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If 1€ L™, we denote by T, the functional defined on the Hardy space H' by
T, =] f(e®)d(e”)db/2n.

Let S, be the set of functions in H' which satisfy T,(f)=| T,/ and ||f)], < 1. It is
know that if ¢ is continuous, then S, is weak-* compact and not empty. For many
noncentinuous ¢ each S, is weak-* compact and not empty. A complete
descr ption of S, if S, is weak-* compact and not empty is obtained. S, is not
empt if and only if S, =S, and y =|f|/f for some nonzero fin H'. It is shown
that if ¢ =|f|/f and f= pg, where p is an analytic polynomial and g is a strong
outer function, then §, is weak-* compact. As the consequence, if /= p, then S, is
weak- * compact.

1. INTRODUCTION

Let U be the open unit disc in the complex plane and let 8U be the
boundary of U. If fis analytic in U and [* _log* |f(re'®)|d6 is bounded for
0<r< 1, then, f(e'®) which we define to be lim,_, f(re’®), exists almost
everywhere on oU. If

tim [* log” | (e} do =" log* |f(e*)ld6,

then f'is said to be the class N, . The set of all boundary functions in N, is
denoted >y N, again. For 0 < p oo, the Hardy space H?, is defined by
N,MNL? and 1 p< o, it coincides with the space of functions in L*
whose Fourier coefficients with negative indices vanish. If & in N, has the
form

it .
@) =exp || < T2 g |hEe ) dtj2n +ial  (zeU)

et —z
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for some real a, & is called an outer function. We call g in N, an inner
function if |g(e’®))=1 ae. on AU. Each nonzero f in H' has a unique
factorization of the form f=gh, where ¢ is an inner function and A is an
ouher function.

DEFINITION. Let g be a nonzero function in H'. The g is called a strong
outer function (or strong outer) if it has the following properties: If fis a
nonzero function in H' and arg f(e’?) = arg g(e’?) a.e. on U, then f= yg for
some positive constant y > 0.

The author [5] determined strong outer functions in the set of all analytic
polynomials. It is known (cf. [6]) that if g~ belongs to H' or Re g(e'?) >0
a.e. on 9U, then g is strong outer. Of course a strong outer function is an
outer function but the converse is not valid. In Section I, we obtain a
complete description of S, in case ¢ =2"|g|/g, where mE Z, and g is
strong outer. Z_ denotes the set of all nonnegative integers. In Section 2, as
a consequence of the result in Section 1 we describe §, if S, is weak-*
compact and not empty. In Section 3, we show that if ¢ =|f|/f and f= pg,
where p is an analytic polynomial and g is strong outer, then S, is weak-*
compact and not empty. In Section 4, we consider the exposed points of S
and strong outer functions, where S denotes the unit sphere of H'.

Let C denote the space of continuous functions on oU and set
A=H®NC. Then H' = (C/zA)*. S is weak-* compact but in general S, is
not weak-* compact. If ¢ € C, then S, is weak-* compact and not empty.

If g € L™, we denote by T, the functional defined on H' by

TN =" £ () dsf2n

The norm of T, is || T,| = sup{|T,(f)| : f€ S} and let S, denote the set of
all f€ § for which T,(f)=|T,|l. The functions in S, are called extremal
functions. By the duality relation

1T, =6+ zH*]|,

where ||¢ +zH®||=inf{||l¢ + hl|,:hE€zH®}. A function w=¢+k,
(ko € zH®) for which || T,||=|lwl|l, is called an extremal kernel. At least
one extremal kernel must exist but it is not unique in general. For some ¢, S,
may be empty but if ¢ is continuous on oU, then S, is not empty. The author
[4] showed that if ||7,|| > lim| T,.,|l, then S, is not empty. If ¢ is
continuous on dU, then lim || T, || = 0.
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2. ¢=1"|¢glle

In th s section, we prove the main theorem which gives a description of S,
for ¢ = 7™ | g|/g, where m € Z, and g is strong outer. If g~' € H', then it is
easy to give the description of S, using the following Lemma 1 which was
proved by Helson and Sarason [2]. Suppose S'={f€ H';||f|l,=1}. In
particular if g =1, then

m
Sam= 1y @—a)(1 —a;z)€S';y>0and0<a;| < 1.
j=1
Lemma 1. If FEZ"H"Y? is nonnegative a.e. on 0U, then F is a
trigonoinetric polynomial of degree at most n.

