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We show how the double vector bundle structure of the manifold of double velocities,
with its submanifolds of holonomic and semiholonomic double velocities, is mirrored
by a structure of holonomic and semiholonomic subgroups in the principal prolongation
of the first jet group. We use the actions of these groups to construct holonomic and
semiholonomic submanifolds in the manifold of double contact elements, and show
that these give rise to affine bundles where a semiholonomic element has well-defined
holonomic and curvature components.
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1. Introduction

Since the time of Ehresmann it has been known that the velocities on a manifold E , the equivalence classes of maps
R

m ⊃ O → E under the relation of having the same value and derivatives up to some order r at zero, may be related to
the contact elements, the equivalence classes of m-dimensional submanifolds under the relation of having r-th order contact
at a point; the relationship involves the action of jet groups. It has also been known that nonholonomic jets, where the
action of taking a jet is repeated, give a generalisation which is important when considering questions of integrability, and
that there is an intermediate notion of semiholonomic jets where the generalisation is concentrated on just the highest
order derivatives, and which gives rise to a well-defined concept of curvature. These generalisations apply to both velocities
and contact elements, and it is of interest to discover the relations between them. An article by Kolář [3] (see also [4])
describes these relations, using the principal prolongations of jet groups [2] to obtain nonholonomic contact elements from
nonholonomic velocities.

At a meeting in Kraków for the eightieth birthday of W.M. Tulczyjew, the author gave a talk which also considered these
relations in the special case of double 1-velocities and double 1-contact elements, and the present paper describes some
elements of that talk. We show that the first principal prolongation of the first order jet group does indeed have a kind
of ‘double structure’ which is similar to that of the manifold of double 1-velocities. Indeed, the group was described in
the talk as the ‘double jet group’, but Jean Pradines has suggested to the author that this might result in confusion with
Ehresmann’s double groupoid, and so the terminology in this paper has been modified: we now call it the ‘principal jet
group’. We show that this group has three distinguished subgroups, the first of which may be canonically identified with
the second order (holonomic) jet group, the second of which has good claim to be called ‘semiholonomic’, and the third of
which may be called a ‘curvature’ subgroup. Although the action of the whole group on the double velocity manifold is free
only on a certain open submanifold, we show that the action of each of these subgroups is free on a larger submanifold

E-mail address: david@symplectic.demon.co.uk.
0926-2245/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.difgeo.2011.11.006

http://dx.doi.org/10.1016/j.difgeo.2011.11.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:david@symplectic.demon.co.uk
http://dx.doi.org/10.1016/j.difgeo.2011.11.006


60 D.J. Saunders / Differential Geometry and its Applications 30 (2012) 59–64
which includes vertical velocities. In this way we are able to construct a split short exact sequence of vector bundles over
the manifold of first order contact elements; we can therefore show that both the holonomic and the semiholonomic double
contact elements form affine bundles, and that each semiholonomic element gives rise to a unique holonomic/curvature pair.
Some of these results may also be obtained by considering submanifolds of Cartan spaces [3,4], and the author is grateful
to Ivan Kolář for helpful suggestions on this and other matters.

2. Preliminaries

In this section we give a rapid survey of basic results on velocities; the original ideas were described in the works of
Ehresmann [1], and [2] is a useful reference. See also [6] for double structures, and [5] for semiholonomic jets.

Let E be a manifold (finite-dimensional, smooth, Hausdorff, paracompact) with dim E = n. The manifold of first order
m-velocities in E will be denoted by T 1

m E , and the open submanifold of regular velocities by T̊ 1
m E; we consider only the

case where m < n. An element of T 1
m E is therefore of the form j1

0γ where γ : O → E is a map from a connected open
subset O ⊂ R

m with 0 ⊂ O into E; the velocity is regular when γ is an immersion near zero. We shall let τmE : T 1
m E → E be

the projection, and τ̊mE : T̊ 1
m E → E its restriction to regular velocities. Any map f : E1 → E2 gives rise to a prolonged map

