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If piELm, we denote by TQ the functional defined on the Hardy space H’ by 

T,(f) = j_n f(e”) )(e”) dO/2n. 
-m 

Let 5, be the set of functions in H’ which satisfy T,(J) = 11 T,+jl and lifjl, 6 1. It is 
know 1 that if d is continuous, then S, is weak-* compact and not empty. For many 
noncontinuous ( each S, is weak-* compact and not empty. A complete 
descr ption of S, if S, is weak-* compact and not empty is obtained. S, is not 
empt:’ if and only if S* = S, and w = IfI/’ f or some nonzero S in H’. It is shown 
that if ( = IfI/’ and f=pg, where p is an analytic polynomial and g is a strong 
outer function, then S, is weak-* compact. As the consequence, iff=p, then S, is 
weak * compact. 

1. INTR~OUCTI~N 

Let U be the open unit disc in the complex plane and let XJ be the 
boundaq, of U. Iff is analytic in U and II, log’ If(re’“) 1 dB is bounded for 
0 ( r < I, then, f(e’e) which we define to be lim,,,f(reie), exists almost 
everywhere on XJ. If 

lim in 
r-1 -* 

log+ If(reie)[ LIB = Ix log+ If(e’*)l d0, 
--n 

then f is said to be the class N, . The set of all boundary functions in N, is 
denoted )y N, again. For 0 <p < co, the Hardy space HP, is defined by 
N, I? Lp and 1 <I, < 00, it coincides with the space of functions in Lp 
whose Fourier coefficients with negative indices vanish. If h in N, has the 
form 

n 
i(z) = exp 

eir + z 
- log 1 h(e”)l df/2n + ia 
e” - z I 

(z E U) 
--n 
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EXPOSED POINTS AND EXTREMAL PROBLEMS 225 

for some real a, h is called an outer function. We call q in N, an inner 
function if lq(ele)l = 1 a.e. on aU. Each nonzero f in Hi has a unique 
factorization of the form f = qh, where q is an inner function and h is an 
ouher function. 

DEFINITION. Let g be a nonzero function in H’. The g is called a strong 
outer function (or strong outer) if it has the following properties: If f is a 
nonzero function in H’ and argf (e’“) = arg g(eie) a.e. on ZJ, then f = yg for 
some positive constant y > 0. 

The author [S ] determined strong outer functions in the set of all analytic 
polynomials. It is known (cf. [ 61) that if g- ’ belongs to H’ or Re g(ele) > 0 
a.e. on 817, then g is strong outer. Of course a strong outer function is an 
outer function but the converse is not valid. In Section 1, we obtain a 
complete description of S, in case # = 2”’ 1 g(/g, where m E Z, and g is 
strong outer. Z, denotes the set of all nonnegative integers. In Section 2, as 
a consequence of the result in Section 1 we describe S, if S, is weak-* 
compact and not empty. In Section 3, we show that if 0 = 1 f I/f and f =pg, 
where p is an analytic polynomial and g is strong outer, then S, is weak-* 
compact and not empty. In Section 4, we consider the exposed points of S 
and strong outer functions, where S denotes the unit sphere of H’. 

Let C denote the space of continuous functions on Xl and set 
A = H* n C. Then H’ = (C/zA)*. S is weak-* compact but in general S, is 
not weak-* compact. If 4 E C, then S, is weak-* compact and not empty. 

If 4 E LoD, we denote by Tm the functional defined on H’ by 

T@(f) = jK f (e’“) @(e’“) d8/2n. 
-?I 

The norm of Tm is (I Tell = sup{1 T,(f)1 : f E S) and let S, denote the set of 
all f E S for which T,(f) = 11 T,+ll. The functions in S, are called extremal 
functions. By the duality relation 

II T, II = II $ + zH”O II 3 

where 114 + zH”O )I= inf{llg + h/loo : h E zHoo}. A function w = ( + k, 
(k, E zHw) for which 11 Tmll = )I ~11, is called an extremal kernel. At least 
one extremal kernel must exist but it is not unique in general. For some (, S, 
may be empty but if 4 is continuous on XJ, then S, is not empty. The author 
141 showed that if 11 Tbll > lim 11 TznQII, then S, is not empty. If d is 
continuous on XJ, then lim 11 TznrII = 0. 
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2. 9=z” Igl/g 

In th s section, we prove the main theorem which gives a description of S, 
for & = fin 1 gl/g, where m E Z, and g is strong outer. If g- ’ E Hi, then it is 
easy to give the description of S,, using the following Lemma 1 which was 
proved by Helson and Sarason [2]. Suppose S’ = (fE H’; llfll, = 1). In 
particular if g = 1, then 

s,= 
! 
y~(~-a~)(l-cfi~)~S~;y>OandO6Iajl~l - 

j=l I 

LEMFIA 1. If FE z”Hlf2 is nonnegative a.e. on XJ, then F is a 
trigonolnetric polynomial of degree at most n. 

