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1. Introduction

Fekete and Szegd proved a noticeable result that the estimate

—2A

holds for any normalized univalent function
f@=z4+a22+a+--- (1.1)

in the open unit disk U and for 0 < A < 1. This inequality is sharp for each A (see [1]). The coefficient functional
1/, 3n
®(f) =a3 — raj = 5 <f”(0) - 7[f/(0)]2>

on normalized analytic functions f in the unit disk represents various geometric quantities, for example when A = 1,
& (f) = a3 —a3, becomes S (0) /6 where Sy denotes the Schwarzian derivative (f”/f') — (f” /f")? /2. Note that, if we consider
the nth root transform [f (z")]V" = z + c,4.12" ! + c204122™ ! + - - - of f with the power series (1.1), then ¢,41 = a,/n and
Cont1 = a3/n+ (n — 1)a3/2n?, so that

2 2
a3 — Aay = 1 (Cane1 — U 1q)
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where ;1 = An + (n — 1)/2. Moreover, @ (f) behaves well with respect to the rotation, namely @ (e f (e?2)) = e?? & (f),
0 eR.

This is quite natural to discuss the behavior of @ (f) for subclasses of normalized univalent functions in the unit disk.
This is called Fekete-Szeg6 problem. Actually, many authors have considered this problem for typical classes of univalent
functions (see, for instance [2-7,1,8-12]).

We denote by 4§ the set of all functions normalized analytic and univalent in the unit disk U of the form (1.1). Also, for
0 <a < 1,let 8* () and () denote classes of starlike and convex univalent functions of order «, respectively, i.e.

$*(a) = {f(z)e{i:Rezjj:éz)) >a,ze‘u} (1.2)
and
5C(a):{f(z)65:Re <1+ij:,((2§)> >a,ze‘u}. (1.3)

A notions of «-starlikeness and «-convexity were generalized onto a complex order o by Nasr and Aouf [13],
Wiatrowski [ 14], Nasr and Aouf [15].
Observe that $*(0) = 8* and $°(0) = S° represent standard starlike and convex univalent functions, respectively.
Letf(z) =z + Z:iz azfand g(z) =z + Ziiz bz* be analytic functions in U. The Hadamard product (convolution) of
f and g, denoted by f * g is defined by

o0
fx2)(2)=z+ Zakbkz", z € U.
k=2
Letn € Ng = {0, 1, 2, .. .}. The Ruscheweyh derivative of the n' order of f, denoted by D"f (2), is defined by

n—1 (n)
D) = 2E T

Ruscheweyh [16] determined that

n € Np.

npgn z _ - r'(n+k) ‘
Df@) = = @ =2+ k;‘ o T D" (1.4)

The Ruscheweyh derivative gave an impulse for various generalization of well known classes of functions. Exemplary,
fora (0 < o < 1) and n € Ny, Ahuja [17,18] defined the class of functions, denoted R, («), which consists of univalent
functions of the form (1.1) that satisfy the condition

z(D"f (2))’
e—— >
D"f(z)
We note that Rq(e) = §*(«) and R1(«) = $°(«). The class R,(0) = R, was studied by Singh and Singh [19].
With the aid of Ruscheweyh derivative Kumar et al. [20] introduced the class %, (b) of function f € 4 as follows:

o, zeU. (1.5)

Definition 1.1 ([20]). Let b be a nonzero complex number, and let f be an univalent function of the form (1.1), such that
D"f(z) # 0forz € U \ {0}. We say that f belongs to %, (b) if

1 (z(D"f (@)

By giving specific values to n and b, we obtain the following important subclasses studied by various researchers in earlier
works, for instance, Fo(b) = 4*(1 — b) (Nasr and Aouf [13]), F1(b) = $°(1 — b) (Wiatrowski [14], Nasr and Aouf [15]).
Moreover, when o € (0, 1) £,(1 — @) = R, () (Singh and Singh [19], Darus and Akbarally [21]).

