Note

What power of two divides a weighted Catalan number?

Alexander Postnikov ${ }^{\text {a }}$, Bruce E. Sagan ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
Received 13 January 2006
Available online 1 November 2006

Abstract

Given a sequence of integers $b=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ one gives a Dyck path P of length $2 n$ the weight $$
\operatorname{wt}(P)=b_{h_{1}} b_{h_{2}} \cdots b_{h_{n}},
$$

where h_{i} is the height of the i th ascent of P. The corresponding weighted Catalan number is

$$
C_{n}^{b}=\sum_{P} \mathrm{wt}(P)
$$

where the sum is over all Dyck paths of length $2 n$. So, in particular, the ordinary Catalan numbers C_{n} correspond to $b_{i}=1$ for all $i \geqslant 0$. Let $\xi(n)$ stand for the base two exponent of n, i.e., the largest power of 2 dividing n. We give a condition on b which implies that $\xi\left(C_{n}^{b}\right)=\xi\left(C_{n}\right)$. In the special case $b_{i}=(2 i+1)^{2}$, this settles a conjecture of Postnikov about the number of plane Morse links. Our proof generalizes the recent combinatorial proof of Deutsch and Sagan of the classical formula for $\xi\left(C_{n}\right)$.
© 2006 Elsevier Inc. All rights reserved.
Keywords: Difference operator; Divisibility; Group actions; Morse links; Orbits; Power of two; Shift operator; Weighted Catalan numbers

1. Introduction

The Catalan numbers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

[^0]have many interesting arithmetic properties. For example, the following result which essentially dates back to Kummer (see Dickson's book [3] for details) describes their divisibility by powers of 2 . Let $s(n)$ be the sum of digits in the binary expansion of n. Also, let $\xi(n)$ denote the base two exponent of n, i.e., the largest power of two dividing n.

Theorem 1.1. We have

$$
\xi\left(C_{n}\right)=s(n+1)-1 .
$$

A combinatorial proof of this result was recently given by Deutsch and Sagan [2] using group actions. In this paper, we extend this result and their proof to various weighted Catalan numbers. Note that, unlike the Catalan numbers, weighted Catalan numbers need not have simple multiplicative formulas. So determining their divisibility properties is more subtle than for the usual Catalan numbers.

Let $b=\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ be a fixed infinite sequence of integers. Define the weighted Catalan numbers, C_{n}^{b}, as the coefficients of the expansion of the continued fraction:

$$
\begin{equation*}
\frac{1}{1-\frac{b_{0} x}{1-\frac{b_{1} x}{1-\frac{b_{2} x}{1-\frac{b_{3} x}{1-\cdots}}}}}=\sum_{n \geqslant 0} C_{n}^{b} x^{n} . \tag{1}
\end{equation*}
$$

If $b=(1,1,1, \ldots)$, then C_{n}^{b} is the usual Catalan number C_{n}.
Combinatorially, the C_{n}^{b} count Dyck paths with certain weights. Recall that a Dyck path P of length $2 n$ is a sequence of points in the upper half-plane of the integer lattice

$$
\left(x_{0}, y_{0}\right)=(0,0), \quad\left(x_{1}, y_{1}\right), \quad \ldots, \quad\left(x_{2 n}, y_{2 n}\right)=(2 n, 0)
$$

such that each step $s_{i}=\left[x_{i}-x_{i-1}, y_{i}-y_{i-1}\right]$ has the form [1, 1] or [1, -1$]$. Let us say that step s_{i} has height y_{i-1}. Define the weight of a Dyck path P to be the product

$$
\operatorname{wt}(P)=b_{h_{1}} b_{h_{2}} \cdots b_{h_{n}},
$$

where h_{1}, \ldots, h_{n} are the heights of its steps of the form $[1,1]$. Then the following proposition is well known and easy to prove, i.e., see the paper of Flajolet [4] or the book of Goulden and Jackson [5, Chapter 5].