T 1
m f : T 1

m E1 → T 1
m E2 by T 1

m f ( j1
0γ ) = j1

0( f ◦ γ ).
The jet group L1

m has elements of the form j1
0φ where φ : O → R

m satisfies φ(0) = 0 and is a diffeomorphism near zero;
composition is j1

0φ1 ◦ j1
0φ2 = j1

0(φ1 ◦ φ2), and the group may be identified with GL(m,R). This group has a right action on
T 1

m E given by j1
0γ · j1

0φ = j1
0(γ ◦ φ) which restricts to a free action on T̊ 1

m E . The quotient by this free action is a Hausdorff
manifold J 1

m E , the manifold of first order m-dimensional contact elements, and may be identified with the Grassmannian
manifold of m-planes in E; we shall denote a typical element of J 1

m E by [ j1
0γ ], and we shall let ρ : T̊ 1

m E → J 1
m E be the

projection and πmE : J 1
m E → E the induced map.

If E is fibred over some other manifold by π : E → M then T̊ 1
mπ ⊂ T̊ 1

m E will denote the subset of velocities where the
composite π ◦ γ is an immersion near zero; T̊ 1

mπ is an open submanifold of T̊ 1
m E . The prolongation T 1

mπ : T 1
m E → T 1

m M
restricts to T̊ 1

mπ → T̊ 1
m M , but need not restrict to T̊ 1

m E → T̊ 1
m M .

The free action of L1
m restricts to T̊ 1

mπ , and the quotient is an open submanifold J 1
mπ ⊂ J 1

m E which may be identified
with the manifold J 1π of jets of local sections of π by J 1π → J 1

mπ , j1
pψ �→ [ j1

0(ψ ◦ x−1)] where p ∈ M and where x is a
coordinate map on M around p.

We may apply these constructions where we start, not with E itself, but with its velocity manifold T 1
m E . The double

velocity manifold T 1
m T 1

m E is the total space of a double vector bundle: that is, there are two commuting vector bundle
structures τm(T 1

m E) : T 1
m T 1

m E → T 1
m E and T 1

mτmE : T 1
m T 1

m E → T 1
m E . By considering maps χ : O × O → E we may express ele-

ments j1
0γ̃ of T 1

m T 1
m E , where γ̃ : O → T 1

m E , as double jets j1
0(t �→ j1

0χt) where χt(s) = χ(s, t), and hence define an involution
e : T 1

m T 1
m E → T 1

m T 1
m E , the exchange map, by sending χ(s, t) to χ(t, s). The involution links the two vector bundle structures

on T 1
m T 1

m E , because τm(T 1
m E) ◦ e = T 1

mτmE .

The double vector bundle structure and the exchange map define distinguished submanifolds of T 1
m T 1

m E . The holonomic
submanifold T 2

m E is the fixed point set of the exchange map, and the semiholonomic submanifold T̂ 2
m E is the subset where

the two vector bundle projections τm(T 1
m E) and T 1

mτmE are equal; thus we see that T 2
m E ⊂ T̂ 2

m E .

These submanifolds may also be described by considering distinguished maps O → T 1
m E . Given any map γ : O → E , its

prolongation is the map j̄1γ : O → T 1
m E , j̄1γ (t) = j1

0(γ ◦ tt) where tt : R
m → R

m is the translation tt(s) = s + t . If γ̃ : O →
T 1

m E is a prolongation then necessarily γ̃ = j̄1(τmE ◦ γ̃ ); if this condition holds only at zero, so that γ̃ (0) = j̄1(τmE ◦ γ̃ )(0),
then γ̃ is called a semiprolongation. A velocity j1

0γ̃ ∈ T 1
m T 1

m E is semiholonomic when γ̃ is a semiprolongation, and it is
holonomic when some representative map γ̂ : O → T 1

m E , with j1
0γ̂ = j1

0γ̃ , is a prolongation (it need not be the case that γ̃

itself is a prolongation). The holonomic submanifold may be identified with the set of second order m-velocities { j2
0γ }.

