
J. Math. Anal. Appl. 362 (2010) 17–33
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

On the local fractional derivative

Yan Chen a, Ying Yan b, Kewei Zhang c,∗
a College of Resource and Environment, China Agricultural University, Beijing 100094, China
b School of Mathematical Sciences, Queen Mary College, University of London, London E1 4NS, UK
c Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 25 October 2007
Available online 14 August 2009
Submitted by B.S. Thomson

Keywords:
Local fractional derivative
Necessary condition
Structure theorem
Alternative definitions
Numerical approximation

We present the necessary conditions for the existence of the Kolwankar–Gangal local
fractional derivatives (KG-LFD) and introduce more general but weaker notions of LFDs by
using limits of certain integral averages of the difference-quotient. By applying classical
results due to Stein and Zygmund (1965) [16] we show that the KG-LFD is almost
everywhere zero in any given intervals. We generalize some of our results to higher
dimensional cases and use integral approximation formulas obtained to design numerical
schemes for detecting fractional dimensional edges in signal processing.
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1. Introduction

Fractional derivatives and fractional calculus have a long history and there are many applications [12–14]. However,
these globally defined fractional derivatives do not generally reflect the local geometric behaviours for a given function.
Attempts have been made recently [1,2,5–10] to define a local version of the fractional derivative. In this paper we focus
on the right (left) local fractional derivatives defined by Kolwankar and Gangal [6–8]. In short we call this type of deriva-
tives the KG-LFD. Since its introduction in 1996, the KG-LFD has been studied by several authors. However, there are still
a number of basic issues to be addressed. For example, what does the class of locally fractionally differentiable functions
look like? In this paper we first consider the relationship between the KG-LFD and that defined by the limit of the right
(left) difference-quotient (DQ-LFD for short) [1,10], and we introduce two new notions of right (left) local fractional deriva-
tives by the limit of families of (singular) integrals of the difference-quotient. We call them the right (left) SIDQ-LFD and
the right (left) IDQ-LFD respectively (see Section 2 for details). We show that SIDQ-LFD is the weakest among all of the
concepts of LFDs. Then we establish a structural theorem for the KG-LFG. Roughly speaking, it says that for a Cα function
in (a,b) with 0 < α < 1, if the KG-LFD exists almost everywhere (a.e. for short) in (a,b), then the KG-α-local fractional
derivative equals zero a.e. in (a,b). This not only confirms the observations made in previously constructed examples in
[1,6–9] but also shows that the non-trivial KG-α-LFD is a lower dimensional property for a Cα function when KG-α-LFD
exists. However this observation leads us to the constructions of numerical schemes for calculating modulus of LFD for Cα

functions.
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The definition of KG-LFD is based on the Riemann–Liouville definition of the fractional integral for a real-valued function
f of a single variable. Following the notation of [13], the Riemann–Liouville fractional derivative of f at x > a is defined in
[12,13] by

a Dα
x f (x) = dα f (x)

[d(x − a)]α := 1

Γ (1 − α)

dk

dxk

x∫
a

f (t)

(x − t)α−k+1
dt, k − 1 < α < k. (1.1)

In this paper we only consider the case k = 1, that is, 0 < α < 1. The right (left) KG-LFD is defined as follows. For a function
f : (a,b) → R, if the right (left) limit

Dα± f (y) := lim
x→y±

dα( f (x) − f (y))

d(±(x − y))α
(1.2)

exists and is finite, then f has the right (left) LFD of order α. Due to the symmetric nature of Dα± f (y), we mostly consider
the right LFD in this paper.

Let us introduce some notation and preliminaries. Let Ω ⊂ Rn be open. We denote by Cα(Ω), 0 < α < 1 and L p(Ω),
1 � p � +∞ the usual Hölder spaces and the Lebesgue spaces, respectively. For x, y ∈ Rn , we denote by 〈x, y〉 its standard
Euclidean inner product and |x| the norm of x ∈ Rn . An open ball in Rn with centre x ∈ Rn and radius r > 0 is denoted by
B(x, r). Let Sn−1 ⊂ Rn be the unit sphere, we denote its area by ωn−1. For a measurable set Ω ⊂ Rn , we denote by |Ω| its
Lebesgue measure. the integral average of a function over a ball B ⊂ Rn is defined by 1

|B|
∫

B f dy. We also denote by D(0, r)
the cube in Rn centred at 0 with side-length 2r whose sides are parallel to the coordinate axes.

The plan for the rest of the paper is as follows. In Section 2, we introduce two new notions of local fractional derivatives
SIDQ-LFD and IDQ-LFD which are motivated from a necessary condition of KG-LFD. These LFDs are weaker than the KG-LFD.
The relation between KG-LFD and yet another notion DQ-LFD defined by the limits of difference-quotient is also studied. We
show that the existence of KG-LFD plus a local integrability condition implies the existence of the limits of the difference-
quotient DQ-LFD. Then the relations among various LFDs are illustrated through a diagram (Theorem 1). In the later part of
Section 2, we consider the example

f (x) =
{ |x|α sin( 1

x ), x 	= 0,

0, x = 0.

We show that both SIDQ-LFD and IDQ-LFD exist while KG-LFD and DQ-LFD do not exist at 0. We conclude Section 2 by
presenting a result for functions in the form f (x) = xα g(x) where g is a bounded function in C1(0, δ). In Section 3, we
apply a result due to Stein and Zygmund [16] for fractional differentiations to KG-LFD. We establish a structural theorem
which says that if both the right and the left KG-LFDs exist a.e. in an interval, then they are both zero a.e. in that interval.
Furthermore the IDQ-LFDs are also equal to zero a.e. in the same interval. We also make a partial extension of the one-
dimensional result to higher dimensional cases. In Section 4, we illustrate some examples of numerical calculated LFDs
based on our integral definition of local fractional derivatives IDQ-LFDs. The main reason for choosing IDQ-LFD is that it is
the easiest to implement.

2. On various notions of local fractional derivatives

The following is a necessary condition for Dα+ f (x) which forms the basis of our weaker notions of LFDs. It is also needed
later in the proof of Theorem 2 in Section 3.

