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Reflection makes sense of rotation of the eyes
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Abstract

Our 3-D percept of the world is constructed from the two-dimensional visual images on the retina of each eye, but these images and
the relationships between them are affected by the 3-D rotations of each eye. These 3-D eye rotations are constrained to patterns such as
Listing’s law, or its generalisation ‘L2’, according to the context. Our understanding of the patterns of such three-dimensional eye rota-
tions, and their effect on the retinal images, has been greatly advanced by the development of algebraic methods (Haustein, 1989; Tweed
& Vilis, 1987; Westheimer, 1957) for calculating the effect of eye rotations. But not many would say, with Dirac, that they understand the
equations describing the 3-D geometry in the sense that they have ‘‘a way of figuring out the characteristic of its solution without actually
solving it’’ (Dirac, according to Feynman, Leighton, & Sands, 1964). I show here how the geometry of 3-D rotations of the eye and their
visual effects can be made easier to understand by use of the principle that a rotation through angle a can be achieved by a pair of reflec-
tions in planes with an angular separation a/2, and a common line that is the rotation axis (Tweed, 1997b; Tweed, Cadera, & Vilis, 1990).
Mathematically (see Appendix A), the method is equivalent to decomposing the unit quaternions so successfully used to study three-di-
mensional eye rotations (Tweed & Vilis, 1987; Westheimer, 1957) into pairs of pure quaternions (ones whose scalar part is zero) which
represent the reflections (Coxeter, 1946).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Helmholtz (1910/1962) showed that in viewing a distant
scene with the head stationary, the torsional rotation (c) of
the eye is related to the azimuth (a) and elevation (b) of the
line of sight, by the formula

tanðc=2Þ ¼ � tanða=2Þ tanðb=2Þ ð1Þ
He also showed that this is equivalent to the principle

that the eye rotates only to those orientations that can be
realised by a rotation from a unique ‘primary position’
(roughly straight ahead) about a single axis in a plane per-
pendicular to primary position. He termed this Listing’s
law, and the plane is termed Listing’s plane. There is a cor-
ollary to Listing’s law that has come to be known as the
‘half-angle-rule’: the axis about which the eye rotates from
one non-primary orientation to another is not in Listing’s
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plane but in one tilted away from it by half the angle of
eccentricity of the starting orientation. Some have sought
to relate the half-angle rule to the recently re-discovered
extraocular muscle pulleys (Clark, Miller, & Demer,
2000; Miller, 1989; Sappey et al., 1888; Simonsz, Harting,
De Waal, & Verbeeten, 1985) by arguing that the pulley
geometry might allow the brain to realise Listing’s law
more simply (Raphan, 1998), but Tweed, Haslwanter,
and Fetter (1998) and Tweed, Haslwanter, Happe, and
Fetter (1999) have pointed out that the need for eye rota-
tions to fit different patterns in the vestibulo-ocular reflex
undermines this view, and other roles for the pulleys have
been proposed (Quaia & Optican, 1998).

My purpose here is to show how thinking in terms of
reflections rather than rotations clarifies the relationship
of these results, and also to demonstrate the usefulness of
the same way of thinking of the geometry underlying the
generalisation of Listing’s law ‘L2’ that is needed to
account for binocular eye orientation when viewing nearby
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targets. A preliminary account of these results (Judge,
2003) was presented at the ARVO meeting in 2003.

2. Methods

A rotation is equivalent to a pair of reflections in intersecting planes
(Tweed, 1997b; Tweed et al., 1990). The rotation axis is the intersection
line of the two reflecting planes (RPs), and the angle of rotation is twice
the angular separation of the RPs. The angular position of the pair of
RPs is immaterial so long as their common axis and angular separation
are constant, and this principle that the reflection pairs can be rotated
en bloc about the axis of the equivalent rotation to a convenient position
is part of why reflection pairs are so useful. Fig. 1 shows an upward rota-
tion of the eye from primary position in one of the coordinate systems
commonly used for consideration of eye movements in which the X axis
is leftwards, the Y axis upwards and the Z axis forwards. This convention
is used throughout. The first (white) RP is chosen to be in the horizontal
plane. Reflection in this plane inverts the eye—as indicated by the change
from the black half-pupil being lower in Fig. 1A to upper in Fig. 1B.
Reflection in the second (green) plane (Fig. 1C) then has two effects: first
to undo the up-down inversion caused by reflection in the first (white)
plane, and secondly to rotate the eye about the Y (horizontal) axis through
twice the angle separating the green and white RPs.

