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1. Introduction

Cluster-tilted algebras were introduced in [BMR] and also, independently, in [CCS] for type A,
as a by-product of the theory of cluster algebras of Fomin and Zelevinsky [FZ]. They are the en-
domorphism algebras of the so-called tilting objects in the cluster category of [BMRRT]. Since their
introduction, they have been the subject of several investigations, see, for instance, [BMR,CCS,ABS1,
KR,BFPPT,BOW]. Part of their interest comes from the fact that the cluster category is a 2-Calabi–Yau
category. In particular, the representation theory of cluster-tilted algebras has been shown to be very
similar to that of the self-injective algebras, see [ABS1,ABS2,ABS3]. One of the essential tools in the
study of self-injective algebras is the notion of reflection of a tilted algebra, introduced by Hughes and
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Waschbüsch in [HW]. This allowed to prove that, if C is a tilted algebra, then its trivial extension T (C)

by the minimal injective cogenerator bimodule is representation-finite if and only if C is of Dynkin
type and, in this case, T (C) ∼= T (B) if and only if B is an iterated reflection of C (or, equivalently, B
is iterated tilted of the same type as C ), see also [BLR,AHR,Ho]. Moreover, the proofs of these results
developed into algorithms allowing to compute explicitly the module category of T (C), starting from
that of C , see [HW,BLR].

We recall from [ABS1] that, if C is a tilted algebra, then the trivial extension C̃ of C by the C–C-
bimodule Ext2

C (DC, C) is cluster-tilted, and conversely, every cluster-tilted algebra is of this form.
On the other hand, this (surjective) map from tilted algebras to cluster-tilted algebras is certainly
not injective and it is an interesting question to find all the tilted algebras B such that B̃ = C̃ . This
problem has already been considered in [ABS2] and [BOW], see also [BFPPT]. In the present paper, we
define notions of reflections (and, dually coreflections) of complete slices and of tilted algebras. Our
main result may now be stated as follows.

Theorem 1. Let C be a tilted algebra having a tree Σ as a complete slice. A tilted algebra B is such that B̃ = C̃
if and only if there exists a sequence of reflections and coreflections σ1, . . . , σt such that B = σ1 · · ·σt C has
Ω = σ1 · · ·σtΣ as a complete slice and B = C̃/Ann Ω .

The restriction to tilted algebras of tree type seems to be necessary to ensure the existence of
reflections.

As a consequence of this construction and our proof, we obtain, as in [HW], an algorithm allowing
to compute explicitly the transjective component of the module category of C̃ , having as starting data
only the knowledge of the tilted algebra C . In particular, if C is of Dynkin type, this yields the whole
module category of C̃ . We observe that, since the transjective component of the module category of C̃
is standard, then it is uniquely determined by combinatorial data.

The paper is organised as follows. After a short preliminary section, in which we fix the notation
and recall the needed results, we devote our Section 3 to general properties of the Auslander–Reiten
quiver of a cluster-tilted algebra. In Section 4, we define reflections of complete slices and of tilted
algebras. Section 5 is devoted to the proof of our main results, and Section 6 to the algorithm. We
end the paper in Section 7 by showing how our algorithm may be applied to construct the tubes of
cluster-tilted algebras of Euclidean type.

2. Preliminaries

2.1. Notation

Throughout this paper, algebras are basic and connected, locally finite dimensional over an alge-
braically closed field k. For an algebra C , we denote by mod C the category of finitely generated right
C-modules. All subcategories are full and so are identified with their object classes. Given a cate-
gory C , we sometimes write M ∈ C to express that M is an object in C . If C is a full subcategory of
mod C , we denote by add C the full subcategory of mod C having as objects the finite direct sums of
summands of modules in C .

