterion to work with: it states 
that the context table of the negative context CSL contains at least one double arrow 
in each row and in each column~ Sometimes, it may be easier to check Condition (d) 
of 3.9 directly. 

As the negation operator cannot increase the number of V- or A-irreducible ele- 
ments, the sequence (gJCnL + ~3AC~L)n~(o is monotone decreasing for every finite 
lattice L. Together with the equivalence (b)¢=~ (f) of Theorem 3.11, this fact yields 
the stationarity of the double negation sequence (C2"L)~e,,~ for finite lattices L. More 
precisely, we have the following: 

Corollary 3.12. I f  L is a finite lattice then for n>~gJL + gjk4L, the n-th negation 
C"L is coreduced, hence a flip-flop. I f  k denotes the least number i such that CiL is 

a flip-flop, then 

k + ~JCkL + gA,'tCkL ~< g J L  + ~A/IL. (* )  

In fact, a straightforward induction, using (b )c=~( f )  of 3.11 again, yields the in- 
equality 

i + gJc iL  + gA/lCik <~ g J k  + ~ML 

for all i ~< k. The previous estimate is sharp: 

Example 3.13. For each odd integer k, there is an 'extended (dual) kite', obtained 
from a (dual) kite (see 2.5) by adding two 'wings', for which the inequality (-k) of 
3.12 becomes an equality. The case k = 7 is sketched below. 

L C~L C4L CeL CTL ~ CgL CSL _~ CIOL 

However, for an infinite small-based lattice L, neither of the sequences (CnL)n~(o and 
((CO)nL)ne~o need contain any flip-flop lattice. 
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Example 3.14. Consider a lattice L with the diagram below. The iterated contraposi- 
tions are pairwise non-isomorphic, but mutually order embeddable (cf. [3]). 

<7 

, t ) ,  

L 

+ + , 5 + + +  
- -  . ; . .  

COL (CO)2L (CO)aL (CO)4L (CO)SL (CO)6L ..... 

4. Self-negative and self-contrapositive lattices 

We call a complete lattice self-negative (respectively, self-contrapositive) if it is 
isomorphic to its own negation (respectively, contraposition). Though self-negative lat- 
tices are rather rare, it is possible to construct such lattices by vertical superposition 
of small-based coreduced lattices and their negations, as will be shown below (see, for 
example, Fig. 6 in Table 1). 

Given two complete lattices L and U, the ordinal sum L ® L ~ is obtained by putting 
U above L, and the vertical sum k ~ U results from the latter by identifying the top 
element of k with the bottom element of U (cf. [3, 8, 10]). Call a complete lattice 
L upper regular if for each j E J L ,  there exists an m E A4L with j ~< m, and lower 

regular if the dual condition holds. If L is upper regular then the top element 1L is 
V-reducible, and the converse holds provided k is small-based. By the equivalence 
(a)c=~(d) in 3.8, every coreduced lattice and, in particular, every finite flip-flop (see 
3.11 ) is upper and lower regular. 

In [3], we have established the following rule for negations of vertical sums: 

Proposition 4.1. Let k and U be complete lattices. I l k  b upper regular or U b 

lower regular then 

C(L~ L') _~ CL' ~CL. 

In all other cases, 

C(L ~ k') ~_ CL' ® CL. 

From this rule, one easily derives 

Theorem 4.2. I f  I is a small-based coreduced lattice then I ~ CI  and CI  ~ I are 

self-negative. 
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Proof. By 3.9, L is an upper regular flip-flop, and by 4.1, it follows that 

C(L~CL)~_CCL~CL~_L~CL. [] 

In order to apply 4.1 to vertical sums of flip-flops, we need two auxiliary lemmas. 

Lemma 4.3. Suppose L is a small-based lower regular complete lattice. Then the top 

element o f  the negation CL is V-reducible. Hence, i f  CL is small-based, too, then it 
is upper regular. 

Proof. Assume the top element of  CL is V-irreducible, hence of the form 7CSL(J) 

for some j E J k .  For each k E J k ,  we have 7csL(j)  >~ ?CsL(k); in other words, 
{m E A.4L [ j ~ m }  C_{m C .AdL [ k ~ m } ,  and consequently, k -%< m implies j ~< m for all 
m E .AdL. By the hypothesis that k is small-based and lower regular, it would follow 
that j is the least element of L, which is impossible. [] 

Lemma 4.4. For each small-based complete lattice L, there b an (up to &omorphism 

unique) ordinal decomposition L ~- ~® K into an ordinal ~ and a lower regular lattice 

K. I f  CL is small-based, too, and k is a flip-flop or self-contrapositive, respectively, 
then so is K, and tc is 0 or a limit ordinal. 

