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It is shown that the class of all strong radicals containing the prime radical is not
a sublattice of the lattice of all radicals. This gives a negative answer to some
questions of Sands and Puczylowski. Q 1996 Academic Press, Inc.

1. INTRODUCTION

The fundamental definitions and properties of radicals can be found in
w x1, 5, 19, 20 . Note that in this paper the term ‘‘radical’’ means both ‘‘radical
class’’ and ‘‘radical property’’.

w x Ž . Ž .Recall 6 that a radical a is left right strong if every left right a-ideal
Ž .of any ring R belongs to a R . A radical a is said to be strong if it is left

and right strong.
It is well known that the class of all radicals forms a complete lattice

w xwith respect to set inclusion. In a number of papers 1]4, 7]17 different
aspects of this lattice and some other lattices of radicals were investigated.
The following questions of Sands and Puczylowski are still open.

Ž . Žw x.i 10, Question 2; 12, Question 1; 15; 16 . Is the class of all strong
radicals a sublattice of the lattice of all radicals?

Ž . Žw x.ii 10, Question 3; 12, Question 1 . Is the class of all left strong
radicals containing the prime radical a sublattice of the lattice of all radicals?

Our main result gives a negative answer to the above questions.
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THEOREM 1.1. There exist strong radicals a and g containing the prime
radical such that the lower radical generated by a j g is not strong.

We shall make use of the following definitions and notations. For a set
< < Ž .X, X denotes its cardinality. If R is a ring then I e R I e R, I - R willl

Žmean that I is an ideal respectively, a left ideal, either a left or a right
.ideal but not both in general of R. A subring A of a ring R is said to be

Ž .accessible one-sided accessible if there exists a chain of subrings A s A0
Ž .: A : ??? : A s R of R such that A e A A - A for i s 0, 1,...,1 n i iq1 i iq1

n y 1. The prime radical is denoted by b.
We also consider the following question.

Ž . w xiii 10, Question 1 If a is a right strong radical containing b and J is
Ž . Ž .a right ideal of a a-semisimple ring R, does a J s b J ?

Ž .The following theorem also gives a negative answer to Question iii .

THEOREM 1.2. There exist a strong radical a containing the prime radical
Ž .b and an a-semisimple ring R with a nonzero right ideal J such that b J s 0

Ž .and a J / 0.

2. THE PROOFS OF THE MAIN THEOREMS

Given any nonempty class MM of rings, we set MM 1 to be the class of all
homomorphic images of rings from MM and define MM s to be the class of all
rings R such that any nonzero homomorphic image R9 of R contains a

t Ž .nonzero one-sided ideal in MM for some ordinal t - s . We set LS MM s
s w x Ž .j MM . According to 6, Theorem 2 , LS MM is a strong radical and it iss

the smallest strong radical containing MM.
Ž . Ž .Let ZZ be the ring of integers and R s M ZZ the 2 = 2 -matrix ring2

� < 4over ZZ. Further, let e 1 F i, j F 2 be the set of matrix units of R. Wei j
set

I s 2 R , J s e R q I and A s e ZZ q I.11 12

Clearly
I e R , J e R , and Ae J .r

Let F be a two-element field. We put

� 4 � 4a s LS b j A and g s LS b j F .Ž . Ž .
By the above observation a and g are strong radicals containing b.
Define d to be the lower radical generated by a j g . Clearly A, F g d .

Ž .Since JrA ( F, d J s J. Therefore in order to prove Theorem 1.1 it is
Ž .enough to show that d R s 0. We start with the following technical

remarks which play an important role in the proof of our main results.
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< <Remark 2.1. For any nonzero ideal K of A, ArK - `.

Ž .Proof. Since R, q is torsion-free and I s 2 R, we conclude that I has
a nonzero intersection with any nonzero subring of R. Since K e A and
I e A, L s K l I e I. But I e R. By the Andrunakievich Lemma, M s
Ž .3RLR : L. According to the above observation, M is a nonzero ideal of

Ž .R s M Z . Therefore there exists a natural number n such that M s nR.2
< < 4 < < < <Hence RrM s n - ` and ArM - `. Since M : L : K, ArK F

< <ArM - `.

Note that R is a free abelian group of rank 4. Any subring R9 of R
Ž .being a subgroup is again a free abelian group. We denote by rk R9 the

� 4 y1rank of R9. Let S s ZZ _ 0 . Clearly the localization S R of the ring R
Ž .relative to the multiplicatively closed set S is the ring M Q where Q is2

y1 Ž .the rational number field. Note that S R9 is a Q-subalgebra of M Q2
and

dim Sy1R9 s rk R9 . 1Ž . Ž . Ž .Q

Remark 2.2. Let H : R be a subring and U a nonzero d-radical
Ž . Ž .one-sided ideal of H. Suppose that rk H s 4. Then rk U s 4 and

Ž .b U s 0.

