JOURNAL OF FUNCTIONAL ANALYSIS 53, 224-230 (1983)

Exposed Points and Extremal Problems in H¹

ΤΑΚΑΗΙΚΟ ΝΑΚΑΖΙ

Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo 060, Japan

Communicated by the Editors

Received September 7, 1981

If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on the Hardy space H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta}) \,\phi(e^{i\theta}) \,d\theta/2\pi.$$

Let S_{ϕ} be the set of functions in H^1 which satisfy $T_{\phi}(f) = ||T_{\phi}||$ and $||f||_1 \leq 1$. It is known that if ϕ is continuous, then S_{ϕ} is weak-* compact and not empty. For many noncontinuous ϕ each S_{ϕ} is weak-* compact and not empty. A complete description of S_{ϕ} if S_{ϕ} is weak-* compact and not empty is obtained. S_{ϕ} is not empty if and only if $S_{\phi} = S_{\phi}$ and $\psi = |f|/f$ for some nonzero f in H^1 . It is shown that if $\phi = |f|/f$ and f = pg, where p is an analytic polynomial and g is a strong outer function, then S_{ϕ} is weak-* compact. As the consequence, if f = p, then S_{ϕ} is weak * compact.

1. INTRODUCTION

Let U be the open unit disc in the complex plane and let ∂U be the boundary of U. If f is analytic in U and $\int_{-\pi}^{\pi} \log^+ |f(re^{i\theta})| d\theta$ is bounded for $0 \le r < 1$, then, $f(e^{i\theta})$ which we define to be $\lim_{r\to 1} f(re^{i\theta})$, exists almost everywhere on ∂U . If

$$\lim_{r \to 1} \int_{-\pi}^{\pi} \log^{+} |f(re^{i\theta})| \, d\theta = \int_{-\pi}^{\pi} \log^{+} |f(e^{i\theta})| \, d\theta,$$

then f is said to be the class N_+ . The set of all boundary functions in N_+ is denoted by N_+ again. For $0 , the Hardy space <math>H^p$, is defined by $N_+ \cap L^p$ and $1 \le p \le \infty$, it coincides with the space of functions in L^p whose Fourier coefficients with negative indices vanish. If h in N_+ has the form

$$h(z) = \exp\left\{\int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log|h(e^{it})| dt/2\pi + i\alpha\right\} \qquad (z \in U)$$

0022-1236/83 \$3.00 Copyright © 1983 by Academic Press, Inc.

All rights of reproduction in any form reserved.

for some real α , h is called an outer function. We call q in N_+ an inner function if $|q(e^{i\theta})| = 1$ a.e. on ∂U . Each nonzero f in H^1 has a unique factorization of the form f = qh, where q is an inner function and h is an ouher function.

DEFINITION. Let g be a nonzero function in H^1 . The g is called a strong outer function (or strong outer) if it has the following properties: If f is a nonzero function in H^1 and $\arg f(e^{i\theta}) = \arg g(e^{i\theta})$ a.e. on ∂U , then $f = \gamma g$ for some positive constant $\gamma > 0$.

The author [5] determined strong outer functions in the set of all analytic polynomials. It is known (cf. [6]) that if g^{-1} belongs to H^1 or $\operatorname{Re} g(e^{i\theta}) \ge 0$ a.e. on ∂U , then g is strong outer. Of course a strong outer function is an outer function but the converse is not valid. In Section 1, we obtain a complete description of S_{ϕ} in case $\phi = \overline{z}^m |g|/g$, where $m \in Z_+$ and g is strong outer. Z_+ denotes the set of all nonnegative integers. In Section 2, as a consequence of the result in Section 1 we describe S_{ϕ} if S_{ϕ} is weak-* compact and not empty. In Section 3, we show that if $\phi = |f|/f$ and f = pg, where p is an analytic polynomial and g is strong outer, then S_{ϕ} is weak-* compact and not empty. In Section 4, we consider the exposed points of S and strong outer functions, where S denotes the unit sphere of H^1 .