Consider now adding a third (red) reflection plane, again with the same
common line/axis. For convenience, rotate the first pair of reflection
planes so that the green RP coincides with the red RP (Fig. 1D, with
the coincident plane being shown as yellow). Reflections in that yellow
plane now cancel one another out, leaving the overall effect of the three
RPs (white, green and red) that of reflection in the new position of the
white plane (Fig. 1E). So whereas a pair of reflections (about RPs with
a common axis) is equivalent to a rotation, three reflections is still a reflec-
tion. There is a subsidiary point to emphasise here, which is that in con-
sidering the effect of more than two RPs, one must only rotate pairs of
reflection planes in a way that preserves the order in which the reflections
are considered, because reflections, like rotations, do not commute. To
match the convention for rotations, pairs of reflections that correspond
to downward, leftward or clockwise rotation from the subject’s point of
view are reckoned positive.
Fig. 1. (A–C) A rotation can be realised by a sequence of two reflections, in pla
angular separation is half the rotation angle. (D–F) Adding a third (red) re
intermediate (white) plane. (For interpretation of the references to colour in th
3. Results

I shall first show why Listing’s law and the half-angle-rule
are equivalent. Fig. 2A shows a rotation in elevation from
primary position (conventionally indicated by the forward,
Z, axis) realised by two reflections. The first is in Listing’s
plane (white); the second in a (green) plane tilted back by half
the elevation angle from Listing’s plane. Fig. 2B shows a sec-
ond rotation about a (midline) axis in this tilted plane realised
by two reflections, the first in the same tilted (green) plane,
and the second in the red plane. Fig. 2C shows both rotations
together. Because the middle two (green) reflection planes are
identical, their effects cancel out and the overall rotation is
that caused by the first (white) and last (red) RPs (Fig. 2D).
The first reflection plane is in Listing’s plane, and because
the rotation axis (blue line) is the one line that lies in both
reflecting planes, the rotation axis must lie in Listing’s plane.
The final position therefore accords with Listing’s law.

For the sake of clarity I have set out the argument with
the starting position the primary position, and the first
rotation a pure elevation, but a very similar argument
applies if the first rotation is about any axis in Listing’s
plane (i.e. when after that rotation the eye is in an arbitrary
tertiary position). Call the angle of this rotation a Then a
similar geometrical construction to that above, using pairs
of reflections, shows that a second rotation from this tertia-
ry position must be about an axis tilted a/2 back from the
normal to the line of sight in the tertiary position in order
for the new eye position to lie in Listing’s plane.

The argument above is then general and therefore the
half-angle rule is equivalent to Listing’s law in its usual
formulation.
nes (white and green) whose common axis is the rotation axis, and whose
flection plane converts the rotation back into a reflection, albeit in an
is figure legend, the reader is referred to the web version of this paper.)



ig. 2. The half-angle-rule for compound rotations is equivalent to Listing’s
w. (A) Reflection in the white and green planes (in that order) followed by
) reflection in the green and red planes, is equivalent to (C and D) reflection
the white and red planes, because the two reflections in the green plane

ancel one another out. The rotation (blue axis) formed by the intersection of
e white and red planes is necessarily in the white plane, and this is Listing’s
w. (For interpretation of the references to colour in this figure legend, the

eader is referred to the web version of this paper.)
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Fig. 3. (A) The equation tan(c/2) = �tan(a/2)tan(b/2) relating Helmholtz to
triangle formed by the intersection of the reflection planes (RPs) for the three
distance above the centre of rotation, O, of the eye. (B) The position of the red
planes is c/2. The yellow RP is in the midline. (C) The position of the yellow
between the planes is �a/2. (D) The blue and white RPs need to realise the ch
plane is in Listing’s (X–Y) plane. Because the red, green and blue RPs coincid
meet in a line because we stipulated that in A.) The intersection of that reflecti
therefore be in Listing’s plane. (For interpretation of the references to colour i
Note that the position of the two pairs of RPs is con-
strained by the requirements that the second RP of the first
pair, and first RP of the second pair, coincide and that the
second rotation obeys the half-angle rule. There is only one
way the RPs can be placed.