Lemma 1. Let f : (a,b) → R be continuous such that Dα+ f (y) exists at some y ∈ (0,1), then

lim
h→0+

1∫
0

(1 − t)−α f (ht + y) − f (y)

hα
dt (2.1)

exists and

Dα+ f (y) = 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (ht + y) − f (y)

hα
dt. (2.2)

Proof of Lemma 1. By definition, we have

Dα+ f (y) = lim
x→y+

1

Γ (1 − α)

d

dx

x∫
f (t) − f (y)

(x − t)α
dt.
y
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Let

F y(x) = 1

Γ (1 − α)

x∫
y

f (t) − f (y)

(x − t)α
dt,

which can also be written as

F y(x) = (x − y)1−α

Γ (1 − α)

1∫
0

f (y + (x − y)s) − f (y)

(1 − s)α
ds

if we change the variable by s = (t − y)/(x − y). We observe, from the definition of Dα+ f (y) that F ′
y(x) must exist in a small

interval (y, y + δ]. Clearly F (x) is also continuous in [y, y + δ] if we define F y(y) = 0. Thus by the mean value theorem in
calculus, we have, on one hand that for each fixed h ∈ (0, δ), there is some ξh ∈ (0,h), such that

F ′
y(y + ξh) = F y(y + h) − F y(y)

h
.

On the other hand, we have, by the equivalent definition of F y(x) above, that

F y(y + h) − F y(y)

h
= F y(y + h)

h

= h1−α

Γ (1 − α)

1∫
0

f (y + (x − y)s) − f (y)

h(1 − s)α
ds

= 1

Γ (1 − α)

1∫
0

(1 − s)−α f (sh + y) − f (y)

hα
ds.

Since by definition, the existence of Dα+ f (y) is equivalent to limx→y+ F ′
y(x) = Dα+ f (y), we have limh→0+ F ′

y(y + ξh) =
Dα+ f (y) as ξh → 0. Therefore

lim
h→0+

1∫
0

(1 − s)−α f (sh + y) − f (y)

hα
ds exists

and

Dα+ f (y) = 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − s)−α f (th + y) − f (y)

hα
ds. �

Remark 1. In the proof of Lemma 1, we have used some observations in [10]. However, Proposition 1 in [10] is essentially
an attempt to calculate F ′

y(y) whose existence is not known. The use of upper and lower limit in [10] does not establish
the equivalence

existence of (F y)
′+(y) ⇐⇒ existence of lim

x→y+

f (x) − f (y)

(x − y)α
.

In fact, in the proof of Lemma 1 we have also established that

(F y)
′+(y) = 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (th + y) − f (y)

hα
dt.

The above expression of (F y)
′+(y) implies neither the existence of Dα+ f (y) nor that of limx→y+

f (x)− f (y)
(x−y)α

(see Example 1
later in this section).

Based on our observations in Lemma 1, we define a weaker version of local fractional derivation than KG-LFD called
singular integral difference-quotient local fractional derivative (SIDQ-LFD for short) as follows.
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Definition 1. Suppose f :∈ C(a,b). We say that f has a right singular integral difference-quotient local fractional derivative
(right SIDQ-LFD) of order α (0 < α < 1), denoted by Dα+ f (y) at y ∈ (a,b) if the following limit exists:

Dα+ f (y) := 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (th + y) − f (y)

hα
dt. (2.3)

Similarly, f has a left SIDQ-LFD Dα− f (y) at y ∈ (a,b) if the following limit exists:

Dα− f (y) := − 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (y − th) − f (y)

hα
dt. (2.4)

We only need a weaker version of Hölder continuity for the next result.

Definition 2. Let f : (a,b) → R and y ∈ (a,b). We say that f is locally right (respectively left) Cα (0 < α < 1) at y if there
is a δ > 0 and a constant C y > 0 such that | f (x) − f (y)| � C y |x − y|α for x ∈ (y, y + δ) (respectively for x ∈ (y − δ, y)).

We say that f is locally Cα (0 < α < 1) at y if f is both locally left and right Cα at y.

A simple example of a local Cα function at 0 is f (x) = |x|α sin(1/x) (x 	= 0) and f (0) = 0 which will be examined in
Example 1 later.

The following is a sufficient condition for the existence of the left (right) SIDQ-LFD Dα± f (y).

Proposition 1. Suppose f is locally right (respectively left) Cα at y ∈ (a,b) such that

lim
h→0+

1∫
0

f (y + th) − f (y)

hα
dt

(
respectively lim

h→0+
−

1∫
0

f (y) − f (y − th)

hα
dt

)
exists. (2.5)

Then

Dα+ f (y) = (1 + α)Γ (1 − α) lim
h→0+

1∫
0

f (y + th) − f (y)

hα
dt,

respectively Dα− f (y) = −(1 + α)Γ (1 − α) lim
h→0+

1∫
0

f (y) − f (y − th)

hα
dt. (2.6)

We define the right (respectively left) limit

Dα+(y) := (1 + α)Γ (1 − α) lim
h→0+

1∫
0

f (y + th) − f (y)

hα
dt,

respectively Dα− f (y) = −(1 + α)Γ (1 − α) lim
h→0+

1∫
0

f (y) − f (y − th)

hα
dt

as the right (respectively left) integral difference-quotient local fractional derivatives (right (left) IDQ-LFD). Here DQ indicates
that the local fractional derivative is still of difference-quotient in nature. However these LFDs are versions of integral
averages of the difference-quotient, possibly with a singular weight. Proposition 1 implies that IDQ-LFD ⇒ SIDQ-LFD. We
do not know whether the converse is true or not.

Proof of Proposition 1. We only prove the proposition for Dα+ f (y) and leave the other statement to interested readers. Let

lim
h→0+

1∫
f (y + th) − f (y)

hα
dt = l
0
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and let C y > 0 be the local right Hölder constant for f at y. We show that

lim
h→0+

1∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt = (α + 1)Γ (1 + α)l.

Now we split the integral near 1 by a small 0 < δ < 1 and use integration by parts.

1∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt =

1∫
1−δ

(1 − t)−α f (y + th) − f (y)

hα
dt +

1−δ∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt

:= I1 + I2.

We have

|I1| =
∣∣∣∣∣

1∫
1−δ

(1 − t)−α f (y + th) − f (y)

hα
dt

∣∣∣∣∣ �
1∫

1−δ

(1 − t)−α | f (y + th) − f (y|)
hα

dt �
1∫

1−δ

(1 − t)−αC ytα dt

� C y

1∫
1−δ

(1 − t)−α dt � C y
δ1−α

1 − α
.