Both the holonomic and the semiholonomic submanifolds of T 1
m T 1

m E define affine sub-bundles of the vector bundle
τm(T 1

m E) : T 1
m T 1

m E → T 1
m E . This may be seen by expressing the velocity bundle T 1

m E as a Whitney sum
⊕m T E and hence as

a tensor product T E ⊗E R
m∗ . The submanifold of vertical double velocities VmτmE may be written as

VmτmE ∼= V τmE ⊗T 1
m E R

m∗ ∼= τ ∗
mE

(
T 1

m E
) ⊗T 1

m E R
m∗ ∼= τ ∗

mE(T E) ⊗T 1
m E

⊗
2
R

m∗.

This is the vector bundle over T 1
m E on which T̂ 2

m E is modelled; it may be decomposed into its symmetric and skewsym-
metric parts,

V ∨
mτmE ∼= τ ∗

mE(T E) ⊗T 1
m E S2

R
m∗, V ∧

mτmE ∼= τ ∗
mE(T E) ⊗T 1

m E

∧2
R

m∗.

The symmetric part is the vector bundle over T 1
m E on which T 2

m E is modelled, and the decomposition gives rise to a
decomposition of semiholonomic double velocities

T̂ 2
m E = T 2

m E ⊕T 1
m E V ∧

mτmE

into holonomic and ‘curvature’ components.
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The concept of regularity may be applied in several different ways to double velocities. One observation is that the pair
of maps T 1

m T 1
m E → T 1

m E defining the double vector bundle structure restrict to a pair of maps T̊ 1
mτ̊mE → T̊ 1

m E rather than
T̊ 1

m T̊ 1
m E → T̊ 1

m E: that is, we need to consider regular velocities j1
0γ̃ satisfying the stronger condition that τmE ◦ γ is an

immersion. Also, we may define T̊ 2
m E = T 2

m E ∩ T 1
m T̊ 1

m E and ˚̂T 2
m E = T̂ 2

m E ∩ T 1
m T̊ 1

m E , and then

T̊ 2
m E ⊂ ˚̂T 2

m E ⊂ T̊ 1
mτ̊mE .

If we restrict the vector bundles VmτmE , V ∨
mτmE and V ∧

mτmE to points of T̊ 1
m E then we still have the decompositions

Vmτ̊mE = V ∨
m τ̊mE ⊕T̊ 1

m E V ∧
m τ̊mE

and

˚̂T 2
m E = T̊ 2

m E ⊕T̊ 1
m E V ∧

m τ̊mE .

It is often convenient to use local coordinates for proofs. If (U , ua) is a chart on E then coordinates on the preimage
of U in T 1

m E are (ua, ua
i ) where ua

i ( j1
0γ ) = Diγ

a(0); similarly, coordinates on the preimage in T 1
m T 1

m E are (ua, ua
i ; ua

· j, ua
ij).

The double vector bundle projections are given by

ua ◦ τm(T 1
m E) = ua, ua ◦ T 1

mτmE = ua,

ua
i ◦ τm(T 1

m E) = ua
i , ua

i ◦ T 1
mτmE = ua

·i
and the exchange map is given by

ua ◦ e = ua, ua
· j ◦ e = ua

j,

ua
i ◦ e = ua

·i, ua
ij ◦ e = ua

ji .

The semiholonomic submanifold is therefore defined by the constraint equations ua
i = ua

·i , and the holonomic submanifold
by these and the additional constraint equations ua

ij = ua
ji .

