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a b s t r a c t

For nonzero complex b let Fn(b) denote the class of normalized univalent functions f
satisfying Re [1 + (z(Dnf )′(z)/Dnf (z) − 1)/b] > 0 in the unit diskU, where Dnf denotes
the Ruscheweyh derivative of f . Sharp bounds for the Fekete–Szegö functional

∣∣a3 − µa22∣∣
are obtained.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Fekete and Szegö proved a noticeable result that the estimate

|a3 − λa22| ≤ 1+ 2 exp
(
−2λ
1− λ

)
holds for any normalized univalent function

f (z) = z + a2z2 + a3z3 + · · · (1.1)

in the open unit diskU and for 0 ≤ λ ≤ 1. This inequality is sharp for each λ (see [1]). The coefficient functional

Φ(f ) = a3 − λa22 =
1
6

(
f ′′′(0)−

3λ
2
[f ′′(0)]2

)
on normalized analytic functions f in the unit disk represents various geometric quantities, for example when λ = 1,
Φ(f ) = a3−a22, becomes Sf (0)/6where Sf denotes the Schwarzian derivative (f

′′/f ′)′−(f ′′/f ′)2/2. Note that, if we consider
the nth root transform [f (zn)]1/n = z + cn+1zn+1 + c2n+1z2n+1 + · · · of f with the power series (1.1), then cn+1 = a2/n and
c2n+1 = a3/n+ (n− 1)a22/2n

2, so that

a3 − λa22 = n
(
c2n+1 − µc2n+1

)
,
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where µ = λn+ (n− 1)/2. Moreover,Φ(f ) behaves well with respect to the rotation, namelyΦ(e−iθ f (eiθ z)) = e2iθΦ(f ),
θ ∈ R.
This is quite natural to discuss the behavior of Φ(f ) for subclasses of normalized univalent functions in the unit disk.

This is called Fekete-Szegö problem. Actually, many authors have considered this problem for typical classes of univalent
functions (see, for instance [2–7,1,8–12]).
We denote by S the set of all functions normalized analytic and univalent in the unit diskU of the form (1.1). Also, for

0 ≤ α < 1, let S∗(α) and Sc(α) denote classes of starlike and convex univalent functions of order α, respectively, i.e.

S∗(α) =

{
f (z) ∈ S : Re

zf ′(z)
f (z)

> α, z ∈ U

}
(1.2)

and

Sc(α) =

{
f (z) ∈ S : Re

(
1+

zf ′′(z)
f ′(z)

)
> α, z ∈ U

}
. (1.3)

A notions of α-starlikeness and α-convexity were generalized onto a complex order α by Nasr and Aouf [13],
Wiatrowski [14], Nasr and Aouf [15].
Observe that S∗(0) = S∗ and Sc(0) = Sc represent standard starlike and convex univalent functions, respectively.
Let f (z) = z +

∑
∞

k=2 akz
k and g(z) = z +

∑
∞

k=2 bkz
k be analytic functions inU. The Hadamard product (convolution) of

f and g , denoted by f ∗ g is defined by

(f ∗ g)(z) = z +
∞∑
k=2

akbkzk, z ∈ U.

Let n ∈ N0 = {0, 1, 2, . . .}. The Ruscheweyh derivative of the nth order of f , denoted by Dnf (z), is defined by

Dnf (z) =
z(zn−1f (z))(n)

n!
, n ∈ N0.