For I2, we have

I2 =
1−δ∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt =

1−δ∫
0

(1 − t)−α d

dt

( t∫
0

f (y + sh) − f (y)

hα
ds

)
dt

= 1

δα

1−δ∫
0

f (y + sh) − f (y)

hα
ds −

1−δ∫
0

[
(1 − t)−α

]′( t∫
0

f (y + sh) − f (y)

hα
ds

)
dt.

We also have, for 0 < t � 1,

t∫
0

f (y + sh) − f (y)

hα
ds = t1+α

1∫
0

f (y + u(th)) − f (y)

(th)α
du → t1+αl

uniformly as h → 0+ with respect to t ∈ (0,1 − δ]. Thus, as h → 0+ ,

I2 → l

δα
(1 − δ)1+α −

1−δ∫
0

[
(1 − t)−α

]′
t1+αl dt = (1 + α)l

1−δ∫
0

(1 − t)−αtα dt.

Since limδ→0+
∫ 1−δ

0 (1 − t)−αtα dt = Γ (1 − α)Γ (1 + α), we see that

lim
h→0+

1∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt = (1 + α)Γ (1 − α)Γ (1 + α)l,

so that

Dα+ f (y) = 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (y + th) − f (y)

hα
dt = lim

h→0+
(1 + α)Γ (1 + α)l.

The proof is finished. �
As a consequence of Proposition 1, we have the following simple corollary which will be used later.
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Corollary 1. Suppose f is locally right (respectively left) Cα at y ∈ (a,b) such that

lim
h→0+

1∫
0

∣∣∣∣ f (y + th) − f (y)

hα

∣∣∣∣dt = 0

(
respectively lim

h→0+

1∫
0

∣∣∣∣ f (y) − f (y − th)

hα

∣∣∣∣dt = 0

)
. (2.7)

Then

lim
h→0+

1∫
0

(1 − t)−α

∣∣∣∣ f (y + th) − f (y)

hα

∣∣∣∣dt = 0

(
respectively lim

h→0+

1∫
0

(1 − t)−α

∣∣∣∣ f (y) − f (y − th)

hα

∣∣∣∣dt = 0

)
. (2.8)

The following result, whose proof is easy, shows that if the limit of the difference-quotient (DQ-LFD) exists, then IDQ-LFD
Dα+ f (y) can be represented by that limit.

Corollary 2. Suppose f ∈ C(a,b) and for some y ∈ (a,b) the limit

lim
h→0+

f (h + y) − f (y)

hα
:= dα+ f (y) exists. (2.9)

Then

Dα+ f (y) = Γ (1 + α)dα+ f (y). (2.10)

The proof is straightforward. We call the limit Γ (1 + α)dα+ f (y) as the difference-quotient local fractional derivative
(DQ-LFD for short). Clearly for Cα functions, DQ-LFD ⇒ IDQ-LFD ⇒ SIDQ-LFD.

Under stronger assumptions on y Dα
x ( f (x) − f (y)) we have the following

Proposition 2. Let f : (a,b) → R be continuous such that Dα+ f (y) exists and y Dα
x ( f (x) − f (y)) belongs to L∞(y, y + δ) for some

δ > 0, then

Dα+ f (y) = Γ (1 + α) lim
x→y+

f (x) − f (y)

(x − y)α
. (2.11)

Consequently,

f (x) = f (y) + Γ (1 + α)Dα+ f (y)(x − y)α + o(x − y)α, (2.12)

as x → y+ .

Proposition 2 shows that if we add the integrability condition for y Dα
x ( f (x) − f (y)) on top of the existence of Dα+ f (y),

then we can recover the difference-quotient limit. If we call this integrability condition as INT for short, we have KG-LFD +
INT ⇒ DQ-LFD.

Proof of Proposition 2. Since y Dα
x ( f (x)− f (y)) belongs to L∞(y, y + δ), the condition for [13], p. 71 (2.113) is satisfied and

we have, for x ∈ (y, y + δ) that

y D−α
x

[
y Dα

x

(
f (x) − f (y)

)] = f (x) − f (y) − [
y Dα−1

x

[
f (x) − f (y)

]]∣∣
x=y

(x − y)α−1

Γ (α)
,

where

y D−α
x

(
g(x)

) = 1

Γ (α)

x∫
y

(x − t)α−1 g(t)dt

and the evaluation here |x=y is understood as the limit x → y+ . This is due to the facts that

y Dα−1
x

[
f (x) − f (y)

] = 1

Γ (1 − α)

x∫
y

f (t) − f (y)

(x − t)α
dt → 0

as x → y+ and that f is continuous in (a,b). Also, as we have assumed that y Dα
x ( f (x) − f (y)) is bounded and measurable

in (y, y + δ). Therefore

f (x) − f (y) = y D−α
x

[
y Dα

x

(
f (x) − f (y)

)]
, x ∈ (y, y + δ). (2.13)

Note that as mentioned in [13], p. 70, we only need y Dα
x ( f (x) − f (y)) to be integrable over (y, y + δ).
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Now the proof follows from the fact that limx→y+ Dα
x ( f (x) − f (y)) = Dα+( f (y)). We have

f (x) − f (y)

(x − y)α
= 1

(x − y)α
y D−α

x

[
y Dα

x

(
f (x) − f (y)

)]

= 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1[
y Dα

t

(
f (t) − f (y)

)]
dt

= 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1[
y Dα

t

(
f (t) − f (y)

) − Dα+
(

f (y)
)]

dt

+ 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1 Dα+
(

f (y)
)

dt

:= I1 + I2.

We have

I2 = 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1
y Dα+

(
f (y)

)
dt = Dα+( f (y))

Γ (α)α
= Dα+( f (y))

Γ (α + 1)
.

Thus we only need to show that I1 → 0 as x → y+ which is also easy to see. By definition we have, for any ε > 0, there is
some 0 < η < δ such that∣∣y Dα

t

(
f (t) − f (y)

) − Dα+
(

f (y)
)∣∣ � ε

whenever t ∈ (y, y + η]. Therefore, for x ∈ (y, y + η],

|I1| =
∣∣∣∣∣ 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1[
y Dα

t

(
f (t) − f (y)

) − Dα+
(

f (y)
)]

dt

∣∣∣∣∣
� 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1
y

∣∣y Dα
t

(
f (t) − f (y)

) − Dα+
(

f (y)
)∣∣dt

� 1

Γ (α)(x − y)α

x∫
y

(x − t)α−1ε dt

= ε

Γ (1 + α)
.