LemmA 2. Let ¢ = g |h|/h, where q is an inner function and h is an outer
functior in H'. Suppose q=q, -+~ q; and q; (1 <j <) is a nonconstant inner
functior. Then, for any b, with |b,| <1 (1<j< ) there exists fE€ S, such
that f() =+ =/ (b)) = 0

Proo’ If fy=vh11i-1(q,— qJ(O))(l ~¢,0) g,)€ S’ for some positive

constant y,, then f, € S,. For ¢ T}_, (g, —¢;(0))(1 — 4;0) g;) >0 ae. on
dU. Since f/z' € H', for any b; with |5,/ < 1 (1<j<))

!
yfo/2) [ 1 (2 = b)(1 = b;2)
Jj=1
belongs to S, for some positive constant .

LEMia 3. Suppose ¢ =2"|gl/e (mE€EZ,) and g is a strong outer
function. If fE€ S, then the inner part of fis a finite Blashke product which
does nct have more than m zeros in U.

Proof. If there exists an /€ S, such that f(a,)= -+ =f(a,,,)=0 and
la;] <1 (1<j<m+ 1), then there exists /o€ S, w1th fo—z"'“k for some
k € H' Then zkg~' >0 a.e. on oU and so zk = g because g is strong outer.
This ccntradicts that g is an outer function.

THEOREM 1. If ¢ =" |g|/g, where m € Z . and g is strong outer, then
So=({r} X Sz X g)NS".

Proof. The proof is by induction on m. Set ¢,,=z" | g|/g. If m =0, then
S,,={&/llgll;} clearly. Assume S, = ({7} X Sz X &N S! for I<m n
Iffes,, . then

F=(f+z""'g)2€ S

bnir”



EXPOSED POINTS AND EXTREMAL PROBLEMS 227

The F is not an outer function by a theorem of de Leeuw and Rudin [1,
Theorem 1] because |[F|;=1 and F is not an extreme point of S. By
Lemma 3, F has the form

zZ—aq;
Fnl h,

j=1 d
where 1 <I<n+ 1, |a;| <1 (1<j</)and A is an outer function. Set

!
aj; (1—a;z2)
for some positive constant « and [ k||, = 1. Then the k is an outer function in
H'and F=a[]j., (z—a,)(1 —@,z)k. Since Fz"*'g~' >0 a.e. on U and
F~'z'k >0 ae. on oU, z'kz"*'g=' > 0 a.e. on 8U and so the k belongs to
S,,_,.,- By the hypothesis of induction,
n—1i{+1

k=B [] G-b)1-52)e
j=1
where £ > 0 and |b;|< 1. Set a,, ;=b, for 1 <j<n—1+ 1, then
n+1

= af I__[ (z—a)(1—a;z)g.

Set fo=2aBf[152| (z—a)(1—a;z)—z""", then f=2F—z""'g=f g
Since z"*!g lf>0 a.e. on oU and so "% 'f, > 0 a.e. on U, f, € {y} X Sz
and hence f belongs to ({y} X Sz X g)N S

3. S, 1s WEAK-* COMPACT

The following lemma is known in the proof of |1, Theorem 10}. We shall
give a simple proof in which we do not use a theorem of O. Frostman.

Lemma 4. If ¢ € zH® and S, is weak-* compact and nonempty, then
the inner part of f for every f€ S, is a finite Blashke product which does not
have more than m zeros on U.

Proof. If there were functions in §, with arbitrarily many zeros in U,
then by Lemma 2, S, would contain functions f, (n =1, 2,...) with

£(1/2)=1,(1/3)=--- =£(1/n) =0.

This contradicts the weak-* compactness of S,. Lemma 2 shows that the
inner part of every f€ S, is a finite Blashke product and hence the lemma
follows.
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THECREM 2. If ¢ €E L™ and ¢ & zH™, then the following are equivalent:

(1, S, is weak-* compact and not empty.

(2, The inner part of every f in S, is a finite Blashke product which
does no* have more than m zeros in U.

(3) The extremal kernel v of ¢ has the form: v =2"|g|/g, where g is
strong cuter and me€ Z .

4 S,=({y} X S;aX g NS, where g is strong outer and m€ Z .

(5, The dimension of the linear span of S, is finite and 2m + 1.