Let C denote the space of continuous functions on ∂U and set $A = H^{\infty} \cap C$. Then $H^1 = (C/zA)^*$. S is weak-* compact but in general S_{ϕ} is not weak-* compact. If $\phi \in C$, then S_{ϕ} is weak-* compact and not empty.

If $\phi \in L^{\infty}$, we denote by T_{ϕ} the functional defined on H^1 by

$$T_{\phi}(f) = \int_{-\pi}^{\pi} f(e^{i\theta}) \,\phi(e^{i\theta}) \,d\theta/2\pi.$$

The norm of T_{ϕ} is $||T_{\phi}|| = \sup\{|T_{\phi}(f)| : f \in S\}$ and let S_{ϕ} denote the set of all $f \in S$ for which $T_{\phi}(f) = ||T_{\phi}||$. The functions in S_{ϕ} are called extremal functions. By the duality relation

$$\|T_{\phi}\| = \|\phi + zH^{\infty}\|,$$

where $\|\phi + zH^{\infty}\| = \inf\{\|\phi + h\|_{\infty} : h \in zH^{\infty}\}$. A function $\psi = \phi + k_0$ $(k_0 \in zH^{\infty})$ for which $\|T_{\phi}\| = \|\psi\|_{\infty}$ is called an extremal kernel. At least one extremal kernel must exist but it is not unique in general. For some ϕ , S_{ϕ} may be empty but if ϕ is continuous on ∂U , then S_{ϕ} is not empty. The author [4] showed that if $\|T_{\phi}\| > \lim \|T_{zn_{\phi}}\|$, then S_{ϕ} is not empty. If ϕ is continuous on ∂U , then $\lim \|T_{zn_{\phi}}\| = 0$.

2.
$$\phi = \bar{z}^m |g|/g$$

In this section, we prove the main theorem which gives a description of S_{ϕ} for $\phi = \overline{z}^m |g|/g$, where $m \in \mathbb{Z}_+$ and g is strong outer. If $g^{-1} \in H^1$, then it is easy to give the description of S_{ϕ} , using the following Lemma 1 which was proved by Helson and Sarason [2]. Suppose $S^1 = \{f \in H^1; \|f\|_1 = 1\}$. In particular if g = 1, then

$$S_{\overline{z}m} = \left\{ \gamma \prod_{j=1}^{m} (z-a_j)(1-\overline{a}_j z) \in S^1; \gamma > 0 \text{ and } 0 \leq |a_j| \leq 1 \right\}.$$

LEMMA 1. If $F \in \overline{z}^n H^{1/2}$ is nonnegative a.e. on ∂U , then F is a trigonometric polynomial of degree at most n.

LEMMA 2. Let $\phi = \bar{q} |h|/h$, where q is an inner function and h is an outer function in H^1 . Suppose $q = q_1 \cdots q_l$ and q_j $(1 \le j \le l)$ is a nonconstant inner function. Then, for any b_j with $|b_j| \le 1$ $(1 \le j \le l)$ there exists $f \in S_{\phi}$ such that $f(v_1) = \cdots = f(b_l) = 0$.

Proo: If $f_0 = \gamma_0 h \prod_{j=1}^l (q_j - q_j(0))(1 - \overline{q_j(0)} q_j) \in S^1$ for some positive constant γ_0 , then $f_0 \in S_{\phi}$. For $\overline{q} \prod_{j=1}^l (q_j - q_j(0))(1 - \overline{q_j(0)} q_j) \ge 0$ a.e. on ∂U . Since $f_0/z^l \in H^1$, for any b_j with $|b_j| \le 1$ $(1 \le j \le l)$

$$\gamma(f_0/z^l)\prod_{j=1}^l (z-b_j)(1-\bar{b_j}z)$$

belongs to S_{ϕ} for some positive constant y.

LEMMAA 3. Suppose $\phi = \overline{z}^m |g|/g$ $(m \in \mathbb{Z}_+)$ and g is a strong outer function. If $f \in S_{\phi}$, then the inner part of f is a finite Blashke product which does not have more than m zeros in U.