The proof is finished. �
Remark 2. The connections between the original definition of KG-LFD and the difference-quotient limits via Taylor’s expan-
sion were considered in [1,6,10]. Let us consider the right LFD only. In both [6] and [1] the following Taylor expansion was
used while [1] applied it to show that KG-LFD equals DQ-LFD:

f (x) − f (y) = 1

Γ (α)

x−y∫
0

F (y, t,α)

(x − y − t)1−α
dt

= 1

Γ (α)

[
F (y, t,α)

∫
(x − y − t)α−1 dt

]x−y

0
+ 1

Γ (α)

x−y∫
0

dF (y, t,α)

dt

(x − y − t)α

α
dt, (2.14)

where (following the notation in [13] for the Riemann–Liouville fractional derivative)

F (y, t,α) = y Dα
t

(
f (t) − f (y)

)
.

We simply observe that for the first equality in (2.14) to be satisfied, we need y Dα
t ( f (t) − f (y)) to be locally integrable.

In order to make sense of the second equality, we need the Riemann–Liouville fractional derivative y Dα
t ( f (t) − f (y)) to be
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Fig. 1. Relations among various LFDs.

differentiable and the resulting derivative d/dt(y Dα
t ( f (t) − f (y))) to be integrable. None of these were assumed in either

[6] or [1]. Therefore further assumptions on the smoothness of f are needed in order to make sense of (2.14).

To summarize what we have established above, we have, by dropping the affix LFD in the statements, that

Theorem 1. The following implications of various LFDs hold.

KG + INT ⇒ DQ ⇒ IDQ ⇒ SIDQ, KG + INT ⇒ KG ⇒ SIDQ.

These relations can be viewed in Fig. 1.

Let us examine the example mentioned earlier which shows that the right IDQ-LFD and SIDQ-LFD exist while the corre-
sponding DQ-LFD and KG-LFD do not.

Example 1. For a fixed 0 < α < 1, let

f (x) =
{ |x|α sin( 1

x ), x ∈ R, x 	= 0,

0, x = 0.

Clearly f is locally Cα at 0.

We first show that the right SIDQ-LFD Dα+ f (0) exists by showing that the right IDQ-LFD Dα+ f (0) exists and the value is
zero. Then by Proposition 1, we may claim that Dα+ f (0) = 0. We have

1∫
0

f (th) − f (0)

hα
dt =

1∫
0

(th)α sin(1/(th))

hα
dt =

1∫
0

tα sin
(
1/(th)

)
dt =

+∞∫
1

sin( s
h )

s2+α
ds.

Now we show that the last term above on the far right goes to zero as h → 0+ . Given any ε > 0, we take some M > 1 to
be determined later and consider∣∣∣∣∣

+∞∫
M

sin( s
h )

s2+α
ds

∣∣∣∣∣ �
+∞∫
M

1

s2+α
ds = 1

(α + 1)Mα+1
.

Now we choose M > 1 sufficiently large so that the last term above is less than ε .
For this fixed M > 0, we apply Riemann–Lebesgue Lemma in Fourier analysis to conclude that

lim
h→0+

M∫
1

sin( s
h )

s2+α
ds = 0.

The conclusion then follows.
Next we show that neither the right KG-LFD Dα+ f (0) nor the right DQ-LFD dα+ f (0) exist. It is easy to see that the right

DQ-LFD does not exist because for x > 0,

f (x) − f (0)

(x − 0)α
= sin

(
1

x

)

which does not have a limit as x → 0+ .
Now we show that the right KG-LFD Dα+ f (0) does not exist. To avoid complicated calculations, we prove this by a

contradiction argument using Proposition 2. Suppose Dα+ f (0) exists, we only need to show that 0 Dα
x ( f (x) − f (0)) belongs

to L∞(0, δ) for some small δ > 0. Since by definition, Dα+ f (0) = limx→0+ 0 Dα
x ( f (x) − f (0)) which is assumed to exist, we

see that 0 Dα
x ( f (x) − f (0)) is bounded in a small interval (0, δ). We only need to show that 0 Dα

x ( f (x) − f (0)) is continuous
in (0, δ). In fact we only need the function to be measurable in (0, δ). We have
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0 Dα
x

(
f (x) − f (0)

) = 1

Γ (1 − α)

d

dx

x∫
0

tα sin(1/t)

(x − t)α
dt

= 1

Γ (1 − α)

d

dx
x

1∫
0

sα sin(1/(sx))

(1 − s)α
ds

= 1

Γ (1 − α)

1∫
0

sα sin(1/(sx))

(1 − s)α
ds + x

Γ (1 − α)

d

dx

1∫
0

sα sin(1/(sx))

(1 − s)α
ds

= 1

Γ (1 − α)

1∫
0

sα sin(1/(sx))

(1 − s)α
ds − 1

Γ (1 − α)

1

x

1∫
0

cos(1/(sx))

s1−α(1 − sα)
ds. (2.15)

The derivative given by the last term above in (2.15) can be established for x > 0 by applying the Dominated Convergence
Theorem [15]. Again by using the Dominated Convergence Theorem, we can see that both integrals in the last line of (2.15)
are continuous for x ∈ (0, δ). We verify this claim at the end of the proof. Thus 0 Dα

x ( f (x) − f (0)) belongs to L∞(0, δ). By
Proposition 2, we claim that the DQ-LFD dα+(0) then exists. This clearly contradicts to our direct calculation earlier showing
that dα+ f (0) does not exist. The proof will be finished after we show that the two terms in the last line of (2.15) are
continuous for x ∈ (0, δ). We prove that the first term is continuous in (0, δ). The proof for the second is similar. Let

g(x) =
1∫

0

sα sin(1/(sx))

(1 − s)α
ds, x ∈ (0, δ).

We need to show that for each fixed x0 ∈ (0, δ), g(x) is continuous at x0. This is a simple exercise in real analysis. We only
need to show that for any sequence x j ∈ (0, δ), x j 	= x0 and x j → x0 as j → ∞, we have g(x j) → g(x0) as j → ∞. Now we
prove this. For j = 0,1,2, . . . , let

f j(s) = sα sin(1/(sx j))

(1 − s)α
, s ∈ (0,1).