Proposition 1.2. We have

$$
C_{n}^{b}=\sum_{P} \mathrm{wt}(P),
$$

where the sum is over all Dyck paths of length $2 n$.
For example, we have

$$
C_{3}^{b}=b_{0} b_{0} b_{0}+b_{0} b_{0} b_{1}+b_{0} b_{1} b_{0}+b_{0} b_{1} b_{1}+b_{0} b_{1} b_{2}
$$

where the five terms correspond to the five Dyck paths of length 6. As another example, if $b=$ $\left(1, q, q^{2}, q^{3}, \ldots\right)$, then the weighted Catalan number C_{n}^{b} is equal to the q-Catalan number

$$
C_{n}(q)=\sum_{P} q^{\operatorname{area}(P)},
$$

Fig. 1. All plane Morse links of order 2.
where the sum is over Dyck paths P of length $2 n$ and $\operatorname{area}(P)$ denotes the area between P and the lowest possible path. The continued fraction (1) with $b_{i}=q^{i}$ is know as the Ramanujan continued fraction.

Our main result, Theorem 2.1 below, gives a sufficient condition on the sequence b so that

$$
\xi\left(C_{n}^{b}\right)=\xi\left(C_{n}\right)=s(n+1)-1
$$

As a special case, we obtain a conjecture of Postnikov [7] about plane Morse links. A plane Morse curve is a simple curve $f: S^{1} \rightarrow \mathbb{R}^{2}$ (i.e., a smooth injective map) such that, for the height function $h:(x, y) \rightarrow y$, the map $h \circ f$ has a finite number of isolated nondegenerate critical points with distinct values. All curves are oriented clockwise. See, for example, Fig. 1. As one goes around a Morse curve, the sequence formed by the critical values is alternating and returns to where it started. So the number of critical values must be an even integer $2 n$, and n is called the order of the curve. The combinatorial type of a Morse curve is its connected component in the space of all Morse curves. So Fig. 1(a) depicts the four plane Morse curves of order 2 up to combinatorial type.

A plane Morse link is a disjoint union of plane Morse curves. All our definitions for Morse curves carry over in the natural way to links. In particular, the order of a link is the sum of the orders of its components. Figure 1(b) shows the six disconnected Morse links of order 2, again up to combinatorial type. Let L_{n} be the number of combinatorial types of plane Morse links of order n. Then we have just seen that $L_{2}=4+6=10$. The connection with weighted Catalan numbers is made by the following theorem.

Theorem 1.3. [7] The numbers L_{n} satisfy

$$
\sum_{n \geqslant 0} L_{n} x^{n}=\frac{1}{1-\frac{1^{2} x}{1-\frac{3^{2} x}{1-\frac{5^{2} x}{1-\frac{7^{2} x}{\ldots}}}}}
$$

and so

$$
L_{n}=C_{n}^{\left(1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots\right)}
$$

An easy corollary of our main theorem will be a proof of Conjecture 3.1 from [7]. It can also be found listed as Problem 6.C5(c) in the Catalan addendum to the second volume of Stanley's Enumerative Combinatorics [9].

Conjecture 1.4. [7,9] We have

$$
\xi\left(L_{n}\right)=\xi\left(C_{n}\right)=s(n+1)-1
$$

2. The main theorem

Let $\mathbb{Z}_{\geqslant 0}$ denote the nonnegative integers. The difference operator, Δ, acts on functions $f: \mathbb{Z} \geqslant 0 \rightarrow \mathbb{Z}$ by

$$
(\Delta f)(x)=f(x+1)-f(x) .
$$

Note that we can regard our sequence b as such a function where $b(x)=b_{x}$. We can now state our main result, using $c \mid d$ as usual to mean that c divides evenly into d.

Theorem 2.1. Assume that the sequence b satisfies

1. $b(0)$ is odd, and
2. $2^{n+1} \mid\left(\Delta^{n} b\right)(x)$ for all $n \geqslant 1$ and $x \in \mathbb{Z} \geqslant 0$.