Prog). (1)= (2) is proved in Lemma 4. (2) = (3) (cf. [1, Theorem 10}).
z"ge S, for some g€ H' and g(0) # 0. Then the g is strong outer. For if
arg g,(e'%) = arg g(e'?) a.e. on AU for some g, € S', then by [1, Theorem 1]
(g +g,/2 is not an outer function. By Lemma 2, there exists g, € ' such
that arg g,(e’?) = arg g(e'?) a.. on U and g,(0)=0. Then z™g, € S, and
this cortradicts (2). (3)= (4) is proved in Theorem 1. (4) = (5), (5)= (2),
and (4) = (1) are clear.

The author [4] proved that if |z"¢ +zH®| < ||¢ + zH®| for some
n€Z,' {0}, then S,+ @ and S, is weak-* compact. We shall consider the
case ||z'¢ + zH® || =||¢ + zH®|| for any n € Z \{0}.

LEMMA 5 |3, p.231). Let € L™ and |¢|=1 a.e. Then there is a
nonzero k € H® such that

if and cnly if there is a nonzero h € H' with
¢ = h/|h|.

THECREM 3. Suppose S, + @ and ¢ is an extremal kernel. If there exists
a nonzero k, in zH® such that ||z"*'¢ + kol <||¢ + zH®| for some
n€Z, then

hxS§8,c Sz
for som2 m € Z, and some h in H'. Hence S, is weak-* compact.
Prog). IffE€ S,, then ||z"*" | f|/f+ k|| < 1 and so

VA
z_——

S Al

for sone nonzero h € H' by Lemma 5. Hence #/h >0 ae. on dU and
fhE H' by Lemma 1. Thus y X A X S < S5,.
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Suppose ¢ =|f|/f for some nonzero f€ H'. If there exists a nonzero
h € H' such that Af is an analytic polynomial, then S, is weak-* compact
by Lemma 5 and Theorem 3 [5].

THEOREM 4. Suppose ¢ =|f|/f for some nonzero f in H'. If f=pg,
where p is an analytic polynomial of degree n and g is strong outer, then the
inner part of every F in S, is a finite Blashke product which does not have
more than n zeros in U and so S, is weak-* compact.

Proof. 1f the inner part of F, € S, is a finite Blashke product which has
n+ 1 zeros in U, then z"*'h € S, for some nonzero h € H' by Lemma 2. If
p=aTlis ) [Toss: (1 — G2), where |a,|<1 (1<j<5) and |g;| > 1
(s + 1 <j< n), then

F,=pz ll[ (z—a)(l—a;z)heES,.

Since F,/pg>0 ae. on oU, fa~'z[[;_, (1 —az)[1}-s, (z—a;) h/g >0
a.e. on dU. Thus

g=7yba"'z ]_j (1-a;z2) ﬁ (z—a)h

J=s5+1

for some y > 0 and this contradicts that g is strong outer.

4, EXPoSED POINTS OF S

An element g of § is called an exposed point of § if g€ S, for some
¢EL® and S, = {g}. It is clear that g € S is strong outer if and only if g is
an exposed point in S. While de Leeuw and Rudin [1] showed that 2 € S is
an outer function if and only if 4 is an extreme point in S. The following
proposition is known [6]. We shall give another proof.

PROPOSITION 5. Let g be in H'.

(1) Ifg~' € H', then g is strong outer.

(2) If Rek(e®)g(e®)>0 ae. on oU for some k€ H™ with
k=' € H™, then g is strong outer.

Proof: (1) is clear by Lemma 1. (2) Let h = kg/| kg||, and ¢ = |h|/h. If
there exists f€ .5, and f+ h, then (f+ h)/2€ S, and (f+ h)/2 is not an
outer function by [1, Theorem 1]. While Re(f+ h)/2 is nonnegative a.e. on
oU and so (f+ h)/2 is an outer function. This contradiction implies that % is
strong outer and so g is strong outer.
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THECREM 6. If fis a nonzero function in H' and S, is weak-* compact
Jor ¢ =|f|/f, then the f has the form:

f=g U (z "aj)(l _51'2),

where | 1;| < 1 and g is strong outer. Moreover, the factorization is unique.

Prog,” From Theorem 2, the theorem follows immediately.

If f==pg where p is an analytic polynomial and g is strong outer, by
Theoretn 4 S, is weak-* compact. Thus we can factorize f as in Theorem 6.
The author [5] showed that we can factorize f in case g~'€ H'. In
particular if g = 1 and so f= p, we can factorize f and as the consequence we
can det:rmine strong outer functions in all analytic polynomials.
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