2. Main results

We denote by & a class of the analytic functions in U with p(0 = 1) and Re p(z) > 0. We shall require the following:

Lemma 2.1 ([22], p. 166). Let p € P withp(z) = 1+ ¢1z + 2% + - - -, then
lenl <2, forn>1.

If |c1| = 2thenp(z) = p1(z) = (1 + y12)/(1 — y12) with y; = c1/2. Conversely, if p(z) = p1(z) for some |y1| = 1, then
c1 = 2y; and |c1| = 2. Furthermore we have

cf
C) — —
2

2
<2_|C1| .
- 2
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If |c1] < 2and ‘cz —>|=2- ‘C” , then p(z) = p,(z), where

Y2Z+y1
1471722
z) = ——— 2
pz( ) 1 —zl}f_;g;]z
and y1 = 1/2, 2 = = ‘ IZ Conversely if p(z) = p2(z) for some |y1| < 1and |y2| = 1, theny; = ¢1/2, y» = ; 2|c B and
2
Theorem 2.2. Let n > 0 and let b be nonzero complex number. If f of the form (1.1) is in #,(b), then
2|b|
laz| < (2.1)
n+1’
las| < 21Dl max {1, |1+ 2b|} (2.2)
——————max/{1, , .
TS+ D +2)
and
n+1, 2|b|
as — a,| = .
n-+2 nm+1)n+2)

Equality in (2.1) holds if z(D"f(z))'/(D"f(z)) = 1+ b[p1(z) — 1], and in (2.2) if z(D"f(2))'/(D"f(z)) = 1 + b[p2(z) — 1],
where p1, p, are given in Lemma 2.1.

Proof. Denote F(z) = D*f(z) = z + A,z> + Asz> + - - -, then

=+ Day, Ay = W@. (2.3)

By the definition of the class #;(b) there exists p € & such, that ZF (Z) =1—b+ bp(2), so that

z(1+ 24z + 3A322 + - )
Z4+Az2 + A3+ -
which implies the equality

z+ 2A222 + 3A3Z3 +-o=z4 (A2 + bC])22 + (A3 + bC1A2 + bC2)23 + (bC1A3 + bC2A2 + bC3 +A4)Z4 —+ e

=1-b+b(1+ci1z+cz" +--),

Equating the coefficients of both sides we have

b 1+ 2b)
Ay = bcy, As = , 2.4
2 1 3= <C2 3 ) +— 2 cf (24)
so that, on account of (1.4)
b b
a, = c1, a3=——— [+ bci]. (2.5)
n+1 (n+1n+2)
Taking into account (2.5) and Lemma 2.1, we obtain
laa| = b C1 2 bl , (2.6)
n+1 “n41
and
b ¢ 1+2b,
las| = | ————— | — = + lor
nm+1Dn+2) 2 2
b > |1+2b
3 |b| y_ ol n+2b
n+1n+2) 2 2
b 14+ 2b|—1
= 7' | |:2+|C1|27| | :|
n+1D(n+2) 2
2|b|

S i Dy 2 ML T+ 26 = 1))
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Thus
21|b
las| < *max{l, |1+ 2b]}.
n+1Dn+2)
Moreover
n+1 b?c2 n+1
as — @G| = (c2 + bei) — .
n+2 n+1Dn+2) n+1)2n+2
_ bC2
T+ 1D +2)
2|b|

~(m+Dn+2)’

as asserted. O

Remark. In the above Theorem a special case of Fekete-Szegd problem e.g. for real © = (n + 1)/(n + 2) occurred very
naturally and simple estimate was obtained.

Now, we consider functional |a3 — ua%| for complex w.
Theorem 2.3. Let b be a nonzero complex number and let f € #,(b). Then for u € C

las — | < 2
n+1Dn+2)

max{l,

n+2
1+2b—2ub .
+ Mn+1’}

For each u there is a function in #,(b) such that equality holds.