Ruscheweyh [16] determined that

Dnf (z) =
z

(1− z)n+1
∗ f (z) = z +

∞∑
k=2

Γ (n+ k)
Γ (n+ 1)(k− 1)!

akzk. (1.4)

The Ruscheweyh derivative gave an impulse for various generalization of well known classes of functions. Exemplary,
for α (0 ≤ α < 1) and n ∈ N0, Ahuja [17,18] defined the class of functions, denoted Rn(α), which consists of univalent
functions of the form (1.1) that satisfy the condition

Re
z(Dnf (z))′

Dnf (z)
> α, z ∈ U. (1.5)

We note thatR0(α) = S∗(α) andR1(α) = Sc(α). The classRn(0) = Rn was studied by Singh and Singh [19].
With the aid of Ruscheweyh derivative Kumar et al. [20] introduced the class Fn(b) of function f ∈ S as follows:

Definition 1.1 ([20]). Let b be a nonzero complex number, and let f be an univalent function of the form (1.1), such that
Dnf (z) 6= 0 for z ∈ U \ {0}. We say that f belongs to Fn(b) if

Re
{
1+

1
b

(
z(Dnf (z))′

Dnf (z)
− 1

)}
> 0, z ∈ U. (1.6)

By giving specific values to n and b,we obtain the following important subclasses studied by various researchers in earlier
works, for instance, F0(b) = S∗(1 − b) (Nasr and Aouf [13]), F1(b) = Sc(1 − b) (Wiatrowski [14], Nasr and Aouf [15]).
Moreover, when α ∈ 〈0, 1) Fn(1− α) = Rn(α) (Singh and Singh [19], Darus and Akbarally [21]).

2. Main results

We denote by P a class of the analytic functions inUwith p(0 = 1) and Re p(z) > 0. We shall require the following:

Lemma 2.1 ([22], p. 166). Let p ∈ P with p(z) = 1+ c1z + c2z2 + · · ·, then

|cn| ≤ 2, for n ≥ 1.

If |c1| = 2 then p(z) ≡ p1(z) = (1 + γ1z)/(1 − γ1z) with γ1 = c1/2. Conversely, if p(z) ≡ p1(z) for some |γ1| = 1, then
c1 = 2γ1 and |c1| = 2. Furthermore we have∣∣∣∣c2 − c212

∣∣∣∣ ≤ 2− |c1|22 .
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If |c1| < 2 and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|22 , then p(z) ≡ p2(z), where
p2(z) =

1+ z γ2z+γ11+γ̄1γ2z

1− z γ2z+γ11+γ̄1γ2z

,

and γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

. Conversely if p(z) = p2(z) for some |γ1| < 1 and |γ2| = 1, then γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

and∣∣∣c2 − c21
2

∣∣∣ = 2− |c1|22 .
Theorem 2.2. Let n ≥ 0 and let b be nonzero complex number. If f of the form (1.1) is in Fn(b), then

|a2| ≤
2 |b|
(n+ 1)

, (2.1)

|a3| ≤
2 |b|

(n+ 1)(n+ 2)
max {1, |1+ 2b|} , (2.2)

and ∣∣∣∣a3 − n+ 1n+ 2
a22

∣∣∣∣ ≤ 2|b|
(n+ 1)(n+ 2)

.

Equality in (2.1) holds if z(Dnf (z))′/(Dnf (z)) = 1 + b[p1(z) − 1], and in (2.2) if z(Dnf (z))′/(Dnf (z)) = 1 + b[p2(z) − 1],
where p1, p2 are given in Lemma 2.1.

Proof. Denote F(z) = Dnf (z) = z + A2z2 + A3z3 + · · ·, then

A2 = (n+ 1)a2, A3 =
(n+ 1)(n+ 2)

2
a3. (2.3)

By the definition of the class Fn(b) there exists p ∈ P such, that zF
′
(z)

F(z) = 1− b+ bp(z), so that

z(1+ 2A2z + 3A3z2 + · · ·)
z + A2z2 + A3z3 + · · ·

= 1− b+ b(1+ c1z + c2z2 + · · ·),

which implies the equality

z + 2A2z2 + 3A3z3 + · · · = z + (A2 + bc1)z2 + (A3 + bc1A2 + bc2)z3 + (bc1A3 + bc2A2 + bc3 + A4)z4 + · · · .