3. The structure of the principal jet group

The first order m-dimensional principal prolongation of a Lie group G is defined in [2] as the semidirect product of T 1
mG

and L1
m , where the velocity manifold T 1

mG is given the group operation j1
0γ1 · j1

0γ2 = j1
0(γ1 · γ2), with γ1 · γ2 being the

pointwise product (γ1 · γ2)(t) = γ1(t)γ2(t), and where the action of L1
m on T 1

mG by automorphisms is the one described in
the previous section. A similar definition is given for higher order principal prolongations. A recent paper by Kolář [3] has
shown how to use these prolongations, in the case where G is itself a jet group, to construct repeated contact elements
from repeated velocities. We shall describe this in the (1,1)-order case.

Recall first that L1
m acts on T̊ 1

m E to give J 1
m E as a quotient, so that T 1

m L1
m acts on T 1

m T̊ 1
m E to give T 1

m J 1
m E as a quotient.

Then, separately, L1
m acts on the submanifold T̊ 1

m J 1
m E ⊂ T 1

m J 1
m E to give J 1

m J 1
m E; consequently elements of T̊ 1

mρ ⊂ T 1
m T̊ 1

m E
project twice to elements of J 1

m J 1
m E . We shall write a general element of J 1

m J 1
m E as [[ j1

0γ̃ ]].
Write P 1,1

m for the semidirect product L1
m � T 1

m L1
m , with group operation

(
j1
0φ1, j1

0σ1
) · ( j1

0φ2, j1
0σ2

) = (
j1
0φ1 · j1

0φ2,
(

j1
0σ1 · j1

0φ2
) · j1

0σ2
);

if Ai
j denote the global GL(m,R) coordinates on L1

m and (Ai
j, Bi

jk) the corresponding global coordinates on T 1
m L1

m then the
product is given by

Ai
j

(
j1
0φ1 · j1

0φ2
) = Ai

k

(
j1
0φ1

)
Ak

j

(
j1
0φ2

)
,

Ai
j

((
j1
0σ1 · j1

0φ2
) · j1

0σ2
) = Ai

k

(
j1
0σ1

)
Ak

j

(
j1
0σ2

)
,

Bi
jk

((
j1
0σ1 · j1

0φ2
) · j1

0σ2
) = Bi

hl

(
j1
0σ1

)
Ah

j

(
j1
0σ2

)
Al

k

(
j1
0φ2

) + Ai
h

(
j1
0σ1

)
Bh

jk

(
j1
0σ2

)
.

Proposition 1. For maps χ : O × O → R
m define χs∗,χ∗t : O → R

m by

χs∗(t) = χ(s, t) − χ(s,0), χ∗t(s) = χ(s, t) − χ(0, t);
then each element of P 1,1

m may be written uniquely in the form

(
j1
0φ, j1

0σ
) = (

j1
0χ0∗, j1

0

(
t �→ j1

0χ∗t
))

where χs∗ , χ∗t are both immersions near zero.
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Proof. Given χ satisfying the immersion condition, let φ = χ0∗ and σ(t) = j1
0χ∗t . Conversely, given j1

0φ and j1
0σ , define

χ by

χ i(s, t) = Ai
j

(
j1
0σ

)
s j + Ai

j

(
j1
0φ

)
t j + Bi

jk

(
j1
0σ

)
s jtk.

The result then follows from the fact that ( j1
0χ0∗, j1

0(t �→ j1
0χ∗t)) is determined by D1χ(0,0), D2χ(0,0) and D1 D2χ(0,0).�

Corollary 2. The correspondence χ(s, t) �→ χ(t, s) determines a well-defined exchange map e : P 1,1
m → P 1,1

m satisfying λ ◦ e = μ
where

λ,μ : P 1,1
m → L1

m, λ
(

j1
0φ, j1

0σ
) = j1

0φ, μ
(

j1
0φ, j1

0σ
) = σ(0).

The map is a global diffeomorphism but is not a group homomorphism.