Then

$$
\xi\left(C_{n}^{b}\right)=\xi\left(C_{n}\right)=s(n+1)-1 .
$$

To prove this, we will also have to consider the shift operator, S, acting on functions $f: \mathbb{Z} \geqslant 0 \rightarrow \mathbb{Z}$ by

$$
(S f)(x)=f(x+1)
$$

It is well known and easy to verify that we have the product rule

$$
\Delta(f \cdot g)=\Delta(f) \cdot g+S(f) \cdot \Delta(g)
$$

which generalizes to

$$
\begin{equation*}
\Delta^{n}(f \cdot g)=\sum_{k=0}^{n}\binom{n}{k} \Delta^{n-k}\left(S^{k}(f)\right) \cdot \Delta^{k}(g) . \tag{2}
\end{equation*}
$$

Let \mathcal{F} be the set of functions $f: \mathbb{Z} \geqslant 0 \rightarrow \mathbb{Z}$ such that
(a) $f(x)$ is odd for all $x \in \mathbb{Z}_{\geqslant 0}$, and
(b) $2^{n+1} \mid\left(\Delta^{n} f\right)(x)$ for all $n \geqslant 1$ and $x \in \mathbb{Z} \geqslant 0$.

Note that because of (b), we can replace (a) by the seemingly weaker condition that $f(0)$ is odd. We will need the following lemma.

Lemma 2.2. The set \mathcal{F} is closed under the three operations

$$
f \mapsto S f, \quad(f, g) \mapsto f \cdot g, \quad \text { and } \quad(f, g) \mapsto\langle f, g\rangle:=\frac{f(x+1) g(x)+f(x) g(x+1)}{2} .
$$

Proof. Closure under S is obvious. Now assume that $f(x), g(x) \in \mathcal{F}$. Then the value $(f \cdot g)(x)$ is clearly odd. And (2) shows that the divisibility criterion is satisfied. Thus $f \cdot g \in \mathcal{F}$.

We can write the second operation as

$$
\langle f, g\rangle=f \cdot g+\frac{\Delta(f) \cdot g+f \cdot \Delta(g)}{2}
$$

Since $\Delta(f)$ and $\Delta(g)$ are divisible by 4 and $(f \cdot g)(x)$ is odd, we deduce that $\langle f, g\rangle(x)$ is odd. By (2), $\Delta^{n}(\Delta(f) \cdot g)$ and $\Delta^{n}(f \cdot \Delta(g))$ are divisible by 2^{n+2}. Thus $\langle f, g\rangle \in \mathcal{F}$.

Deutsch and Sagan used the interpretation of C_{n} in terms of binary trees to prove Theorem 1.1. So we will need to review this method and translate our weight function into this setting. A binary tree, T, is a rooted tree where every vertex has a right child, a left child, both children, or no children. We also consider the empty tree to be a binary tree. Let \mathcal{T}_{n} be the set of binary trees with n vertices. Then one of the standard interpretations of the Catalan numbers is that

$$
\begin{equation*}
C_{n}=\# \mathcal{T}_{n} \tag{3}
\end{equation*}
$$

Let G_{n} be the group of symmetries of the binary tree which is complete to depth n (having all of its leaves at distance n from the root). The group G_{n} is generated by reflections which exchange the left and right subtrees associated with a vertex. Then G_{n} acts on \mathcal{T}_{n} with two trees being in the same orbit if they are isomorphic as rooted trees where we forget about the information concerning left and right children. Deutsch and Sagan show in [2, Section 2] that $\# G_{n}$ is a power of 2 , so the cardinality of any G_{n}-orbit is as well. They also show that the minimal size of a G_{n}-orbit is 2^{s} where $s=s(n+1)-1$. Moreover, orbits of the minimal size can be identified with binary total partitions on the set $\{1,2, \ldots, s\}$, whose number is $(2 s-1)!!=$ $1 \cdot 3 \cdot 5 \cdots(2 s-1)$ as shown by Schröder [8], see also [10, Example 5.2.6]. For ease of reference, we summarize these facts in the following lemma.