Proof. Choose the largest ordinal ~c such that a decomposition L _~ ~c ® K exists. Then 
K is a small-based lattice with a A-reducible bottom element, and consequently, K is 

lower regular. 
Now suppose I is a flip-flop. By 4.1, we have CL _~ C(~cO K) _~ C K o C ( K + I ) .  If  

CL is small-based then so is CK, and by 4.3, CK is upper regular. Applying 4.1 once 
more, we get 

L ~ (Kq-1)@ K -~ CC((~c4-1)G K) ~_ C(CK@C(K÷I))  ~- CC(K+I)~CCK.  

By the dual of  4.3, the least element of CCK is A-reducible, while all non-maximal 
elements of ordinals are A-irreducible. Hence, the above isomorphism entails that K is 

isomorphic to CCK, and K+l is isomorphic to CC(K+l). By 2.3, this happens if and 
only if K is 0 or a limit ordinal. 

The case of  small-based self-contrapositive lattices L (where COL and CL are auto- 
matically small-based) is treated analogously. [] 

Now we are in a position to describe the impact of  vertical sums on (small-based) 
flip-flops and self-contrapositive lattices. 

Theorem 4.5. Let L and U be complete lattices such that L and COL are upper 
regular or small-based, or U and COL t are lower regular or small-based. 

I f  L and L ~ are flip-flops or self-contrapositive, respectively, then so is their vertical 

sum L 0 U. In particular, finite fip-flops and finite self-contrapositive lattices are 
closed under vertical sums. 
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Proof.  The regular cases are easily settled with the help of  4.1. 
Now assume, for example, that L and L t are flip-flops, and that U and COL t are 

small-based but L t is not lower regular. Then 4.4 provides a decomposition L t _~ 1, "+  K 

into a limit ordinal ~," and a small-based lower regular flip-flop K. The decomposition 

eL ~ ~ C K @ d ( k ' + l )  shows that not only CU but also CK is small-based, and by 4.3, 

CK is then upper regular. Again by 4.1 and 2.3, we obtain 

CC(L ~ L')~_CC(L ,3(~c+I )~ ,K)  ~_ C(CK ~C(K+I ) ~ m ~ C L )  

_~ L ~ ( t ¢ + l ) ~  K _~ L~  L, 

where m and n are natural numbers with m ~< 2 and n ~< 3. 
The other cases are treated similarly. [] 

Let us add a few examples demonstrating that things become more complicated when 

the hypothesis of  small-basedness is dropped. 

Example  4.6. The real unit interval I = [0, 1] is a self-dual upper and lower regular 
complete lattice but not small-based, and the negation CI is a one-element lattice. 

(1) The infinite kite Ki = I @ 22 is coreduced but not a flip-flop: CL _~ CCL ~_ 22. 

(2) The ordinal sum 21 = I LSI has a V-reducible top element and a A-reducible 

bottom element but is neither upper nor lower regular. Moreover, 21 admits no ordinal 
decomposition ~c O K such that K is lower regular (cf. 4.4). 

(3) For any poset P, define the 'truncated Aleksandrov completion' by A0P = A P \  
{0,P}. If  P has a top element 1p and a bottom element 0p then ,AoP is a small-based 

complete lattice. Moreover, if 1p is V-reducible and 0p is A-reducible then A0P is 
upper and lower regular, and clearly 

A P - ~  1 C~AoP@ 1 ~ 2 ~ , A o P ~ 2 .  

In that case, 2.2 combined with 4.1 yields 

dOAoP -~ A/'P. 

In particular, A =,A0(21) is small-based, upper and lower regular, whereas its negation 
CA _~ O(2l)  _~ 21 has none of  these properties (cf. 2.2 and 4.3). 

(4) The horizontal sum D of  I and a three-element chain is obtained from the disjoint 
union by identifying the top elements and the bottom elements, respectively (cf. [3] 

and [8]). Then D is upper and lower regular, but not small-based, and its negation CD 
is a two-element chain whose top element is V-irreducible and whose bottom element 
is /\-irreducible (cf. 4.3 again). 
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(5) The iterated truncated Aleksandrov completions D,, =A0nD are upper and lower 

regular, by (3) and (4). Consider the infinite vertical sum 

S =2@D@D1 @D2...@ 1. 

An infinite analogue of 4.1, derived in [3], yields 

COS -~ CO2@COD@CO.AoD@... ® 1 ~_ 1 @2@ D @ A o D @ . . . ®  1 _~ S. 

Hence, S and its dual (9S are self-contrapositive. Furthermore, there is a unique ordinal 
decomposition S ~- ~c ® K such that ~c is an ordinal and K is lower regular, but ~c is 

the finite successor ordinal l, and K = D @ D] @ D2... @ 1 is neither small-based nor 
self-contrapositive (cf. 4.4). Indeed, CK _~ OS, and 

CO(OS @ S) -~ CO(OK @ 3 @ K) _~ CK @ 2 @ COK ~- OS ® S ~ OS @ S. 