Following [BG], we sometimes consider equivalently an algebra C as a locally bounded k-category,
in which the object class C0 is (in bijection with) a complete set {ex} of primitive orthogonal idem-
potents of C , and the space of morphisms from ex to e y is C(x, y) = exCe y . A full subcategory B
of C is convex if, for any path x = x0 → x1 → ·· · → xt = y in the quiver Q C of C , with x, y ∈ B ,
we have xi ∈ B for all i. For a point x in Q C , we denote by Px, Ix, Sx respectively the indecom-
posable projective, injective and simple C-modules corresponding to x. We denote by Γ (mod C) the
Auslander–Reiten quiver of C and by τC = D Tr, τ−1

C = Tr D the Auslander–Reiten translations. Given
two indecomposable C-modules M and N , a path from M to N is a sequence of non-zero morphisms

M = M0
f1→ M1

f2→ ·· · ft→ Mt = N
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where all Mi are indecomposable. We then say that N is a successor of M , and that M is a predecessor
of N . We denote this situation by M � N or by M � N .

More generally, if S1, S2 are two sets of indecomposable modules, we write S1 � S2 if every
module in S1 has a successor in S2, no module in S2 has a successor in S1, and no module in S1
has a predecessor in S2. The notation S1 < S2 stands for S1 � S2 and S1 ∩ S2 = ∅.

For further definitions and facts, we refer the reader to [ARS,ASS].
Let Q be a finite connected and acyclic quiver. A module T over the path algebra kQ of Q is called

tilting if Ext1
kQ (T , T ) = 0 and the number of isomorphism classes of indecomposable summands of T

equals |Q 0|, see [ASS, p. 193]. An algebra C is called tilted of type Q if there exists a tilting kQ -
module T such that C = EndkQ T , see [ASS, p. 317]. If, in particular, Q is a tree, we say that C is
tilted of tree type. It is shown in [Ri, p. 180] that an algebra C is tilted if and only if it contains a
complete slice Σ , that is, a finite set of indecomposable modules such that:

(S1)
⊕

U∈Σ U is a sincere C-module.
(S2) If U = X0 → X1 → ·· · → Xt = V is a path from U to V , with U , V ∈ Σ , then Xi ∈ Σ for all i.
(S3) If 0 → L → M → N → 0 is an almost split sequence in mod C and at least one of the indecom-

posable summands of M belongs to Σ , then exactly one of L, N belongs to Σ .

For more tilting theory, we refer to [ASS,Ri].

2.2. Cluster-tilted algebras

Let A be a finite dimensional hereditary k-algebra. The cluster category C A of A is defined as
follows. Let F be the autoequivalence of the bounded derived category Db(mod A) defined as the
composition τ−1

D [1], where τ−1
D is the inverse of the Auslander–Reiten translation in Db(mod A)

and [1] is the shift (suspension) functor. Then C A is the orbit category Db(mod A)/F , its objects are
the F -orbits X̃ = (F i X)i∈Z of the objects X ∈ Db(mod A) and the space of morphisms from X̃ = (F i X)i

to Ỹ = (F i Y )i is

HomC A ( X̃, Ỹ ) =
⊕
i∈Z

HomDb(mod A)

(
X, F i Y

)
.

C A is a triangulated Krull–Schmidt category with almost split triangles. The projection
π : Db(mod A) → C A is a triangle functor which commutes with the Auslander–Reiten transla-
tions [BMRRT,K]. Moreover, for any two objects X̃, Ỹ in C A , we have a functorial isomorphism
Ext1

C A
( X̃, Ỹ ) ∼= D Ext1

C A
(Ỹ , X̃), in other words, the category C A is 2-Calabi–Yau.

An object T̃ ∈ C A is tilting if Ext1
C A

(T̃ , T̃ ) = 0, and the number of isomorphism classes of in-

decomposable summands of T̃ equals the rank of the Grothendieck group K0(A) of A. The en-
domorphism algebra B = EndC A T̃ is then called cluster-tilted. Moreover, we have an equivalence
mod B ∼= C A/ iadd(τC A T̃ ), where τC A is the Auslander–Reiten translation in C A and iadd(τC A T̃ ) is the
ideal of C A consisting of all morphisms factoring through objects of add(τC A T̃ ). Also, this equivalence
commutes with the Auslander–Reiten translations in both categories [BMR].