LEMMA 2. Let 4 = q I h l/h, where q is an inner function and h is an outer 
function in H’. Suppose q = q1 . . . q, and qj (1 Q j < 1) is a nonconstant inner 
function!. Then, for any bj with I b,l < 1 (1 <j < 1) there exists f E S, such 
that f (11,) = .a* =f (b,) = 0. 

Prog ‘: If f, = y0 h nf= i (qj - qj(0))( 1 - qJ0) qj) E S ’ for some positive 
constant yO, then f0 E S,. For 4 nf=, (qj - qj(0))( 1 - qj(0) qj) > 0 a.e. on 
XJ. SincefJz’EH’, for any bj with lbjl< 1 (1 <j<l) 

Y(fJz’) fi (z - bj)(l - bjz) 
j=I 

belongs to S, for some positive constant y. 

LEMl4A 3. Suppose 0 = z” I gl/g (m E Z,) and g is a strong outer 
functiojt. Iff E S,, then the inner part off is a finite Blashke product which 
does nc t have more than m zeros in U. 

Proof If there exists an f E S, such that f (a,) = .+. = f (a,, ,) = 0 and 
lajl<l (l<j<m+l), then thereexistsf,ES, withf,=zm+‘kforsome 
k E H’ Then zkg-’ > 0 a.e. on 8U and so zk = g because g is strong outer. 
This ccntradicts that g is an outer function. 

THEOREM 1. If 9=z”Igl/g, h w ere m E Z, and g is strong outer, then 

s, = ((y) x S~nl x g)n s’. 

Proqf: The proof is by induction on m. Set 4, = im I gl/g. If m = 0, then 
SaO = ( g/II gIli } clearly. Assume Sem = ({y} x S, x g) n S’ for 1 < m < n. 
Iff E J #,+,, then 

F = (f + z”+‘g)/2 E S@,+,. 
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The F is not an outer function by a theorem of de Leeuw and Rudin [ 1, 
Theorem l] because llFlll = 1 and F is not an extreme point of S. By 
Lemma 3, F has the form 

F~~I-n,h, 
j=, 1 -tijz 

where 1 <l<n+ 1, luj] < 1 (l<j</) and h is an outer function. Set 

k,lfI h 

CZ j=* (1 -UjZ)2 

for some positive constant a and ]] k ]I, = 1. Then the k is an outer function in 
H’ and F = a nj=, (z - uj)( 1 - ai z) k. Since Fz”’ ‘g- ’ > 0 a.e. on XJ and 
I;-‘z’k > 0 a.e. on XJ, z/k?‘+ ‘g-’ > 0 a.e. on XJ and so the k belongs to 
s @.-/+I’ By the hypothesis of induction, 

n-l+ I 
k=P n (Z-bj)(l -~jZ)g, 

j=l 

where /I > 0 and ] bj] < 1. Set a ,+j=bj for 1 <j<n-lt 1, then 

nt1 
F=a~ n (z-uj)(l -aiz)g. 

j=I 

Set f0=2a/3nJ~~ (z-~~)(l-(fiz)-z”~‘, then f=2F-z”+‘g=f,g. 
Since Y”“+‘g-‘f> 0 a.e. on aU and so I”+ ‘Jo > 0 a.e. on XJ, f, E {y} x S,,, 
and hencefbelongs to ((7) x S,,,, x g)n S’. 

3. S,IS WEAK-* COMPACT 

The following lemma is known in the proof of [ 1, Theorem lo]. We shall 
give a simple proof in which we do not use a theorem of 0. Frostman. 

LEMMA 4. Zf 4 6C zH” and S, is weak-* compact and nonempty, then 
the inner part offfor every f E S, is a Jinite Blushke product which does not 
have more than m zeros on U. 

ProoJ If there were functions in S, with arbitrarily many zeros in U, 
then by Lemma 2, S, would contain functions f,, (n = 1,2,...) with 

f,( l/2) = f,( l/3) = +.a = f,( l/n) = 0. 

This contradicts the weak-* compactness of S,. Lemma 2 shows that the 
inner part of every f E S, is a finite Blashke product and hence the lemma 
follows. 
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THEC REM 2. If 4 E L* and ( & zHW, then the following are equivalent: 

(1: S, is weak- * compact and not empty. 
(2: The inner part of every f in S, is a finite Blashke product which 

does no’ have more than m zeros in U. 
(3) The extremal kernel w of $ has the form: w = Fm 1 g l/g, where g is 

strong c uter and m E Z, . 
(4: S,=({y)xS,xg)nS’,wheregisstrongouterandmEZ+. 
(5: The dimension of the linear span of S, is finite and 2m t 1. 