Thus we have found two self-contrapositive lattices S and OS whose vertical sum 

V = OS @ S fails to be self-contrapositive (cf. 4.5). Moreover, the iterated negations 
CnV - (CO)nV -~ OS @(n+l)@ S are mutually embeddable but non-isomorphic (cf. 

3.14). 
(6) Now consider the horizontal sum D / of the interval I and a four-element chain, 

its negation C D / =  3, and the iterations Din = A0"D t. For the infinite vertical sum 

T = 3 @D'~ ~ 013 ~D l s . . .  ® I 

the aforementioned infinite analogue of 4.1 yields 

COT "~ C03 @ COAoD I @ CO,A03D / @...  @ 1 ~ 2 @ D / @ ,A0ZD I @...  ® 1. 

Applying the above rule once more, we arrive at 

C2T ~ (CO)2T _~ T. 

Thus T is an upper but not lower regular small-based flip-flop, whereas its negation 
CT is a lower but not upper regular flip-flop which is not small-based. In the unique 
ordinal decomposition T ~_ ~c®K into an ordinal and a small-based lower regular lattice, 

tc is the finite successor ordinal 2, and K fails to be a flip-flop: CCK _~ 2 @ K. This 
shows that in 4.3 and 4.4, it is essential to assume that both k and CL are small-based. 
Furthermore, CT @ T is not self-negative and not even a flip-flop. Indeed, induction 

shows that 

C"(CT @ T) __ CT @(n+l )  @ T, 

and these lattices are pairwise non-isomorphic. 
In all, we see that in 4.2, 'coreduced' cannot be replaced with 'flip-flop', and 4.5 

becomes false when one of the small-basedness hypotheses is dropped. 
To decide whether a given finite lattice L is self-negative requires to check the 

existence of an isomorphism between the small context ,St_ and its negation, which 
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basically amounts to the classical problem of  deciding whether a given graph is iso- 

morphic to its complement. It is common sense to assume that there is no algorithm 
solving that graph-theoretical problem in polynomial time (cf. e.g. [9, p. 285]). This 

and other heuristic considerations suggest that there is no simple method to discern 

self-negativity of  a given finite lattice. But, of  course, for a small number of  points, 

a list of  such lattices can be produced with the aid of  a computer. Using a PASCAL 

program, we have generated a complete list of  pairwise non-isomorphic lattices which 

are normal completions of  ordered sets with at most 8 points. Since for coreduced lat- 

tices k, we have IL ~(LTL and 0t. (.AdL, this list includes at least all coreduced lattices 

with less than 11 elements, but also some more. It turned out that among the 14570 

lattices generated this way, 

2829 

61 
7 

are (coreduced) flip-flops, 
are self-negative, and 

are self-contrapositive. 

Incidentally, all of  the seven generated self-contrapositive lattices are self-negative, 

too, but that is not a general phenomenon. Consider any two finite vertically indecom- 

posable, self-dual and self-negative lattices which are not isomorphic. By 4.1, their 

vertical sum is self-contrapositive but not self-negative. 

Example  4.7. A self-contrapositive but not self-negative finite lattice L = 2 2 ~ E 

22 ~_ 0 2 2  _~ C2 ~ ~_ 0 0 2 2  E "- O E  _~ CE _-=, ¢ O E  2 ~ E  = L-,~ COL E ~ 2 ~  ~ O L  ,~ ~'L 

The construction of  self-negative and self-dual lattices like 22 and E may be gener- 

alized as follows. For any reduced context ~ ~ C9~ ~_ C~,  the concept lattice L = / 3 ~  
is self-dual and self-negative: 

CL ~- BCSB~ ~_ 13C~ ~_ 13~ = L. 

Example 4.8. Define, for each natural number n, a reduced context ~ ,  

b y J ~ = M , = 2 n = { 0 , 1  . . . . .  2 n -  1} and 

Then 

j l n m < = = > j + m = k  ( m o d 2 n )  for some k E { 0 , 1  . . . . .  n -  1}. 

= ( J . , M . ,  t . )  

and consequently, the concept lattice B ~ ,  is self-dual and self-negative. 
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For n ~< 4, the lattices /3~n are depicted below. 
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BIKI ~- 2 ~ B~2 ~ E B~3 B~4 

Surprisingly, there are no other finite distributive self-negative (respectively, self- 

contrapositive) lattices than rhomb chains, i.e., vertical sum of  rhombs (Boolean lat- 

tices with four elements) or one-element lattices. Of  course, 'diamond chains' would 

be nicer, but lattice-theoreticians have reserved the word 'diamond'  for five-element 

modular but non-distributive lattices (see M3 in 2.6). The first five lattices of  Table 

2 are rhomb chains. Generally, it is easy to see that rhomb chains are precisely the 

normal completions of  so-called doubled chains, i.e., finite ordinal sums of  two-element 

antichains. 