Proof. Immediate in coordinates. �
We may now define an element ( j1

0φ, j1
0σ) ∈ P 1,1

m to be semiholonomic if λ( j1
0φ, j1

0σ) = μ( j1
0φ, j1

0σ), and to be holonomic
if e( j1

0φ, j1
0σ) = ( j1

0φ, j1
0σ). It is clear from the definition that a semiholonomic element is of the form (σ (0), j1

0σ). In coor-
dinates, a semiholonomic element ( j1

0φ, j1
0σ) satisfies Ai

j( j1
0φ) = Ai

j( j1
0σ), and a holonomic element satisfies this condition

and, in addition, Bi
jk( j1

0σ) = Bi
kj( j1

0σ).

Proposition 3. The set L̂2
m of semiholonomic elements of P 1,1

m is a closed Lie subgroup. The set L2
m of holonomic elements is also a

closed Lie subgroup which may be identified with the second order jet group.

Proof. The fact that both L̂2
m and L2

m are closed Lie subgroups follows straightforwardly from the coordinate conditions. If
j2
0φ is an element of the second order jet group then

j2
0φ = j0

(
t �→ j0(t−φ(t) ◦ φ ◦ tt)

)

where t �→ j0(t−φ(t) ◦ φ ◦ tt) is a map O → L1
m , so we may identify j2

0φ with ( j1
0φ, j2

0φ) ∈ L2
m ⊂ P 1,1

m . Conversely, given an

element ( j1
0φ, j1

0σ) ∈ L2
m we may define φ̂ by

φ̂i(t) = Ai
j

(
j1
0σ

)
t j + 1

2 Bi
jk

(
j1
0σ

)
t jtk

and then j1
0φ = j1

0φ̂ and j1
0σ = j2

0φ̂. �
We have seen from the coordinate formulæ that L2

m is the subgroup of L̂2
m satisfying the symmetry condition Bi

jk = Bi
kj .

There is also a subgroup L̃2
m satisfying the corresponding skew-symmetry condition, Bi

jk + Bi
kj = 0, and we shall call this the

curvature subgroup. It may be defined abstractly by letting ∨ : L̂2
m → L2

m denote the projection arising from the symmetrising
map χ(s, t) �→ 1

2 (χ(s, t) + χ(t, s)) and putting L̃2
m = L1

m � ker∨, where we regard L1
m ⊂ L̂2

m by j1
0φ �→ ( j1

0φ, j1
0(1Rm )).

4. The principal jet group and double contact elements

We define the right action of the principal jet group P 1,1
m on the double velocity manifold T 1

m T 1
m E (see [3]) by

j1
0γ̃ · ( j1

0φ, j1
0σ

) = (
j1
0γ̃ · j1

0φ
) · j1

0σ ;
in coordinates, putting j1

0γ̃1 = j1
0γ̃ · ( j1

0φ, j1
0σ), this is

ua( j1
0γ̃1

) = ua( j1
0γ̃

)
,

ua
i

(
j1
0γ̃1

) = ua
h

(
j1
0γ̃

)
Ah

i

(
j1
0σ

)
,

ua
· j

(
j1
0γ̃1

) = ua
·k
(

j1
0γ̃

)
Ak

j

(
j1
0φ

)
,

ua
ij

(
j1
0γ̃1

) = ua
hk

(
j1
0γ̃

)
Ah

i

(
j1
0σ

)
Ak

j

(
j1
0φ

) + ua
h

(
j1
0γ̃

)
Bh

ij

(
j1
0σ

)
.

Lemma 4. The action of P 1,1
m restricts to a free action on T̊ 1

mρ ⊂ T 1
m T̊ 1

m E.
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Proof. To show that the action of P 1,1
m restricts to T̊ 1

mρ , write
(

j1
0φ, j1

0σ
) = (

j1
0(idRm ), j1

0

(
σ ◦ φ−1)) · ( j1

0φ, j1
0(1Rm )

)
and use properties of the separate actions of L1

m and T 1
m L1

m . A similar approach shows that if j1
0γ̃ · ( j1

0φ, j1
0σ) = j1

0γ̃ when
j1
0γ̃ ∈ T̊ 1

mρ then j1
0φ = j1

0(idRm ) and j1
0σ = j1

0(1Rm ). �
It is clear that the action of P 1,1

m is equivalent to the two-stage process of acting on T̊ 1
mρ first with T 1

m L1
m and then

with L1
m as described in the previous section, and that the quotient of T̊ 1

mρ by P 1,1
m is again J 1

m J 1
m E .