Prooj: (l)+ (2) is proved in Lemma 4. (2)+ (3) (cf. [l, Theorem 101). 
z”g E Jo for some g E H’ and g(0) # 0. Then the g is strong outer. For if 
arg g,(e”) = arg g(e’“) a.e. on 8U for some g, E S’, then by [ 1, Theorem l] 
(g + g, 1/2 is not an outer function. By Lemma 2, there exists g, E S’ such 
that art g,(eie) = arg g(eie) a.e. on aU and g,(O) = 0. Then zmg2 E S, and 
this cortradicts (2). (3) * (4) is proved in Theorem 1. (4) CZ- (5), (5) Z- (2), 
and (4) =j (1) are clear. 

The author [4] proved that if llz”# t zH”O )I < 114 t zHm II for some 
n E Z+‘,(O), then S, # 0 and S, is weak-* compact. We shall consider the 
case llz,‘ti t zH* II= 114 t zH”O 11 for any n E Z+\(O). 

LEMMA 5 [ 3, p. 23 11. Let $ E L m and 1 #I = 1 a.e. Then there is a 
nonzero k E Hm such that 

II# - kllcc G 1 
tf and c nly tf there is a nonzero h E H’ with 

d = VI h I a 

THECREM 3. Suppose S, z 0 and Q is an extremal kernel. If there exists 
a nonzl?ro k, in zH* such that JIz”+ ‘4 t k,II, < II@ + zH”O II for some 
nEZ+ then 

for som ? m E Z, and some h in HI. Hence S, is weak- * compact. 

Prooj: IffES,, then Ilz”+‘IfI/ftk,,ll< 1 and so 

for sonle nonzero h E H’ by Lemma 5. Hence P’ > 0 a.e. on 8U and 
fhEH’byLemmal.ThusyXhXScS,. 
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Suppose ( = IfI/’ for some nonzero fE Hi. If there exists a nonzero 
h E H’ such that hf is an analytic polynomial, then S, is weak- * compact 
by Lemma 5 and Theorem 3 [5]. 

THEOREM 4. Suppose 4 = 1 f I/f for some nonzero f in H1. rf f = pg, 
where p is an analytic polynomial of degree n and g is strong outer, then the 
inner part of every F in S, is a finite Blashke product which does not have 
more than n zeros in U and so S, is weak-* compact. 

Proof If the inner part of F, E S, is a finite Blashke product which has 
n + 1 zeros in U, then zn+’ h E S, for some nonzero h E H’ by Lemma 2. If 
~=anj=~ (z-a,) lX;=,+l (l-tijZ), where lajl<l (1 <j<s) and Iail > 1 
(s + 1 <j < n), then 

F,=/?z fi (z-aj)(l-ajz)hES,. 
j=I 

Since F,/pg > 0 a.e. on aU, /3a 
a.e. on XJ. Thus 

g= ypa-‘z fi (I-CTjz) fj (Z-aj)h 
.j= I j=stl 

for some y > 0 and this contradicts that g is strong outer. 

4. EXPOSED POINTS OF S 

An element g of S is called an exposed point of S if g E S, for some 
4 E Lm and S, = (g}. It is clear that g E S is strong outer if and only if g is 
an exposed point in S. While de Leeuw and Rudin [ 11 showed that h E S is 
an outer function if and only if h is an extreme point in S. The following 
proposition is known [61. We shall give another proof. 

PROPOSITION 5. Let g be in H’. 

(1) Ifs-’ E H’, then g is strong outer. 

(2) If Re k(eie)g(eie) > 6 a.e. on XJ for some k E H” with 
k- ’ E H”, then g is strong outer. 

Proof (1) is clear by Lemma 1. (2) Let h = kg/Jlkgll, and ( = I h//h. If 
there exists f E S, and f # h, then df+ h)/2 E S, and df+ h)/2 is not an 
outer function by [ 1, Theorem 11. While Re(f + h)/2 is nonnegative a.e. on 
aU and so (f + h)/2 is an outer function. This contradiction implies that h is 
strong outer and so g is strong outer. 
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THEOREM 6. If f is a nonzero function in H’ and S, is weak- * compact 
for 4 = 1 f I/’ then the f has the form: 

f=g fi (z-aj)(l -Crjz)> 

j=l 

where 1 zjl < 1 and g is strong outer. Moreover, the factorization is unique. 

Proo, 1 From Theorem 2, the theorem follows immediately. 
If f =: pg where p is an analytic polynomial and g is strong outer, by 

Theoretn 4 S, is weak-* compact. Thus we can factorize f as in Theorem 6. 
The author [ 51 showed that we can factorize f in case g-i E H’. In 
particular if g = 1 and so f =p, we can factorize f and as the consequence we 
can det xmine strong outer functions in all analytic polynomials. 
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