Clearly f j(s) is measurable in (0,1) for each j. Also f j(s) → f0(s) for each fixed s ∈ (0,1). Furthermore, for each s ∈ (0,1),

∣∣ f j(s)
∣∣ =

∣∣∣∣ sα sin(1/(sx j))

(1 − s)α

∣∣∣∣ � 1

(1 − s)α
:= f (s).

Since 0 < α < 1, we see that f (s) is integrable in (0,1). Thus by the Dominated Convergence Theorem, we have

lim
j→∞

1∫
0

f j(s)ds =
1∫

0

f0(s)ds, i.e., lim
j→∞

g(x j) = g(x0).

Remark 3. Example 1 shows that KG-LFD and DQ-LFD are strictly stronger than IDQ-LFD and SIDQ-LFD. We also notice that
the first term in the last line of (2.15) is actually the definition of the right SIDQ-LFD. We already know that this converges
to zero. Indirectly we have shown that the second term in that line does not have a limit.

Example 1 motivates us to find criteria for functions with an isolated singularity in the form f (x) = |x|α g(x) with
g ∈ C1((−δ,0) ∪ (0, δ)) to have left and/or right KG-LFD. We have

Proposition 3. For 0 < α < 1 and δ > 0, let

f (x) =
{

xα g(x), 0 < x < δ,

0, x = 0,

where g ∈ C1(0, δ) is bounded and for some C > 0, |g′(x)| � Cx−β for x ∈ (0, δ) with 0 < β < 2 + α. Let F (x) = x1+α g′(x)
(0 < x < δ) and define F (0) = 0. Then Dα+ f (0) exists if and only if both Dα+ f (0) and Dα+ F (0) exist with Dα+ F (0) = 0.

Note that the function f (x) = |x|α sin(1/x) considered in Example 1 with g(x) = sin(1/x) satisfies the assumptions that
g ∈ C1(0,1), g is bounded and |g′(x)| � x−2, where β = 2 < 2 + α.
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Fig. 2. The right 1/2-IDQ-LFD for x1/2 sin(1/x) near 0.

A numerical approximation of the 1/2-right-IDQ D1/2
α f (x) for the above function f with α = 1/2 in a small interval

(0, δ) is illustrated in Fig. 2. It suggests that D1/2
α f (x) is in fact, approaching zero as x → 0+ .

Proof of Proposition 3. By definition, we have

Dα+ f (0) = lim
x→0+

1

Γ (1 − α)

d

dx

x∫
0

f (t) − f (0)

(x − t)α
dt.

By the change of variable t = xs and by noticing that f (0) = 0, we have, for 0 < x < δ that

d

dx

x∫
0

f (t) − f (0)

(x − t)α
dt = d

dx

x∫
0

(xs)α g(xs)

(x − xs)α
d(xs) = d

dx

(
x

1∫
0

sα g(xs)

(1 − s)α
ds

)
=

1∫
0

sα g(xs)

(1 − s)α
ds + x

d

dx

( 1∫
0

sα g(xs)

(1 − s)α
ds

)

= I(x) + x
d

dx
I(x).

Now we show that I(x) is differentiable and find the derivative of I by using the Dominated Convergence Theorem. Fix
x ∈ (0, δ) and let η(x) > 0 be such that [x − η, x + η] ⊂ (0, δ). Let (x j) be any sequence such that x j → x as j → ∞, x j 	= x
and x j ∈ [x − η, x + η]. We show that

lim
j→∞

I(x j) − I(x)

x j − x
=

1∫
0

sα g′(xs)s

(1 − s)α
ds.

We have

I(x j) − I(x)

x j − x
=

1∫
0

sα

(1 − s)α
g(x j s) − g(xs)

x j − x
ds.

Since g ∈ C1(0, δ), we have, for a.e. s ∈ [0, δ)

lim
j→∞

sα

(1 − s)α
g(x js) − g(xs)

x j − x
= sα

(1 − s)α
g′(xs)s.

Also ∣∣∣∣ sα

(1 − s)α
g(x js) − g(xs)

x − x

∣∣∣∣ = sα

(1 − s)α

∣∣∣∣
∫ x j s

xs g′(τ )dτ

x − x

∣∣∣∣ � sα

(1 − s)α

∣∣∣∣
∫ x j s

xs Cτ−β dτ

x − x

∣∣∣∣

j j j
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= sα

(1 − s)α

∣∣∣∣
∫ x j

x C(st)−β d(st)

x j − x

∣∣∣∣ � sα

(1 − s)α
C s1−β

[
x − η(x)

]−β

= C
[
x − η(x)

]−β
s1+α−β(1 − s)−α := H(x, s).

Since 1 + α − β > −1, H(x, ·) ∈ L1(0,1). Thus by the Dominated Convergence Theorem, we have

lim
j→∞

I(x j) − I(x)

x j − x
=

1∫
0

sα

(1 − s)α
g′(xs)s ds so that

d

dx
I(x) =

1∫
0

s1+α

(1 − s)α
g′(xs)ds.

Now we have

1

Γ (1 − α)

d

dx

x∫
0

f (t) − f (0)

(x − t)α
dt = 1

Γ (1 − α)

1∫
0

sα g(xs)

(1 − s)α
ds + x

Γ (1 − α)

d

dx

( 1∫
0

sα g(xs)

(1 − s)α
ds

)

= 1

Γ (1 − α)

1∫
0

(xs)α g(xs)

xα(1 − s)α
ds + 1

Γ (1 − α)

1∫
0

(
(xs)1+α

xα(1 − s)α

)
g′(xs)ds. (2.16)

If Dα+ f (0) exists, the limit of the first term in (2.16) exists as x → 0+ . By Proposition 1, Dα+ f (0) exists and equals Dα+ f (0).
Thus the first term in the last line of (2.16) has a limit as x → 0+ which implies that the last term in the last line of (2.16)
must go to zero as x → 0+ . By definition we see that Dα+ F (0) exists and equals zero.