Example 4.9. A doubled chain and its completion. 

P AgP 

Doubled chains have the exceptional property of  possessing only one join completion. 

Indeed, one can prove the following fact (cf. [2]): 

Proposition 4.10. A finite ordered set P & a doubled chain i f  and only i f  .A/'P 

~- AP. 

Proof. Recall that we have 

NP = {A T~ I A ~P} c A P  = {~<A [A CP}. 

It is easy to check that a finite doubled chain P satisfies the equation N 'P  = AP. 

Conversely, if P is any finite ordered set with A/'P ~ ~4P then the above inclusion 
forces A/'P to coincide with .AP. If  P would possess only one maximal element m then 

the same would hold for the subposet P' = (P' ,  ~<) where P '  = P \ {m} (since P '  is 

a member of  .AP = A/'P), and as A P  ~ agrees with AlP ~, induction would lead to the 
conclusion that P is a finite chain, which is impossible since the empty set (3 must be an 
element o f  .AP =ALP. Hence P has at least two maximal elements m, n. If  A C .AP =A/'P 
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contains m but is distinct from the principal ideal +m, one may choose a p EA\  .~ m 
in order to obtain {m, p}T =0 ,  afortiori A T = 0  and A =A TI = P .  This shows that there 

are no other maximal elements than m and n, and that the subposet P" = ( P ' ,  ~< ) with 

P" = P  \ {re, n} = {m,n}  j. satisfies .AP" = . A P \  {1 rn,.~ n,P}.  Now, C E.AP" implies 

C E .AP = A/'P, i.e., C = B ~ = (B \ {re, n}) ~ fl {m,n}  L = (B N p ' ) l  7/P" E N'P". Thus 

we get N 'P"  = A P ' ,  and induction completes the proof. [] 

Notice that there are infinite chains P with N'P = .AP, for example the chain of 
integers. Now, applying the rule CO.AP _~ N'P (cf. 2.2), we arrive at 

Theorem 4.11. The followin9 statements on a finite lattice L are equivalent: 

(a) L is a rhomb chain. 

(b) L is self-neyative and distributive. 

(c) L is self-contrapositive and distributive. 

(d) L and CL are distributive flip-flops. 

Proof. By 4.2, (a) implies the other three statements. 
(b) ~ (a): As k is finite and distributive, there exists an ordered set P with 

AP ~ k ~ CL -~ CAP ~- ON'P. 

In particular, YAP = ~N'P. As P is finite, this implies that AP = N'P. By 4.10, P is a 
doubled chain. Thus k ~ ,AP is a rhomb chain. 

(c) ==:> (a) follows by similar arguments. 

(d) ==¢> (a): As k is a distributive flip-flop, k ~CL is distributive and self-negative 
(see 4.2). By (b) ~ (a), this implies that L ~ C L  is a rhomb chain, which is impos- 

sible unless L is a rhomb chain. [] 

For infinite complete lattices L, the statements (a) and (b) in 4.11 are independent. 

For example, the vertical sum of o)+1 rhombs is distributive, but not self-negative. 

On the other hand, by 4.2, (~o+ 1 )~, (.9(e9+1) is a self-negative and self-contrapositive 
chain (hence distributive) but certainly not a rhomb chain). 

Our final result may be interpreted as a strong combinatorial argument for the claim 
that self-contrapositive lattices are much rarer than self-negative ones. 

Proposition 4.12. For ever), finite self-contrapositive lattice L, there exists a natural 
number m with ~ J L  = ¢~.A,'[L = 2m, and the small context o f  L has precis'ely 2m 2 

incident pairs. 

Proof. As L is self-contrapositive, C O S L =  (.A4L,,TL, ~ )  is isomorphic to 8 L =  ( J L ,  

AAL, ~< ). Thus ~JL=~.L4L. Now, if n = ~ J L  then k := ~IsL=~IcosL=~IcsL=n2--~IsL.  
Hence n 2 : 2k, and so n = 2m, k = 2m 2. [] 
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Table 1 
The class of all lattices that are isomorphic to normal completions of ordered sets with 8 or less elements 
is denoted by L8. Up to duality the diagrams represent those lattices in L8 which are self-negative but not 
self-dual 

Table 2 
The seven diagrams represent those lattices in L8 which are self-negative and self-dual. At the same time, 
these are the diagrams of all self-contrapositive lattices in L8 
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