Lemma 2.3. [2] Let \mathcal{O} be an orbit of G_{n} acting on \mathcal{T}_{n} and let $s=s(n+1)-1$. Then

1. $\# \mathcal{O}=2^{t}$ for some $t \geqslant s$, and
2. $\# \mathcal{O}=2^{s}$ for exactly $(2 s-1)!$! orbits.

It is now easy to prove Theorem 1.1 using this lemma and Eq. (3). To generalize the proof, consider any fixed function $b \in \mathcal{F}$ and define the corresponding weight of a binary tree T to be the function

$$
w_{b}(T)=w_{b}(T ; x)=\prod_{v \in T} b\left(x+l_{v}\right)
$$

where the product is over all vertices v of T, and l_{v} is the number of left edges on the unique path from the root of T to v. If binary tree T corresponds to Dyck path P under the usual depth-first search bijection, then it is easy to see that

$$
\begin{equation*}
\operatorname{wt}(P)=\prod_{v \in T} b\left(l_{v}\right)=w_{b}(T ; 0) \tag{4}
\end{equation*}
$$

We need one last lemma for the proof of Theorem 2.1. If \mathcal{O} is an orbit of G_{n} acting on \mathcal{T}_{n} then we define its weight to be

$$
\begin{equation*}
w_{b}(\mathcal{O})=w_{b}(\mathcal{O} ; x)=\sum_{T \in \mathcal{O}} w_{b}(T) \tag{5}
\end{equation*}
$$

Lemma 2.4. For any $b \in \mathcal{F}$ and any orbit \mathcal{O} we have

$$
w_{b}(\mathcal{O} ; x)=\# \mathcal{O} \cdot r_{b}(\mathcal{O} ; x)
$$

where $r_{b}(\mathcal{O} ; x) \in \mathcal{F}$.
Proof. Write

$$
\begin{equation*}
r_{b}(\mathcal{O} ; x)=\frac{w_{b}(\mathcal{O} ; x)}{\# \mathcal{O}} \tag{6}
\end{equation*}
$$

We induct on n, the number of vertices in a tree of \mathcal{O}. If $n=0$ then $r_{b}(\mathcal{O} ; x)=1$ for all x which is clearly in \mathcal{F}. Now suppose $n \geqslant 1$ so that \mathcal{O} contains a nonempty tree T. Let T_{1} be the subtree of T consisting of the left child of the root and all its descendants. (So T_{1} may be empty.) Similarly, define T_{2} for the right child. Suppose T_{1} and T_{2} are in orbits \mathcal{O}_{1} and \mathcal{O}_{2}, respectively. If $\mathcal{O}_{1}=\mathcal{O}_{2}$ then $\# \mathcal{O}=\# \mathcal{O}_{1} \cdot \# \mathcal{O}_{2}$ and

$$
w_{b}(T)=b(x) \cdot w_{S(b)}\left(T_{1}\right) \cdot w_{b}\left(T_{2}\right)
$$

If $\mathcal{O}_{1} \neq \mathcal{O}_{2}$, then $\# \mathcal{O}=2 \cdot \# \mathcal{O}_{1} \cdot \# \mathcal{O}_{2}$ and

$$
w_{b}(T)=b(x)\left[w_{S(b)}\left(T_{1}\right) \cdot w_{b}\left(T_{2}\right)+w_{b}\left(T_{1}\right) \cdot w_{S(b)}\left(T_{2}\right)\right] .
$$

In the both cases, it follows from Eqs. (5) and (6) that

$$
r_{b}(\mathcal{O} ; x)=b(x) \cdot \frac{r_{b}\left(\mathcal{O}_{1} ; x+1\right) \cdot r_{b}\left(\mathcal{O}_{2}, x\right)+r_{b}\left(\mathcal{O}_{1} ; x\right) \cdot r_{b}\left(\mathcal{O}_{2} ; x+1\right)}{2}
$$