Next we assume that both Dα+ f (0) and Dα+ F (0) exist with Dα+ F (0) = 0. Passing to the limit x → 0 in (2.16) we see that
Dα+ f (0) exists and equals Dα+ f (0). The proof is finished. �

As the final remark of this section, we have, by combining Example 1 and Proposition 3, we can show that for functions
in the form

f (x) = |x|α sin
(
1/xβ

)
, f (0) = 0, 0 < α < 1, 0 < β < 1 + α

does not have either Dα± f (0) or dα± f (0) while both Dα± f (0) and Dα± f (0) exist and both equal zero.

3. On the structure of KG-LFD

Now we turn to the issue concerning the implications of the existence of the KG-LFD a.e. in an interval. The following is
our main structural theorem for the KG-LFD. Although so far we are not able to show that the existence of Dα± f (y) imply
the existence of Dα± f (y), the following theorem also implies that the existence of Dα± f a.e. implies the existence of Dα± f (y)

a.e. and both of them are in fact zero.

Theorem 2. Suppose f ∈ Cα(a,b) for some 0 < α < 1 and Dα± f (y) exist for a.e. y ∈ (a,b), then Dα
+ f (y) = Dα− f (y) = 0 for a.e.

y ∈ (a,b). Furthermore

lim
h→0+

1∫
0

∣∣∣∣ f (y + th) − f (y)

hα

∣∣∣∣dt = 0, lim
h→0+

−
1∫

0

∣∣∣∣ f (y − th) − f (y)

hα

∣∣∣∣dt = 0 a.e. y ∈ (a,b).

Consequently, Dα± f (y) = 0 for a.e. y ∈ (a,b).

Note that everywhere vanishing results in the form Dα
+ f (y) = Dα− f (y) = 0 were established in [2] where (in the case

0 < α < 1) the function f is assume to belong to Cr(a,b) for some r > α.
Stein and Zygmund [16] considered the α-fractional derivative in the sense of M. Riesz for functions defined on R and

its variations including the Weyl fractional derivative. The results were generalized by Welland [17] to functions of several
variables. We only describe the case when 0 < α < 1 here.

Let β = 1 − α. Given a measurable function f : R → R, the β-th integral fβ for f is defined by [16]

fβ(x) =
∫
R

f (y)

|x − y|1−β
dy = ( f ∗ K1−β)(x), 0 < β < 1,
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which is the convolution between f and Kγ (x) = |x|−γ . The α-fractional derivative of f at x, denoted by f (α)(x), is defined
by (see [16])

f (α)(x) = d

dx
fβ(x), β = 1 − α.

In order to prove Theorem 1, we only need to state one of the results in [16].
To characterise the existence of such α-fractional derivatives, the following conditions were given in [16] (Theorem 1):

(i) f is said to satisfy Λα (0 < α < 1 in our case) at x if

Rx(t) = O
(|t|α)

as t → 0, (3.1)

where Rx(t) = f (x + t) − f (x).
(ii) f satisfies the condition N2

α at x if

δ∫
−δ

[Rx(t)]2

|t|1+2α
dt < +∞ for some δ > 0. (3.2)

We apply the following result in [16] to establish Theorem 2.

Proposition 4. Suppose f ∈ L1(R) and satisfies the condition Λα for each point x of a set E ⊂ R of positive measure. Then f (α)(x)
exists almost everywhere in E if and only if f satisfies condition N2

α almost everywhere in E.

Remark 4. As mentioned in [16], the results in paper [16] remain valid and the proofs essentially unchanged if one replaces
fβ by Weyl’s version of α-fractional derivative

d

dx
Iβ(x), where Iβ(x) =

x∫
−∞

f (y)

|x − y|1−β
dy, 0 < β < 1.

It is easy to see and was observed in [9] that the KG-LFD is related to Weyl’s fractional derivative as follows.

Remark 5. Let f ∈ Cα(a,b). For any fixed y ∈ (a,b) we define

f +
y (x) =

{
f (x) − f (y), y < x < b,

0, x � y or x � b,
f −

y (x) =
{

f (x) − f (y), a < x < y,

0, x � y or x � a.
(3.3)

Let

I+β f +
y (x) =

x∫
−∞

f +
y (t)

(x − t)1−β
dt, I−β f −

y (x) =
∞∫

x

f −
y (t)

(t − x)1−β
dt, β = 1 − α. (3.4)

Then the right and left KG-LFD are defined at y ∈ (a,b) respectively by

Dα+ f (y) = 1

Γ (1 − α)
lim

x→y+

d

dx
I+β f +

y (x), and

Dα− f (y) = 1

Γ (1 − α)
lim

x→y−

d

dx
I−β f −

y (x), β = 1 − α. (3.5)

Proof of Theorem 2. From Remark 5 we see that if Dα± f (y) exist at some y ∈ (a,b), there is a neighbourhood I y = (y − τ ,

y + τ ) ⊂ (a,b) with τ > 0, such that

d

dx
I+β f +

y (x) exists for x ∈ (y, y + τ ),
d

dx
I−β f −

y (x) exists for x ∈ (y − τ , y), β = 1 − α.

By our assumption that f ∈ Cα(a,b), Remark 5 and Proposition 4, we see that for a.e. x ∈ (y, y + τ ), N2
α holds for f +

y and

for a.e. x ∈ (y − τ , y), N2
α holds for f −

y . Note that the function Rx(t), applying to f+ and f− at x, is independent of f (y)

for x ∈ (y − τ , y) ∪ (y, y + τ ). Thus Rx(t) = f (x + t) − f (x), hence for a.e. x ∈ (y − τ , y) ∪ (y, y + τ ), N2
α holds for f . Also

by our assumptions we see that for a.e. x ∈ (y − τ , y + τ ), Dα+ f (x) and Dα− f (x) both exist, and N2
α holds for f .
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Next we show that for such an x ∈ (y − τ , y + τ ), we have Dα+ f (x) = 0 and Dα− f (x) = 0. Since Nα holds at x, there

is some δ > 0 sufficiently small such that (x − δ, x + δ) ⊂ (y − τ , y + τ ) and
∫ δ

−δ
[Rx(t)]2/|t|2α+1 dt < +∞. By Vitali’s equi-

integrability theorem for Lebesgue integrals, we have

lim
h→0+

h∫
0

[Rx(t)]2

|t|2α+1
dt = 0.

Since Dα+ f (x) exists, we have, by Lemma 1 that

Dα+ f (x) = 1

Γ (1 − α)
lim

h→0+

1∫
0

(1 − t)−α f (ht + x) − f (x)

hα
dt.