Proof. Without loss of generality we may assume that U e H. Clearlyr
y1 y1 Ž . Ž y1 . y1 Ž . Ž Ž ..S U e S H. Since rk H s 4 s dim S H , S H s M Q see 1 .r Q 2

Ž y1 . Ž y1 .Hence either dim S U s 2 or dim S U s 4. In the first caseQ Q
y1 Ž . Ž .S U s eM Q for some idempotent e of rank 1. Clearly eM Q s2 2

Ž . Ž .Ž . Ž .Ž .eM Q e q eM Q 1 y e s eQ q eM Q 1 y e . Therefore2 2 2
Ž . Ž Ž .. Ž . Ž y1 .eM Q rb eM Q ( Q. Obviously b U s b S U l U. Hence2 2
Ž .Urb U is isomorphic to a subring of Q. In particular, the ring T s
Ž .Urb U is an infinite commutative domain. Hence any one-sided accessi-

ble subring of T is infinite. Since U g d , T g d . Therefore T contains a
Ž w x.nonzero accessible subring from a j g see 18 . Suppose that T contains

w xa nonzero accessible subring from g . By 6, Lemma 3 , T contains a
� 4nonzero one-sided accessible subring from b j F . Being a domain, T

does not contain a b-radical subring. By the above result, it does not
contain any finite one-sided accessible subrings. We get a contradiction.
Now taking into account Remark 2.1 we conclude that T contains an
isomorphic copy of A. But A is not commutative, a contradiction. There-

Ž y1 . Ž . Ž Ž ..fore dim S U s 4 and rk U s 4 see 1 . SinceQ

Sy1b U s b Sy1U s b M Q s 0,Ž . Ž . Ž .Ž .2

Ž .b U s 0.
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Ž .Remark 2.3. Suppose that d R / 0. Then there exists a chain of
subrings

R s U > U > ??? > U s V > V > ??? > V0 1 n 0 1 m

such that:
Ž .1 U e U for all i s 1, 2,..., n;1 iy1
Ž .2 U g d for all i s 1, 2,..., n;i
Ž .3 V g a for all j s 0, 1,..., m;j
Ž .4 V is a onesided ideal of V for all j s 1, 2,..., m y 1;jq1 j
Ž .5 V ( A.m

Ž . w xProof. Taking U s d R , we infer from 18, p. 418 that there exists a1
chain

R s U > U > ??? > U0 1 n

Ž . Ž .of nonzero subrings with properties 1 and 2 and with U g a j g .n
� 4Suppose now that U g g . We set NN s b j F . Then there exist ann

ordinal number s and a nonzero one-sided ideal V of V s U such that1 1 0 n
V g NN s1. By The definition of the class NN s1 there exist an ordinal number1
s - s and a nonzero one-sided ideal V of V such that V g NN s2. Since2 1 2 1 2
any strictly descending chain of ordinals has to be finite, we obtain a chain

Ž .of subrings U s V > V > ??? > V with Property 4 and with V be-n 0 1 m m
� 4longing to the homomorphic closure of b j F . Since g : d , V g d forj

Ž . Ž .all j s 0, 1,..., m. It follows from Remark 2.2 that rk U s 4 s rk V andi j
Ž . Ž .b U s 0 s b V for all i, j. Hence V ( F which is impossible sincei j m

< <F s 2 and R is a free abelian group. Therefore U g a . Then as above,n
one may construct a chain of subrings U s V > V > ??? > V withn 0 1 m

Ž . Ž .properties 3 , 4 and V belonging to the homomorphic closure ofm
� 4 Ž .b j A . Taking into account Remark 2.1 and the equality b V s 0, wem

conclude that V ( A.m

Remarks 2.4. Let w : A ª R be a monomorphism of rings. Then there
Ž . y1exists an invertible element r g R such that rw A r s A.

Ž . Ž Ž .. Ž .Proof. Note that the center C A equals 2 ZZ. Since rk w A srk A
y1 Ž . Ž . Ž Ž .. Ž Ž .. Ž Ž ..s 4, S w A s M Q . Hence w C A : C M Q and w C A :2 2

Ž . Ž . Ž .2 Ž . Ž . Ž .C R s ZZ. Therefore w : C A ªZZ. Since w 2 sw 4 s2w 2 , w 2 s2.

We set

u s w 2 e , u s w e , u s w 2 e , and u s w 2 e .Ž . Ž . Ž . Ž .11 11 12 12 21 21 22 22

Ž .Note that u q u s w 2 s 2. Consider a free abelian group M of rank11 22
Ž .2. Clearly End M s R. We set U s u M and V s u M. Since u u s 011 22 11 22

2 Ž . Ž .and u s 2u , U l V s 0. Hence rk U s 1 s rk V .11 11
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Suppose that MrU is a torsion free group. Then MrU is a free abelian
group. Hence M s U [ H for some free rank 1 subgroup H of M. Since
Ž . Ž .rk U s 1 s rk H , U s ZZ f and H s ZZh for some f g U and h g H.