Proof. If there exists an $f \in S_{\phi}$ such that $f(a_1) = \cdots = f(a_{m+1}) = 0$ and $|a_j| < 1$ $(1 \le j \le m+1)$, then there exists $f_0 \in S_{\phi}$ with $f_0 = z^{m+1}k$ for some $k \in H^1$ Then $zkg^{-1} \ge 0$ a.e. on ∂U and so zk = g because g is strong outer. This contradicts that g is an outer function.

THEOREM 1. If $\phi = \overline{z}^m |g|/g$, where $m \in \mathbb{Z}_+$ and g is strong outer, then

$$S_{\phi} = (\{\gamma\} \times S_{\overline{z}^m} \times g) \cap S^1.$$

Proof. The proof is by induction on *m*. Set $\phi_m = \overline{z}^m |g|/g$. If m = 0, then $S_{\phi_0} = \{g/\|g\|_1\}$ clearly. Assume $S_{\phi_m} = (\{\gamma\} \times S_{\overline{z}^m} \times g) \cap S^1$ for $1 \le m \le n$. If $f \in S_{\phi_{n-1}}$, then

$$F = (f + z^{n+1}g)/2 \in S_{\phi_{n+1}}.$$

The F is not an outer function by a theorem of de Leeuw and Rudin [1, Theorem 1] because $||F||_1 = 1$ and F is not an extreme point of S. By Lemma 3, F has the form

$$F=\prod_{j=1}^{l}\frac{z-a_j}{1-\tilde{a}_j z}h,$$

where $1 \le l \le n+1$, $|a_j| < 1$ $(1 \le j \le l)$ and h is an outer function. Set

$$k = \frac{1}{\alpha} \prod_{j=1}^{l} \frac{h}{(1 - \overline{a_j} z)^2}$$

for some positive constant α and $||k||_1 = 1$. Then the k is an outer function in H^1 and $F = \alpha \prod_{j=1}^{l} (z - a_j)(1 - \overline{a_j}z) k$. Since $F\overline{z}^{n+1}g^{-1} \ge 0$ a.e. on ∂U and $F^{-1}z^lk \ge 0$ a.e. on ∂U , $z^lk\overline{z}^{n+1}g^{-1} \ge 0$ a.e. on ∂U and so the k belongs to $S_{\phi_{n-l+1}}$. By the hypothesis of induction,

$$k = \beta \prod_{j=1}^{n-l+1} (z-b_j)(1-\bar{b_j}z) g,$$

where $\beta > 0$ and $|b_j| \leq 1$. Set $a_{l+j} = b_j$ for $1 \leq j \leq n - l + 1$, then

$$F = \alpha \beta \prod_{j=1}^{n+1} (z-a_j)(1-\bar{a}_j z) g.$$

Set $f_0 = 2\alpha\beta \prod_{j=1}^{n+1} (z-a_j)(1-\bar{a}_j z) - z^{n+1}$, then $f = 2F - z^{n+1}g = f_0 g$. Since $\bar{z}^{n+1}g^{-1}f \ge 0$ a.e. on ∂U and so $\bar{z}^{n+1}f_0 \ge 0$ a.e. on $\partial U, f_0 \in \{\gamma\} \times S_{\bar{z}^{n+1}}$ and hence f belongs to $(\{\gamma\} \times S_{\bar{z}^{n+1}} \times g) \cap S^1$.

3. S_{ϕ} is Weak-* Compact

The following lemma is known in the proof of [1, Theorem 10]. We shall give a simple proof in which we do not use a theorem of O. Frostman.

LEMMA 4. If $\phi \notin zH^{\infty}$ and S_{ϕ} is weak-* compact and nonempty, then the inner part of f for every $f \in S_{\phi}$ is a finite Blashke product which does not have more than m zeros on U.

Proof. If there were functions in S_{ϕ} with arbitrarily many zeros in U, then by Lemma 2, S_{ϕ} would contain functions f_n (n = 1, 2,...) with

$$f_n(1/2) = f_n(1/3) = \cdots = f_n(1/n) = 0.$$

This contradicts the weak-* compactness of S_{ϕ} . Lemma 2 shows that the inner part of every $f \in S_{\phi}$ is a finite Blashke product and hence the lemma follows.