We only need to show that the limit on the right-hand side of the above is zero. In fact we can prove the following stronger
statement which is needed later:

lim
h→0+

1∫
0

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt = 0. (3.6)

Since f ∈ Cα(a,b), there is a constant M > 0 such that | f (t) − f (s)| � M|t − s|α for all t, s ∈ (a,b). Now for any 0 < ε < 1,
we write, similar to the proof of Proposition 1 that

1∫
0

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt =
1∫

1−ε

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt +
1−ε∫
0

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt

:= I1 + I2,

and we have

I1 =
1∫

1−ε

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt �
1∫

1−ε

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt � M

1∫
1−ε

(1 − t)−αtα dt

� M

1∫
1−ε

(1 − t)−α dt = M

1 − α
ε1−α.

We also have, by applying Cauchy–Schwarz inequality that

I2 =
1−ε∫
0

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt � 1

εα

1−ε∫
0

∣∣∣∣ f (s + x) − f (x)

hα

∣∣∣∣ds

� 1

εαh1+α

h∫
0

sα+1/2
( | f (s + x) − f (x)|

sα+1/2

)
ds

� 1

εαh1+α

( h∫
0

s2α+1 ds

)1/2( h∫
0

| f (s + x) − f (x)|2
s2α+1

ds

)1/2

= 1

εα
√

2α + 2

( h∫
0

| f (s + x) − f (x)|2
s2α+1

ds

)1/2

.

Since N2
α holds for f at x, we have

lim
h→0+

h∫ | f (s + x) − f (x)|2
s2α+1

ds = 0,
0
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hence there is some η > 0 such that

1

εα
√

2α + 2

( h∫
0

| f (s + x) − f (x)|2
s2α+1

ds

)1/2

� ε1−α

whenever 0 < h < η. Thus I1 + I2 � (1 + M)ε1−α whenever 0 < h < η. Thus (3.6) holds so that Dα+ f (x) = 0 which implies
that Dα+ f (x) = 0. Similarly we see that Dα− f (x) = Dα− f (x) = 0.

We finish the first part of the proof by a simple covering argument. We may assume that both Dα+ f (y) and Dα− f (y) ex-
ists for y ∈ (a,b)\ N0 where N0 ⊂ (a,b) is a subset of measure zero. As we have proved above, for each y ∈ (a,b)\ N0, there
is an open interval I y ⊂ (a,b) centred at y such that Dα+ f (x) = 0 and Dα− f (x) = 0 for a.e. x ∈ I y . Clearly {I y, y ∈ (a,b)\ N0}
is an open covering of (a,b) \ N0, that is, (a,b) \ N0 ⊂ ⋃

y∈(a,b)\N0
I y , there is a countable sub-covering {Ik, k = 1,2, . . .}

such that (a,b) \ N0 ⊂ ⋃∞
k=1 Ik and on each Ik , Dα+ f = 0 and Dα− f = 0 a.e. in Ik . Thus we conclude that Dα+ f = 0 and

Dα− f = 0 a.e. in (a,b). The proof of the first part is complete.
As for 0 � t < 1 and α > 0, we have (1 − t)−α � 1. Thus by (3.6),

0 = lim
h→0+

1∫
0

(1 − t)−α

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt � limh→0+

1∫
0

∣∣∣∣ f (ht + x) − f (x)

hα

∣∣∣∣dt.

Therefore limh→0+
∫ 1

0 | f (ht+x)− f (x)
hα |dt = 0, hence Dα+ f (x) = 0. �

The following is a direct consequence of Theorem 1.

Corollary 3. Suppose f ∈ Cα(a,b) and Dα+ f (y) (respectively Dα− f (y)) exists at y ∈ (a,b), then there is some δ > 0 such that

Dα+ f (y) = Dα+ f (y) = 0
(
respectively Dα− f (y) = Dα− f (y) = 0

)
,

for a.e. x ∈ (y, y + δ) (respectively for a.e. x ∈ (y − δ, y)).

The conclusions of Corollary 3 are due to the fact that if Dα+ f (y) exists at y, then y Dα
x f (x) exists in an interval (y, y +δ).

Therefore N2
α holds a.e. (y, y + δ) which implies, as in the proof of Theorem 2, that Dα+ f (y) = Dα+ f (y) = 0 a.e. in (y, y + δ).

Numerically, the IDQ-LFDs Dα+ f and Dα− f are much easier to compute than the KG-LFDs Dα+ f , Dα− f and the SIDQ-
LFDs Dα+ f and Dα− f . They are also more stable than the simple difference-quotient LFDs dα+ f and dα− f as the integral
average can remove some of the high frequency noises. Therefore we believe that IDQ-LFDs are more suitable to be used as
approximate LFDs which can also measure the modulus of α-fractional derivatives. For example it seems reasonable to have
the approximation

1

2

(∣∣Dα+ f (y)
∣∣ + ∣∣Dα− f (y)

∣∣) � (1 + α)Γ (1 − α)

2

(∣∣∣∣∣
1∫

0

f (y + th) − f (y)

hα
dt

∣∣∣∣∣ +
∣∣∣∣∣

1∫
0

f (y + th) − f (y)

hα
dt

∣∣∣∣∣
)

= (1 + α)Γ (1 + α)

2h1+α

(∣∣∣∣∣
h∫

0

[
f (s + y) − f (y)

]
ds

∣∣∣∣∣ +
∣∣∣∣∣−

h∫
0

[
f (s − y) − f (y)

]
ds

∣∣∣∣∣
)

. (3.7)

Next we give a partial generalization of our one-dimensional results to higher dimensional cases.
for a function f : Ω �→ R, the directional local fractional derivative at y ∈ Ω along a direction v with |v| = 1 was defined

in [8] as

Dα
v f (y) = dα

dtα
Φ(y, t)

∣∣∣
t=0

, (3.8)

where t �→ Φ(y + tv) = f (y + tv) − f (y). Similar to the one-dimensional case, we have, as in Lemma 1 that the existence
of such a local fractional derivative implies that

Dα
v f (y) = lim

t→0+

1∫
0

(1 − t)−α f (y + thv) − f (y)

hα
dt.

As before, we only consider the case 0 < α < 1. Now we use a result due to Welland [17] which generalizes the result of
Stein and Zygmund to Rn .
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Let β = 1 − α. Given a measurable function f : Rn → R, the β-th integral fβ for f is now defined by

fβ(x) =
∫
Rn

f (y)

|x − y|n−β
dy.