As a further indication of the value of thinking in terms
of reflections and the appropriate diagram, consider for-
mula (1), relating torsion, c, azimuth, a, and elevation, b,
in a Helmholtz coordinate system, where the rotations
are specified respectively about the line of sight, about a
space vertical axis, and about a space horizontal axis—in
that order. Derivation of this result requires some algebraic
manipulation even using the quaternion representation of
rotations (Tweed, 1997a) and occupies three pages of trig-
onometry in Helmholtz (1910/1962). Think of formula (1)
as expressing the fact that the three rotations specify a right
angle triangle in which the sides opposite and adjacent to
angle �a/2 have length tan(c/2) and tan(b/2) respectively,
so that:

tanða=2Þ ¼ � tanðc=2Þ= tanðb=2Þ ð2Þ
Where is this triangle? Fig. 3A shows that it is in a hor-

izontal plane unit distance above the centre of rotation of
the eye. It is formed by the intersection of the horizontal
plane unit distance above the X–Z plane with the red, white
and green planes. Fig. 3B shows the positions of the two
rsion, c, azimuth, a, and elevation, b, can be visualised as describing the
rotations with the plane passing through the points S, T, U and V and unit
and yellow RPs needed to produce torsion c. The angle (SPV) between the
and green RPs needed to realise azimuthal rotation �a. The angle (VTS)

ange in elevation, b. The angle (UPV) between the planes is b/2. The white
e in a single line their combined effect is a single reflection. (We know they
on plane (not shown) with the white plane is the rotation axis, which must
n this figure legend, the reader is referred to the web version of this paper.)



Fig. 4. Requiring that the epipolar plane will lie on the horizontal
meridian of each eye, whatever the elevation and azimuth, leads to the
same prediction of the divergence of the Listing planes of the two eyes as
the generalisation of Listing’s law known as L2. (A) The vertical green and
white RPs realise convergence that is not necessarily symmetrical. Because
in primary position the horizontal retinal meridia of both eyes lie in the
epipolar plane, and these rotations are about a common axis normal to
that plane, the horizontal meridia continue to lie in the epipolar plane
after this convergence. (B) A common rotation in elevation is realised by
the white and red RPs. Because the white RPs are coincident, their effects
cancel out, and the overall rotation (of each eye) is that realised by the
green and red RPs alone. The left eye therefore rotates about an axis in a
plane tilted k/2 temporally from the fronto-parallel plane and the right eye
rotates about an axis tilted temporarily by q/2. As k � q = c, where c is the
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RPs (red and yellow in that order) that achieve a torsional
rotation, c. The yellow plane is in the midline (Y–Z) plane.
Fig. 3C shows the RPs (yellow and green in that order) that
achieve azimuthal rotation, �a (negative because the rota-
tion is rightwards), and Fig. 3D shows the RPs (blue and
white in that order) that achieve elevation b (positive
because the rotation is downwards). As the plane of the
triangle is unit distance above the centre of rotation of
the eye, the red side of the triangle has length tan(b/2).
The white side of the triangle has length tan(c/2). The angle
in the horizontal plane between the red and green planes (in
that order) is �a/2. Hence (2) follows.

To see why this configuration is equivalent to Listing’s
law, note first that because the yellow plane is common to
both pairs of reflections, its effects cancel out. Fig. 3E shows
that the combination of the torsional and azimuthal rota-
tions is therefore a rotation about the common axis of the
red and green RPs. Fig. 3F shows the addition of the RPs
(blue and white in that order) achieving an elevation b. Note
from Fig. 3A that the red, green and blue planes each have
two common points, P and T, and therefore intersect in a sin-
gle line from P to T. The blue plane therefore passes through
the rotation axis of the red and green RPs1 and the three
planes together therefore have the effect of a single reflection,
by the principle derived above that three reflections with a
common axis are still a reflection. We have now reduced
the three pairs of RPs to two—the reflection plane of the
reflection that is the compound of the red, green and blue
RPs (let us call it the RGB reflection plane), and the white
RP, which is in Listing’s plane. (Note that to avoid further
complicating an already complicated figure the RGB reflec-
tion plane is not shown in Fig. 3F.) The rotation the RGB
plane and the white plane comprise must therefore be a rota-
tion about an axis in Listing’s plane, as required.