By choosing a subgroup of P 1,1
m we may find a larger submanifold of T 1

m T 1
m E on which the action is free.

Lemma 5. The action of the semiholonomic subgroup L̂2
m ⊂ P 1,1

m is free on T 1
m T̊ 1

m E.

Proof. This follows easily from the coordinate formula. If

ua
i

(
j1
0γ̃

) = ua
h

(
j1
0γ̃

)
Ah

i

(
j1
0σ

)

then Ah
i ( j1

0σ) = δh
i because γ̃ takes its values in T̊ 1

m E so that the matrix ua
h( j1

0γ̃ ) has maximal rank; the semiholonomic
condition now implies Ak

j( j1
0φ) = δk

j so that Bh
ij = 0. �

A justification for the names ‘holonomic subgroup’ and ‘semiholonomic subgroup’ comes from the following.

Proposition 6. An element ( j1
0φ, j1

0σ) ∈ P 1,1
m is in the semiholonomic subgroup L̂2

m if, and only if, it maps elements of ˚̂T 2
m E to ˚̂T 2

m E;
it is in the holonomic subgroup L2

m if, and only if, it maps elements of T̊ 2
m E to T̊ 2

m E.

Proof. These follow from the coordinate formula. The direct arguments are straightforward; for the converse, if there is at

least one element j1
0γ̃ ∈ ˚̂T 2

m E such that j1
0γ̃ · ( j1

0φ, j1
0σ) ∈ ˚̂T 2

m E then

ua
i

(
j1
0γ̃

) = ua
·i
(

j1
0γ̃

)
, ua

k

(
j1
0γ̃

)
Ak

i

(
j1
0σ

) = ua
·k
(

j1
0γ̃

)
Ak

i

(
j1
0φ

)

so that the maximal rank of ua
i ( j1

0γ̃ ) shows that Ak
i ( j1

0σ) = Ak
i ( j1

0φ) and hence that ( j1
0φ, j1

0σ) ∈ L̂2
m . A similar argument

applies for T̊ 2
m E and L2

m . �
We now consider the three vector sub-bundles Vmτ̊mE , V ∨

m τ̊mE , V ∧
m τ̊mE of T 1

m T̊ 1
m E .

Lemma 7. The free action of L̂2
m on T 1

m T̊ 1
m E restricts to Vmτ̊mE ; similarly the free actions of the subgroups L2

m and L̃2
m restrict to V ∨

m τ̊mE
and V ∧

m τ̊mE respectively.

Proof. This also follows easily from the coordinate formula. �
Theorem 8. Put

Vm J 1
m E = Vmτ̊mE/L̂2

m, V ∨
m J 1

m E = V ∨
m τ̊mE/L2

m, V ∧
m J 1

m E = V ∧
m τ̊mE /̃L2

m;
then each quotient space is a manifold, and is the total space of a vector bundle over J 1

m E.

Proof. Let ρ̂ : Vmτ̊mE → Vm J 1
m E be the quotient. Using coordinates (ua, ua

i , ua
ij) on Vmτ̊mE with ua

· j = 0 and with det(u j
i ) �= 0,

define coordinates (ua, uα
i , vα

i j) on the quotient (where α = m + 1, . . . ,n) by

ua ◦ ρ̂ = ua,

uα
i ◦ ρ̂ = uα

h rh
i ,

vα
i j ◦ ρ̂ = uα

hkrh
i rk

j − uα
h rh

k uk
pqr p

i rq
j

where rk
j u

j
i = δk

i . One may check that the coordinates are well-defined and give smooth transition functions, thus providing
a manifold structure on the quotient. One may also check, using these coordinates, that the vector space structure on
the fibres of Vmτ̊mE projects to the quotient, and that the vα

i j are linear fibre coordinates corresponding to linear local

trivialisations, so that Vm J 1
m E → J 1

m E is a vector bundle.
A similar approach may be used for the other two quotient spaces. �
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Corollary 9. The split short exact sequence of vector bundles over T̊ 1
m E