So by Lemma 2.2 and induction we have $r_{b}(\mathcal{O} ; x) \in \mathcal{F}$ as desired.
Proof of Theorem 2.1. Combining Proposition 1.2, the previous lemma, and Eqs. (4) and (5) gives

$$
\begin{equation*}
C_{n}^{b}=\sum_{P} \mathrm{wt}(P)=\sum_{T \in \mathcal{I}_{n}} w_{b}(T ; 0)=\sum_{\mathcal{O}} \# \mathcal{O} \cdot r_{b}(\mathcal{O} ; 0), \tag{7}
\end{equation*}
$$

where the integers $r_{b}(\mathcal{O} ; 0)$ are all odd since $r_{b}(\mathcal{O}) \in \mathcal{F}$. So $\xi\left(\# \mathcal{O} \cdot r_{b}(\mathcal{O} ; 0)\right)=\xi(\# \mathcal{O})$ for all orbits \mathcal{O}. It now follows from Lemma 2.3 that $\xi=s$ for an odd number (namely ($2 s-1$)!!) of summands in the last summation in (7) and that $\xi>s$ for the rest. We conclude that $\xi\left(C_{n}^{b}\right)=s=$ $\xi\left(C_{n}\right)$.

As corollaries, we can prove Conjecture 1.4 and give information about divisibility of the q-Catalan numbers.

Corollary 2.5.

1. The number of combinatorial types of plane Morse links of order n satisfies

$$
\xi\left(L_{n}\right)=\xi\left(C_{n}\right)=s(n+1)-1 .
$$

2. If $q \equiv 1(\bmod 4)$ then the q-Catalan numbers satisfy

$$
\xi\left(C_{n}(q)\right)=\xi\left(C_{n}\right)=s(n+1)-1
$$

Proof. For the first assertion, it suffices to show that the function $b(x)=(2 x+1)^{2}$ is in \mathcal{F}. Clearly $b(x)$ is odd for all $x \in \mathbb{Z}_{\geqslant 0}$. Furthermore $\Delta b=8(x+1), \Delta^{2} b=8$, and $\Delta^{n} b=0$ for $n \geqslant 3$. So the divisibility condition also holds.

For the second statement, we need the function $b(x)=q^{x}$ to be in \mathcal{F}. Since q is odd, so is $b(x)$. Also $\Delta^{n} b=(q-1)^{n} q^{x}$ for $n \geqslant 1$. So the hypothesis on q implies that $\Delta^{n} b$ is divisible by $4^{n}=2^{2 n}$ which is more than needed.

3. Further work

Consider the Catalan sequence

$$
C=\left(C_{0}, C_{1}, C_{2}, \ldots\right)
$$

Theorem 1.1 implies immediately that C_{n} is odd if and only if $n=2^{k}-1$ for some $k \geqslant 0$. It follows that the k th block of zeros in the sequence C taken modulo 2 has length $2^{k}-1$ (where we start numbering with the first block). Alter and Kubota [1] have generalized this result to arbitrary primes and prime powers. One of their main theorems is as follows.

Theorem 3.1. [1] Let $p \geqslant 3$ be a prime and let $q=(p+1) / 2$. The length of the kth block of zeros in C modulo p is

$$
\frac{p^{\xi_{q}(k)+\delta_{3, p}+1}-3}{2}
$$

where $\xi_{q}(k)$ is the largest power of q dividing k and $\delta_{3, p}$ is the Kronecker delta.
Deutsch and Sagan [2] have improved on this theorem when $p=3$ by giving a complete characterization of the residues in C modulo 3. However, the demonstrations of all these results rely heavily on the expression for C_{n} as a product. It would be interesting to find analogous theorems for C_{n}^{b}, but new proof techniques would have to be found.