THECREM 2. If $\phi \in L^{\infty}$ and $\phi \notin zH^{\infty}$, then the following are equivalent:

(1) S_{ϕ} is weak-* compact and not empty.

(2) The inner part of every f in S_{ϕ} is a finite Blashke product which does not have more than m zeros in U.

(3) The extremal kernel ψ of ϕ has the form: $\psi = \overline{z}^m |g|/g$, where g is strong cuter and $m \in \mathbb{Z}_+$.

- (4) $S_{\phi} = (\{\gamma\} \times S_{\overline{z}m} \times g) \cap S^1$, where g is strong outer and $m \in \mathbb{Z}_+$.
- (5) The dimension of the linear span of S_{ϕ} is finite and 2m + 1.

Proof: (1) \Rightarrow (2) is proved in Lemma 4. (2) \Rightarrow (3) (cf. [1, Theorem 10]). $z^m g \in S_{\phi}$ for some $g \in H^1$ and $g(0) \neq 0$. Then the g is strong outer. For if $\arg g_1(e^{i\theta}) = \arg g(e^{i\theta})$ a.e. on ∂U for some $g_1 \in S^1$, then by [1, Theorem 1] $(g + g_1)/2$ is not an outer function. By Lemma 2, there exists $g_2 \in S^1$ such that $\arg g_2(e^{i\theta}) = \arg g(e^{i\theta})$ a.e. on ∂U and $g_2(0) = 0$. Then $z^m g_2 \in S_{\phi}$ and this contradicts (2). (3) \Rightarrow (4) is proved in Theorem 1. (4) \Rightarrow (5), (5) \Rightarrow (2), and (4) \Rightarrow (1) are clear.

The author [4] proved that if $||z^n \phi + zH^{\infty}|| < ||\phi + zH^{\infty}||$ for some $n \in \mathbb{Z}_+ \setminus \{0\}$, then $S_{\phi} \neq \emptyset$ and S_{ϕ} is weak-* compact. We shall consider the case $||z''\phi + zH^{\infty}|| = ||\phi + zH^{\infty}||$ for any $n \in \mathbb{Z}_+ \setminus \{0\}$.

LEMMA 5 [3, p. 231]. Let $\phi \in L^{\infty}$ and $|\phi| = 1$ a.e. Then there is a nonzero $k \in H^{\infty}$ such that

$$\|\phi - k\|_{\infty} \leq 1$$

if and only if there is a nonzero $h \in H^1$ with

$$\phi = h/|h|.$$

THECREM 3. Suppose $S_{\phi} \neq \emptyset$ and ϕ is an extremal kernel. If there exists a nonzero k_0 in zH^{∞} such that $||z^{n+1}\phi + k_0||_{\infty} \leq ||\phi + zH^{\infty}||$ for some $n \in \mathbb{Z}_+$ then

$$h \times S_{\phi} \subset S_{\overline{z}n}$$

for some $m \in Z_+$ and some h in H^1 . Hence S_{ϕ} is weak-* compact.

Prooj: If $f \in S_{\phi}$, then $||z^{n+1}| f|/f + k_0|| \leq 1$ and so

$$z^n \frac{|f|}{f} = \frac{h}{|h|}$$

for some nonzero $h \in H^1$ by Lemma 5. Hence $\overline{z}^n fh \ge 0$ a.e. on ∂U and $fh \in H^1$ by Lemma 1. Thus $\gamma \times h \times S \subset S_{\overline{z}^n}$.

Suppose $\phi = |f|/f$ for some nonzero $f \in H^1$. If there exists a nonzero $h \in H^1$ such that hf is an analytic polynomial, then S_{ϕ} is weak-* compact by Lemma 5 and Theorem 3 [5].

THEOREM 4. Suppose $\phi = |f|/f$ for some nonzero f in H^1 . If f = pg, where p is an analytic polynomial of degree n and g is strong outer, then the inner part of every F in S_{ϕ} is a finite Blashke product which does not have more than n zeros in U and so S_{ϕ} is weak-* compact.