Consider now both eyes rather than only one. Listing’s
law is not valid in convergence, but a generalisation of it
known as L2 (Minken & Van Gisbergen, 1994; Mok, Ro,
Cadera, Crawford, & Vilis, 1992; Tweed, 1997a; Van Rijn
& Van den Berg, 1993) is valid: in convergence by angle m
the Listing’s planes of each eye rotate temporally by km,
making the angle between them 2km. There is some debate
about the usual value of k (Minken & Van Gisbergen,
1994; Mok et al., 1992; Tweed, 1997a; Van Rijn & Van
den Berg, 1993). My purpose here is not to enter into that
debate, but only to show that consideration of the eye rota-
tions in terms of reflections makes it easy to see that requir-
ing the epipolar plane (that defined by the lines of sight of
the two eyes when viewing a single common real target) to
lie on the horizontal retinal meridian of each eye leads to
the angle between the Listing planes of the two eyes being
m/2—the value one expects from L2 with k = 0.25.

Fig. 4 shows the construction necessary. Consider a con-
vergence position in the horizontal plane achieved by rotat-
1 This is a difficult point to appreciate when one first comes to it, and
this may be a point to reflect on, if one may pardon the pun.
ing the left eye angle k clockwise and the right eye angle q
anti-clockwise about a vertical axis (as seen from above).
For the left eye this is achieved by reflection first in a ver-
tical RP placed k/2 anti-clockwise from the fronto-parallel
plane, and then by reflection in the fronto-parallel plane.
For the right eye the vertical RPs are q/2 clockwise from
the fronto-parallel plane and in the fronto-parallel plane
(Fig. 4A). With no elevation (or torsion), the fixation point,
the foveae and the horizontal retinal meridia of both eyes
are all in the horizontal (X–Z) plane. To maintain them
co-planar as (Helmholtz) elevation is altered, elevation
must be by a common head-fixed angle. This elevation is
accomplished by common (white) RPs in the fronto-paral-
lel plane, followed by reflection in common (red) RPs tilted
back out of this plane. In both eyes, the middle two (white)
RPs of the convergence and elevation rotations are the
same and so cancel one another out, leaving the green
and red planes to define the overall rotation axes. The
green RP is k/2 anti-clockwise from the fronto-parallel
plane for the left eye, and q/2 clockwise for the right.
The angle between these two planes is (k/2) � (q/2) = m/2,
convergence angle, the Listing planes of the two eyes rotate temporally so
that the angle between them is (k � q)/2 = c/2. This is what is predicted by
the generalisation of Listing’s law known as L2. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this paper.)
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where m = k � q, the convergence angle—the result predicted
by L2 with k = 0.25.

4. Conclusions

Those familiar with the mathematics of 3-D rotation will
suspect that it must be possible to describe reflections using
quaternions (Tweed & Vilis, 1987; Westheimer, 1957), or
the equivalent rotation vector algebra (Haustein, 1989).
The general principles of how this can be done were laid
out with great clarity by Coxeter (1946), whose paper
appears not be known to the vision or oculomotor commu-
nities, and the mathematical relationship between reflec-
tions, rotations and quaternions has been discussed more
recently by Tweed and co-workers (Tweed, 1997b; Tweed
et al., 1990) Coxeter remarked in 1946 that it was curious that
neither Cayley nor others who followed him in using quater-
nions for the discussion of rotations ‘‘thought of considering
first the simpler operation of reflection and deducing a rota-
tion as the product of two reflections.’’ It is indeed curious
that this useful relationship has been so long neglected.
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Appendix A. Reflections, quarternions and rotations

A reflection of vector r is achieved by the operation of
left and right multiplication by quaternion q

r0 ¼ q r q ðA:1Þ
where q is a unit quaternion with no scalar part, known as a
‘pure’ quaternion. Pure quaternions have the property that
qq = �1. It follows that q�1, the inverse of q, is given by

q�1 ¼ �q ðA:2Þ
Also, if p is a second pure quaternion,

qp ¼ ðpqÞ�1 ðA:3Þ
If p and q specify reflection planes related to one another
by a rotation through angle a/2, then the sequence of reflec-
tion q followed by reflection p causes the transformation

r00 ¼ pq r qp ðA:4Þ
By the use of (A.3) above

r00 ¼ pq r ðpqÞ�1 ðA:5Þ
It can be shown that pq is a unit quaternion with scalar
part cos (a/2), where a/2 is the angle between the two reflec-
tion planes; and vector part magnitude sin (a/2).
Another way of treating reflections and rotations alge-
braically is by using Clifford algebra. See http://www.
physpharm.fmd.uwo.ca/undergrad/tweedweb/ch6Mirror.htm.
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