Konvalinka [6] has extended Theorem 2.1 to the generalized Catalan numbers, defined by

$$
\begin{equation*}
C_{n}^{(q)}=\frac{1}{(q-1) n+1}\binom{q n}{n}, \tag{8}
\end{equation*}
$$

where $q \geqslant 2$. These numbers count lattice paths P from $(0,0)$ to $(0, q n)$ in the upper half-plane with steps of the form $[1, q-1]$ and $[1,-1]$. In P, one weights a $[1, q-1]$ step starting at a point (x, y) by b_{i}, where i is the number of right-to-left minima of the portion of P to the left of (x, y). Taking $\mathrm{wt}(P)$ to be the product of these weights and summing over all P counted by (8) gives the corresponding weighted generalized Catalan number $C_{n}^{(q)}(b)$.

Using Kummer's criterion it is easy to show that, if $q=p^{k}$ for a prime p, then

$$
\begin{equation*}
\xi_{p}\left(C_{n}^{(q)}\right)=\frac{s_{p}((q-1) n+1)-1}{p-1}, \tag{9}
\end{equation*}
$$

where $s_{p}(n)$ denotes the sum of the digits of n in base p. By generalizing our methods, Konvalinka proves the following.

Theorem 3.2. [6] Let $q=p^{k}$ for p prime and $k \geqslant 1$. Suppose a function $b: \mathbb{Z} \geqslant 0 \rightarrow \mathbb{Z}$ satisfies

1. $b(0) \equiv 1(\bmod q)$, and
2. $q^{n+1} \mid\left(\Delta^{n} b\right)(x)$ for all $n \geqslant 1$ and $x \in \mathbb{Z} \geqslant 0$.

Then

$$
C_{n}^{(q)}(b) \equiv C_{n}^{(q)} \quad\left(\bmod p^{\xi+k}\right),
$$

where $\xi=\xi_{p}\left(C_{n}^{(q)}\right)$ is given by (9).
It is natural to ask for necessary as well as sufficient conditions for C_{n} and C_{n}^{b} to have the same exponent. Konvalinka has a beautiful conjecture in this regard for the case when b is a polynomial function.

Conjecture 3.3. [6] Suppose $b(x)=c_{0}+c_{1} x+\cdots+c_{d} x^{d}$. In this case, $\xi_{2}\left(C_{n}^{b}\right)=\xi_{2}\left(C_{n}\right)$ if and only if

1. c_{0} is odd,
2. $4 \mid c_{1}+c_{2}+c_{3}+\cdots$, and
3. $2 \mid c_{3}+c_{5}+c_{7}+\cdots$.

References

[1] Ronald Alter, K.K. Kubota, Prime and prime power divisibility of Catalan numbers, J. Combin. Theory Ser. A 15 (1973) 243-256.
[2] Emeric Deutsch, Bruce Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Number Theory 117 (2006) 191-215.
[3] Leonard Eugene Dickson, History of the Theory of Numbers, vol. I: Divisibility and Primality, Chelsea, New York, 1966.
[4] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (2) (1980) 125-161.
[5] Ian P. Goulden, David M. Jackson, Combinatorial Enumeration, Dover, Mineola, NY, 2004. With a foreword by Gian-Carlo Rota, reprint of the 1983 original.
[6] Matjaž Konvalinka, Divisibility of generalized Catalan numbers, preprint, 2006.
[7] Alexander Postnikov, Counting Morse curves, preprint, dated December 4, 2000, available at http://math.mit. edu/~apost/papers.html.
[8] E. Schröder, Vier combinatorische Probleme, Z. Math. Phys. 15 (1870) 361-376.
[9] Richard Stanley, Catalan addendum. New Problems for Enumerative Combinatorics, vol. 2, available at http:// math.mit.edu/~rstan/ec/catadd.pdf.
[10] Richard P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Stud. Adv. Math., vol. 62, Cambridge Univ. Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.

[^0]: E-mail addresses: apost@math.mit.edu (A. Postnikov), sagan@math.msu.edu (B.E. Sagan).