Proof. If the inner part of $F_1 \in S_{\phi}$ is a finite Blashke product which has n + 1 zeros in U, then $z^{n+1}h \in S_{\phi}$ for some nonzero $h \in H^1$ by Lemma 2. If $p = a \prod_{j=1}^{s} (z - a_j) \prod_{j=s+1}^{n} (1 - \bar{a}_j z)$, where $|a_j| \leq 1$ $(1 \leq j \leq s)$ and $|a_j| > 1$ $(s + 1 \leq j \leq n)$, then

$$F_2 = \beta z \prod_{j=1}^n (z - a_j)(1 - \bar{a}_j z) h \in S_{\phi}.$$

Since $F_2/pg \ge 0$ a.e. on ∂U , $\beta a^{-1} z \prod_{j=1}^s (1 - \bar{a}_j z) \prod_{j=s+1}^n (z - a_j) h/g \ge 0$ a.e. on ∂U . Thus

$$g = \gamma \beta a^{-1} z \prod_{j=1}^{s} (1 - \bar{a}_j z) \prod_{j=s+1}^{n} (z - a_j) h$$

for some $\gamma > 0$ and this contradicts that g is strong outer.

4. Exposed Points of S

An element g of S is called an exposed point of S if $g \in S_{\phi}$ for some $\phi \in L^{\infty}$ and $S_{\phi} = \{g\}$. It is clear that $g \in S$ is strong outer if and only if g is an exposed point in S. While de Leeuw and Rudin [1] showed that $h \in S$ is an outer function if and only if h is an extreme point in S. The following proposition is known [6]. We shall give another proof.

PROPOSITION 5. Let g be in H^1 .

(1) If $g^{-1} \in H^1$, then g is strong outer.

(2) If $\operatorname{Re} k(e^{i\theta}) g(e^{i\theta}) \ge 0$ a.e. on ∂U for some $k \in H^{\infty}$ with $k^{-1} \in H^{\infty}$, then g is strong outer.

Proof. (1) is clear by Lemma 1. (2) Let $h = kg/||kg||_1$ and $\phi = |h|/h$. If there exists $f \in S_{\phi}$ and $f \neq h$, then $(f+h)/2 \in S_{\phi}$ and (f+h)/2 is not an outer function by [1, Theorem 1]. While $\operatorname{Re}(f+h)/2$ is nonnegative a.e. on ∂U and so (f+h)/2 is an outer function. This contradiction implies that h is strong outer and so g is strong outer.

THEOREM 6. If f is a nonzero function in H^1 and S_{ϕ} is weak-* compact for $\phi = |f|/f$, then the f has the form:

$$f = g \prod_{j=1}^{m} (z-a_j)(1-\bar{a}_j z),$$

where $|z_i| \leq 1$ and g is strong outer. Moreover, the factorization is unique.

Proo. From Theorem 2, the theorem follows immediately.

If f = pg where p is an analytic polynomial and g is strong outer, by Theorem 4 S_{ϕ} is weak-* compact. Thus we can factorize f as in Theorem 6. The author [5] showed that we can factorize f in case $g^{-1} \in H^1$. In particular if g = 1 and so f = p, we can factorize f and as the consequence we can determine strong outer functions in all analytic polynomials.

References

- K. DE LEEUW AND W. RUDIN, Extreme points and extremum problems in H¹, Pacific J. Math. 8 (1958), 467-485.
- 2. H. HELSON AND D. SARASON, Past and future, Math. Scand. 21 (1967), 5-16.
- P. KODSIS, "Lectures on H_p Spaces," London Math. Society Lecture Notes Series, No. 40, Cambridge Univ. Press, London/New York, 1980.
- 4. T. NAKAZI, Extremal problems in H^1 for noncontinuous kernels, preprint.
- 5. T. NAZAKI, Strong factorizations and extremal problems in H^1 , preprint.
- 6. K. YABUTA, Some uniqueness theorems for $H^p(U^n)$ functions, Tôhoku Math. J. 24 (1972), 353-357.