0 → V ∨
m τ̊mE → Vmτ̊mE → V ∧

m τ̊mE → 0

corresponding to the direct sum decomposition of Vmτ̊mE projects to a split short exact sequence of vector bundles over J 1
m E

0 → V ∨
m J 1

m E → Vm J 1
m E → V ∧

m J 1
m E → 0.

Proof. Once again coordinates may be used to show that the injections

V ∨
m τ̊mE , V ∧

m τ̊mE → Vmτ̊mE

pass to the quotient. For instance, if j1
0γ̃1, j1

0γ̃2 ∈ V ∨
m τ̊mE project to the same element of V ∨

m J 1
m E then

ua
ij

(
j1
0γ̃1

) = ua
hk

(
j1
0γ̃2

)
Ah

i Ak
j + ua

k

(
j1
0γ̃2

)
Bk

ij

for some element of L̂2
m with coordinates (Ak

j, Bk
ij); but ua

ij( j1
0γ̃1) = ua

ji( j1
0γ̃1) and ua

hk( j1
0γ̃2) = ua

kh( j1
0γ̃2), so that the max-

imal rank of the matrix ua
k( j1

0γ̃2) shows that Bk
ij = Bk

ji so that the element of L̂2
m must in fact be contained in the

subgroup L2
m . �

Finally, we define an element [[ j1
0γ̃ ]] ∈ J 1

m J 1
m E to be holonomic if at least one representative double velocity j1

0γ̃ is
holonomic, and to be semiholonomic if at least one representative j1

0γ̃ is semiholonomic; we write J 2
m E for the subset of

holonomic double contact elements, and Ĵ 2
m E for the subset of semiholonomic double contact elements.

Theorem 10. The subset Ĵ 2
m E is a submanifold of J 1

m J 1
m E and is the total space of an affine bundle over J 1

m E modelled on Vm J 1
m E; the

subset J 2
m E is also a submanifold of J 1

m J 1
m E and is the total space of an affine bundle over J 1

m E modelled on V ∨
m J 1

m E. Furthermore, we
may write

Ĵ 2
m E = J 2

m E ⊕ J 1
m E V ∧

m J 1
m E,

giving a decomposition of semiholonomic double contact elements into holonomic and ‘curvature’ components.

Proof. Once again we use coordinates. The coordinates (ua, ua
i , ua

ij) with ua
·i = ua

i and with det(u j
i ) �= 0 on ˚̂T 2

m E may be used

to define coordinates (ua, uα
i , vα

i j) on Ĵ 2
m E in the same way as in Theorem 8; indeed the standard method of constructing

coordinates on the manifold of first order contact elements may be used to construct coordinates (ua, uα
i , vα

· j, vα
i j) on the

open submanifold J 1
mπmE ⊂ J 1

m J 1
m E , the quotient of T̊ 1

mτmE ⊂ T̊ 1
mρ by P 1,1

m , and then Ĵ 2
m E ⊂ J 1

mπmE is the submanifold

satisfying the coordinate constraint vα
·i = uα

i . We may then check that the affine action of Vmτ̊mE on ˚̂T 2
m E projects to an

affine action of the vector bundle Vm J 1
m E on Ĵ 2

m E . The same argument applies in the holonomic case, where the additional
constraint ua

ij = ua
ji on T̊ 2

m E gives rise to a similar constraint vα
i j = vα

ji on J 2
m E . The decomposition of semiholonomic double

contact elements comes from the decomposition of semiholonomic double velocities and is independent of the choice of
representative. �
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