Proof. Applying (2.5) we have

bZCZ
2 2 1
a3 — ua;, = —— |y + bey | —
2T MR (n+l)(n+2)[2+ 1 TR
b |: ,  Mb(n+2) 2:|
= 2 +bey — 1
(n+1Dn+2) n+1
b 2 2 2
SR B PO S T W e |
nm+1n+2) 2 2 n+1
Then, with the aid of Lemma 2.1, we obtain
2 |b| o l? el n+2
ag—ua < — 12— —+ —1(14+2b—2ub——
’ “2|—(n+1><n+2)[ 2 T2 ' Mo
b 2 2
=# 2—|—ﬂ 1+2b—2Mbi -1
n+1n+2) 2 n+1
2|b| n+2
< ——————max{1,|{1+2b—2ub .
n+1Dn+2) n+1

An examination of the proof shows that equality is attained for the first case, when ¢; = 0, ¢, = 2, then the functions in
Fu(b) is given by

z(D'f(2)) 1+ (@2b—1z

— , (2.7)
D"f(z2) 1—-z
and, for the second case, when ¢; = ¢; = 2, so that
z(D'f(z)) 14 (2b— 1)z2
(DY@ _ 1+@b— 12 25)

Df (z) 1—22
respectively. O

We next consider the case, when p and b are real. Then we have:

Theorem 2.4. Let b > O and let f € F,(b). Then for u € R we have
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2b n—+2 , n+1
|1 +2b(1—p— )| if < :
n+1Dn+2) n+1 n+2
2b n+1 n+ 1)(1+4+2b
a3 —pag| < —————— if + §M§(+)(+ ),
nm+1n+2) n+2 (n+2)b
2b n—+2 n+1)(1+2b
[ i _1_21,} if y > B+ DA +2b)
n+1)(n+2) n+1 b(n+2)
For each u there is a function in #,(b) such that equality holds.
Proof. First, let . < % < %’fﬁ” In this case (2.5) and Lemma 2.1 give
b el | Icfl n+2
2 1
a3 —pay| < ————— |2 — ——+ — (14+2b—2ub
’ “2|‘<n+1)(n+2)[ 2 T2 U7 N
2b n+2
< i[uzz,(]_ﬂi)].
n+1Dn+2) n+1
+1 (1+2b)(n+1) ; i ;
Let, now Zﬁ <pn< T&.Then, using the above calculations, we obtain
a3 — Ma2| < L
= (n+1)(n+2)
i i (142b)(n+1)
Finally, if i > ﬁ then
b i al>  |c? n+2
aopid < — 2 [y el Al prte gy
m+1)(n+2) [ 2 2 n+1
b I c? n+2
= 2+u 2ub + —2-2b
m+1)(n+2) [ 2 n+1
2b i 2
< b2 g Zb] :
m+1Dm+2)  n+1
Equality is attained for the second case on choosingc; =0, ¢c; = 2in(2.7)andin(2.8)ci =2, ¢ =2,c1 = 2i, ¢ = —2

for the first and third case, respectively. Thus the proof is complete. O

Remark. (i) Setting b = 1 — « in the above results, we get the results from [21].

As an analogue to the complex nth starlikeness of a complex order we may introduce the notion of nth convexity of a
complex order as follows:

Definition 2.1. Let b be a nonzero complex number, and let f be an univalent of the form (1.1). We say that f belongs to
8L (b) if
1 Dn "
R {1 1207 @)y
b (D"f(2))

Using the well known Alexander relation f € 8¢ <= zf’ € §* we easily obtain bounds of coefficients and a solution of
the Fekete-Szegd problem in 45 (b).

} >0, zeU. (2.9)

Theorem 2.5. Let b be a nonzero complex number and let f € 85 (b). If f of the form (1.1) is in 8 (b), then

|b|

lay| < ——,

n+1

2(1 4 2/b)|b|

las| < ————r,

3(n+ 1(n+2)

and

4n+1, 2|b|

a3 — — .
T 3n42 2% " 3+ DH(n+2)
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Reasoning in the same line as in the proof of Theorem 2.3 we obtain

Theorem 2.6. Let b be a nonzero complex number and let f € 85 (b). Then, for u € C holds

a a2|<—2|b| 1+2b 3bn+2
SRR =30 i+ 2) H :

2n+1
For each p there is a function in %,(b) such that equality holds.

max{l,
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