The function f is said to have an α-derivative at x0 ∈ Rn if fβ is differentiable at x0. To characterise the existence of
such α-fractional derivatives, among other conditions, the following are stated in [17] which generalize the corresponding
conditions in [16]:

(i) f is said to satisfy Λα (0 < α < 1 in our case) at x0 if | f (x0 + y) − f (x0)| = O(|y|α) as y → 0;
(ii) f is said to satisfy N2

α (0 < α < 1) at x0 if for some ρ > 0,∫
B(0,ρ)

| f (x0 + y) − f (x0)|2
|y|2α+n

dy < +∞.

Suppose f satisfies condition Λα in a set E ⊂ Rn of positive measure, then f has the α-fractional derivative a.e. in E if
and only if f satisfies N2

α a.e. in E .
From the proof of Theorem 1, we have the following results in higher dimensional space. Let Sn−1 ⊂ Rn be the unit

sphere.

Proposition 5. Suppose Ω ⊂ Rn is an open set and f ∈ Cα(Ω). If f also satisfies N2
α a.e. in Ω , then for a.e. y ∈ Ω and a.e. v ∈ Sn−1 ,

lim
h→0+

1∫
0

(1 − t)−α f (y + thv) − f (y)

hα
dt = 0. (3.9)

Proof. Let y ∈ Ω be such that N2
α holds at y. By Proposition 1, we only need to show that

lim
h→0+

∫
Sn−1

h∫
0

∣∣∣∣ f (y + ρv) − f (y)

h1+α

∣∣∣∣dρ dS = 0, (3.10)

where dS is the surface element of the sphere. By the fact that y ∈ N2
α and Cauchy–Schwarz inequality, we have

∫
Sn−1

h∫
0

∣∣∣∣ f (y + ρv) − f (y)

h1+α

∣∣∣∣dρ dS = 1

h1+α

∫
Sn−1

h∫
0

∣∣∣∣ f (y + ρv) − f (y)

ρn−1

∣∣∣∣ρn−1dρ dS

= 1

h1+α

∫
B(0,h)

| f (y + x) − f (y)|
|x|n−1

dx

= 1

h1+α

∫
B(0,h)

( | f (y + x) − f (y)|
|x|n/2+α

)
1

|x|n/2−1−α
dx

� 1

h1+α

( ∫
B(0,h)

| f (y + x) − f (y)|2
|x|n+2α

dx

)1/2( ∫
B(0,h)

1

|x|n−2−2α
dx

)1/2

= √
ωn−1

( ∫
B(0,h)

| f (y + x) − f (y)|2
|x|n+2α

dx

)1/2

→ 0,

as h → 0+ because the last term above goes to zero due to N2
α . The proof is finished. �

Remark 6. As Theorem 2 and Proposition 4 have shown, the existence of a non-trivial local fractional derivative is a lower
dimensional feature of a function satisfying Λα and N2

α . Of course the integral defined in (3.10) captures the average
modulus of directional fractional derivatives. However, the computation for such an integral could be complicated. Therefore
we believe that in order to find the modulus of the α-local fractional derivative numerically, the simple formula

1

hα

1

|D(0, r)|
∫ ∣∣∣∣ f (y + x) − 1

|D(0, r)|
∫

f (y + z)dz

∣∣∣∣dx (3.11)
D(0,h) D(0,r)
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Fig. 3. f (x) = 10(
√|x| + |x − 2|2/3 + |x + 1|3/4) and right–left 1/2-IDQs.

Fig. 4. f (x) + small random noise and right–left 1/2-IDQs.

will serve our purpose well, partly due to the fact that if y ∈ N2
α , this quantity will go to zero. Note that by the approximate

differentiation theorem due to Calderon and Zygmund [3,4], we have, when α = 1 that

lim
h→0+

1

h

1

|D(0, r)|
∫

D(0,h)

∣∣ f (y + x) − f (y) − 〈∇ f (y), x
〉∣∣dx = 0

a.e. y ∈ Ω for any function in the Sobolev space W 1,1(Ω). Thus

1

h

1

|D(0, r)|
∫

D(0,h)

∣∣∣∣ f (y + x) − 1

|D(0, r)|
∫

D(0,r)

f (y + z)dz

∣∣∣∣dx

converges a.e. to a quantity proportional to |∇ f (y)|.

4. Numerical approximations of IDQ-LFD

We conclude this paper by showing some test results of our numerical schemes for calculating the modulus of the
integral difference-quotient LFDs based on formulas developed in this paper. Edge detections by using (global) fractional
derivatives can be found in e.g. [11] and references therein.

In Figs. 3–5, we use the following approximations for a given scale h > 0 respectively,

1/2-right IDQ-LFD: D1/2
+ f (y) � 1

h3/2

h∫
0

(
f (y + t) − f (y)

)
dt, h > 0,

1/2-left IDQ-LFD: D1/2
− f (y) � − 1

h3/2

h∫
0

(
f (y − t) − f (y)

)
dt,

modulus of 1/2-IDQ-LFD: 1

2

(∣∣D1/2
− f (y)

∣∣ + ∣∣D1/2
+ f (y)

∣∣)

� 1

2h3/2

(∣∣∣∣∣
h∫ (

f (y + t) − f (y)
)

dt

∣∣∣∣∣ +
∣∣∣∣∣

h∫ (
f (y − t) − f (y)

)
dt

∣∣∣∣∣
)

. (4.1)
0 0
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Fig. 5. The modulus (|D1/2
+ f (y)| + |D1/2

− f (y)|)/2 for f and f (x) + small random noise.

We consider the function (see the left of Fig. 3)

f (x) = 10
√|x| + 10|x − 2|2/3 + 10|x + 1|3/4, x ∈ [−2,3].

Observe that f has three non-smooth points at −1 with power 3/4, at 2 with power 2/3 and at 0 with power 1/2. Fig. 4
is the half derivatives of f (x) + a small random noise.

Fig. 5 gives the approximated modulus (|D1/2
+ f (y)| + |D1/2

− f (y)|)/2 for the same function f and the perturbed one. In
all of these figures we see that IDQ-LFDs can pick up the strongest derivative at x = 1/2 even with an added small random
noise.
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