Recalling that U s u M, we infer that f s u m for some m g M and11 11
u f s u2 m s 2u m s 2 f. Clearly u h s tf for some t g ZZ. Since f g11 11 11 11
ZZu f q ZZu h, we conclude that t must be odd, say, t s 2k q 1. We set11 11

Ž .g s h y kf and W s ZZg. Then u g s 2k q 1 f y 2kf s f and therefore,11
2 1 0 y1� 4 Ž . Ž .in the basis f , g we have u s . Since u q u s 2, u s .11 11 22 220 0 0 2

a bŽ .Let u s for some a, b, c, d g ZZ. Then12 c d

4a 4b 2 1 a b 0 y1s 4u s u u u s12 11 12 22ž / ž / ž / ž /4c 4d 0 0 c d 0 2

0 bŽ .and hence u s . Analogously one can easily check that u s12 210 0
2c cŽ . for some c g ZZ. Since u u s u , we infer that y2bc s 1, a12 21 11y4 c y2 c

contradiction.
By the above result, there exist an element f g M _ U and a number1

s / 0 such that sf g U. Since u u s 0, u U s 0 and su f s 0.1 22 11 22 22 1
Ž .Hence u f s 0. Now we have 2 f s u q u f s u f g U. There-22 1 1 11 22 1 11 1

fore 2 f g U. Clearly U9 s ZZ f q ZZ f is a subgroup of M of rank 1.1 1
Hence U9 is an infinite cyclic group. Since U9 > U and 2U9 : U, we
conclude that U s 2U9. Obviously U9 s ZZw for some w g M. Analo-1 1
gously one can find an element w g M _ V such that Vs2V 9 where2
V 9s ZZw . Since 2U9sU and 2V 9sV, we conclude that U9 l V 9 s 0.2

Ž . < Ž . <Then Mr U [ V = U9rU [ V 9rV and Mr U [ V G 4. On the other
Ž . < Ž . <hand, we have that UqV = u q u Ms2 M and Mr U [ V F11 22

< Ž . < < Ž . <Mr 2 M s4. Therefore Mr U [ V s 4, M s U9 [ V 9, and 2 M s U
� < 4[ V. Define the endomorphisms ¨ 1 F i, j F 2 of M by the rulei j

Ž .¨ w s d w where d is Kronecker symbol for all i, j, p. Clearlyi j p j p i j p
u s 2¨ for i s 1, 2. Asi i i i

4u s u u u s 2¨ u 2¨ s 4¨ u U ,Ž . Ž .12 11 12 22 11 12 22 11 12 22

we see that

u s ¨ u ¨ g ¨ R¨ s ¨ M Z ¨ s Z¨Ž .12 11 12 22 11 22 11 2 22 12

and so u s b¨ for some b g Z. Analogously one can show that u s12 12 21
c¨ for some c g Z. As above one may show that u s b¨ and21 12 12
u s c¨ for some b, c g ZZ. Since u u s u , we have bc s 2. Only21 21 12 21 11
the following cases are possible:

Ž . Ž .Case 1. b, c s 1, 2 . Then we set r s ¨ q ¨ .11 22

Ž . Ž .Case 2. b, c s y1, y2 . We let r s ¨ y ¨ .11 22
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Ž . Ž .Case 3. b, c s 2, 1 . We put r s ¨ q ¨ .12 21

Ž . Ž .Case 4. b, c s y2, y1 . Then we set r s ¨ y ¨ .12 21

Since

2

w A s ZZu s ZZ2¨ q ZZb¨ q ZZc¨ q ZZ2¨ ,Ž . Ý i j 11 12 21 22
i , js1

Ž . y1rw A r s A.

Ž .Proof of Theorem 1.1. Suppose that d R / 0. Then by Remark 2.3
there exists a chain

R s U > U > ??? > U s V > V > ??? > V0 1 n 0 1 m

Ž . Ž .of subrings of R with Properties 1 ] 5 . Taking into account Remark 2.4,
we can assume without loss of generality that V sA. Recall that Is2 Rm

Ž .; A. Since RrI ( M F is a simple ring, we have R s U s U s ??? s2 0 1
Ž .U . According to Property 3 , R s U s V g a . Hence Rr2 R g a andn n 0

Ž . 2 4M F g a . Note that A : 2 R and A : 4R : 2 A. Therefore if B is a2
4 Ž .homomorphic image of A and 2 B s 0, then B s 0. Hence M F does2

� 4not belong to the homomorphic closure of the class b j A . Now the
Ž .inclusion M F g a implies that there exists a proper one-sided ideal L2

Ž . Ž .of M F belonging to a . Then Lrb L ( F. Hence F g a . F, being a2
field, has no proper nonzero one-sided accessible subrings. Therefore F is
a homomorphic image of A which is impossible by the above result, a

Ž .contradiction. Thus d R s 0 and the theorem is proved.

Ž .Proof of Theorem 1.2. By the above result d R s0. Since a:d ,
Ž . Ž .a R s0. Clearly J s e R q I e R and Ae J. Since A g a , a J / 0.11 r

Ž .From the inclusion J > I, we infer that b J s 0 and the theorem is
proved.
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