Equating the coefficients of both sides we have

A2 = bc1, A3 =
b
2

(
c2 −

c21
2

)
+
(1+ 2b)
4

bc21 , (2.4)

so that, on account of (1.4)

a2 =
b

n+ 1
c1, a3 =

b
(n+ 1)(n+ 2)

[
c2 + b c21

]
. (2.5)

Taking into account (2.5) and Lemma 2.1, we obtain

|a2| =
∣∣∣∣ b
n+ 1

c1

∣∣∣∣ ≤ 2 |b|
n+ 1

, (2.6)

and

|a3| =
∣∣∣∣ b
(n+ 1)(n+ 2)

[
c2 −

c21
2
+
1+ 2b
2
c21

]∣∣∣∣
≤

|b|
(n+ 1)(n+ 2)

[
2−
|c1|2

2
+
|1+ 2b|
2
|c1|2

]
=

|b|
(n+ 1)(n+ 2)

[
2+ |c1|2

|1+ 2b| − 1
2

]
≤

2|b|
(n+ 1)(n+ 2)

max {1, [1+ |1+ 2b| − 1]} .
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Thus

|a3| ≤
2 |b|

(n+ 1)(n+ 2)
max {1, |1+ 2b|} .

Moreover∣∣∣∣a3 − n+ 1n+ 2
a22

∣∣∣∣ = ∣∣∣∣ b
(n+ 1)(n+ 2)

(
c2 + bc21

)
−

b2c21
(n+ 1)2

n+ 1
n+ 2

∣∣∣∣
=

∣∣∣∣ bc2
(n+ 1)(n+ 2)

∣∣∣∣
≤

2|b|
(n+ 1)(n+ 2)

,

as asserted. �

Remark. In the above Theorem a special case of Fekete-Szegö problem e.g. for real µ = (n + 1)/(n + 2) occurred very
naturally and simple estimate was obtained.

Now, we consider functional
∣∣a3 − µa22∣∣ for complex µ.

Theorem 2.3. Let b be a nonzero complex number and let f ∈ Fn(b). Then for µ ∈ C∣∣a3 − µa22∣∣ ≤ 2|b|
(n+ 1)(n+ 2)

max
{
1,
∣∣∣∣1+ 2b− 2µbn+ 2n+ 1

∣∣∣∣} .
For each µ there is a function in Fn(b) such that equality holds.

Proof. Applying (2.5) we have

a3 − µa22 =
b

(n+ 1)(n+ 2)

[
c2 + bc21

]
− µ

b2c21
(n+ 1)2

=
b

(n+ 1)(n+ 2)

[
c2 + bc21 −

µb(n+ 2)
(n+ 1)

c21

]
=

b
(n+ 1)(n+ 2)

[
c2 −

c21
2
+
c21
2

(
1+ 2b− 2µb

n+ 2
n+ 1

)]
.

Then, with the aid of Lemma 2.1, we obtain∣∣a3 − µa22∣∣ ≤ |b|
(n+ 1)(n+ 2)

[
2−
|c1|2

2
+
|c1|2

2

∣∣∣∣1+ 2b− 2µbn+ 2n+ 1

∣∣∣∣]
=

|b|
(n+ 1)(n+ 2)

[
2+
|c1|2

2

(∣∣∣∣1+ 2b− 2µbn+ 2n+ 1

∣∣∣∣− 1)]
≤

2|b|
(n+ 1)(n+ 2)

max
{
1,
∣∣∣∣1+ 2b− 2µbn+ 2n+ 1

∣∣∣∣} .
An examination of the proof shows that equality is attained for the first case, when c1 = 0, c2 = 2, then the functions in
Fn(b) is given by

z(Dnf (z))
′

Dnf (z)
=
1+ (2b− 1)z
1− z

, (2.7)

and, for the second case, when c1 = c2 = 2, so that

z(Dnf (z))
′

Dnf (z)
=
1+ (2b− 1)z2

1− z2
, (2.8)

respectively. �

We next consider the case, when µ and b are real. Then we have:

Theorem 2.4. Let b > 0 and let f ∈ Fn(b). Then for µ ∈ R we have
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∣∣a3 − µa22∣∣ ≤


2b
(n+ 1)(n+ 2)

[
1+ 2b

(
1− µ

n+ 2
n+ 1

)]
if µ ≤

n+ 1
n+ 2

,

2b
(n+ 1)(n+ 2)

if
n+ 1
n+ 2

≤ µ ≤
(n+ 1)(1+ 2b)

(n+ 2)b
,

2b
(n+ 1)(n+ 2)

[
2µb

n+ 2
n+ 1

− 1− 2b
]

if µ ≥
(n+ 1)(1+ 2b)
b(n+ 2)

.

For each µ there is a function in Fn(b) such that equality holds.

Proof. First, let µ ≤ n+1
n+2 ≤

(1+2b)(n+1)
2b(n+2) . In this case (2.5) and Lemma 2.1 give∣∣a3 − µa22∣∣ ≤ b

(n+ 1)(n+ 2)

[
2−
|c1|2

2
+
|c21 |
2

(
1+ 2b− 2µb

n+ 2
n+ 1

)]
≤

2b
(n+ 1)(n+ 2)

[
1+ 2b

(
1− µ

n+ 2
n+ 1

)]
.

Let, now n+1
n+2 ≤ µ ≤

(1+2b)(n+1)
2b(n+2) . Then, using the above calculations, we obtain∣∣a3 − µa22∣∣ ≤ 2b

(n+ 1)(n+ 2)
.

Finally, if µ ≥ (1+2b)(n+1)
2b(n+2) , then∣∣a3 − µa22∣∣ ≤ b

(n+ 1)(n+ 2)

[
2−
|c1|2

2
+
|c21 |
2

(
2µb

n+ 2
n+ 1

− 1− 2b
)]

=
b

(n+ 1)(n+ 2)

[
2+
|c21 |
2

(
2µb

n+ 2
n+ 1

− 2− 2b
)]

≤
2b

(n+ 1)(n+ 2)

[
2µb

n+ 2
n+ 1

− 1− 2b
]
.

Equality is attained for the second case on choosing c1 = 0, c2 = 2 in (2.7) and in (2.8) c1 = 2, c2 = 2, c1 = 2i, c2 = −2
for the first and third case, respectively. Thus the proof is complete. �

Remark. (i) Setting b = 1− α in the above results, we get the results from [21].

As an analogue to the complex nth starlikeness of a complex order we may introduce the notion of nth convexity of a
complex order as follows:

Definition 2.1. Let b be a nonzero complex number, and let f be an univalent of the form (1.1). We say that f belongs to
Scn(b) if

Re
{
1+

1
b
z(Dnf (z))′′

(Dnf (z))′

}
> 0, z ∈ U. (2.9)

Using the well known Alexander relation f ∈ Sc ⇐⇒ zf ′ ∈ S∗ we easily obtain bounds of coefficients and a solution of
the Fekete–Szegö problem in Scn(b).

Theorem 2.5. Let b be a nonzero complex number and let f ∈ Scn(b). If f of the form (1.1) is in Scn(b), then

|a2| ≤
|b|

(n+ 1)
,

|a3| ≤
2(1+ 2|b|)|b|
3(n+ 1)(n+ 2)

,

and ∣∣∣∣a3 − 43 n+ 1n+ 2
a22

∣∣∣∣ ≤ 2|b|
3(n+ 1)(n+ 2)

.
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Reasoning in the same line as in the proof of Theorem 2.3 we obtain

Theorem 2.6. Let b be a nonzero complex number and let f ∈ Scn(b). Then, for µ ∈ C holds∣∣a3 − µa22∣∣ ≤ 2|b|
3(n+ 1)(n+ 2)

max
{
1,
∣∣∣∣1+ 2b− µ3b2 n+ 2n+ 1

∣∣∣∣} .
For each µ there is a function in Fn(b) such that equality holds.
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