We now describe the Auslander–Reiten quivers of C A and B . If A = kQ is representation-finite,
the Γ (C A) is of the form ZQ /〈ϕ〉, where ϕ is the automorphism of ZQ induced by F . If A = kQ
is representation infinite, then Γ (C A) has a unique component of the form ZQ , called transjective,
because it is the image (under π ) of the transjective components of Γ (Db(mod A)). Moreover, Γ (C A)

also has components called regular, because they are the image of the regular components of Γ (C A).
In both cases, we deduce Γ (mod B) from Γ (C A) by simply deleting the |Q 0| points corresponding to
the summands of τC A T̃ .
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2.3. Relation-extensions and slices

If B is cluster-tilted, then there exists a hereditary algebra A and a tilting A-module T such that
B = EndC A T̃ , see [BMRRT, 3.3]. Moreover, if C = EndA T is the corresponding tilted algebra, then
the trivial extension C̃ = C � Ext2

C (DC, C) (the relation–extension of C ) is cluster-tilted and, actually,
isomorphic to B , see [ABS1, 3.4]. Now recall that tilted algebras are characterised by the existence of
complete slices. The corresponding notion for cluster-tilted algebras is as follows [ABS2, 3.1]. A full
subquiver Σ of Γ (mod C̃) is a local slice if:

(LS1) Σ is a presection, that is:
(a) If X ∈ Σ and X → Y is an arrow, then either Y ∈ Σ or τC̃ Y ∈ Σ .

(b) If Y ∈ Σ and X → Y is an arrow, then either X ∈ Σ or τ−1
C̃

X ∈ Σ .
(LS2) Σ is sectionally convex, that is, if X = X0 → X1 → ·· · → Xt = Y is a sectional path in

Γ (mod C̃), with X, Y ∈ Σ , then Xi ∈ Σ for all i.
(LS3) |Σ0| = rk K0(C).

Let C be tilted, then, under the standard embedding mod C → mod C̃ any complete slice in mod C
embeds as a local slice in mod C̃ , and any local slice occurs in this way. If B is cluster-tilted, then a
tilted algebra C is such that B = C̃ if and only if there exists a local slice Σ in Γ (mod B) such that
C = B/AnnB Σ , where AnnB Σ = ⋂

X∈Σ AnnB X , see [ABS2, 3.6].

2.4. Cluster-repetitive algebras

For Galois coverings and pushdown functors, we refer the reader to [BG].
Let C be a tilted algebra. Its cluster-repetitive algebra Č is the locally finite dimensional algebra

given by

Č =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . . 0
C−1

E0 C0

E1 C1

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where matrices have only finitely many non-zero coefficients, Ci = C and Ei = Ext2
C (DC, C) for all

i ∈ Z, all the remaining coefficients are zero, and the multiplication is induced from that of C , the C–
C-bimodule structure of Ext2

C (DC, C) and the zero map Ext2
C (DC, C)⊗C Ext2

C (DC, C) → 0. The identity
maps Ci → Ci−1, Ei → Ei−1 induce an automorphism ϕ of Č . The orbit category Č/〈ϕ〉 is isomorphic
to C̃ = C � Ext2

C (DC, C). The projection G : Č → C̃ is thus a Galois covering with infinite cyclic group
generated by ϕ . It is shown in [ABS3, Theorem 1] that the corresponding pushdown functor mod Č →
mod C̃ is always dense, so it induces an isomorphism Γ (mod C̃) ∼= Γ (mod Č)/Z. Also, if C = EndA T ,
where T is a tilting module over the hereditary algebra A, then mod Č ∼= Db(mod A)/ iadd(τD F i T )i∈Z ,
where τD is the Auslander–Reiten translation in Db(mod A) and iadd(τD F i T )i∈Z is the ideal of
Db(mod A) consisting of all morphisms which factor through add(τD F i T )i∈Z . Finally, every local
slice in Γ (mod C̃) is the image under Gλ of (several) local slices in Γ (mod Č) (that is, full sub-
quiver of Γ (mod Č) satisfying the axioms (LS1)–(LS3) of (2.4) above). Throughout this paper, we
identify C0 with C , and thus any complete slice of mod C can be considered as a local slice in
mod Č .
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3. Properties of the Auslander–Reiten quiver of a cluster-tilted algebra

3.1. In this section, we let C be a tilted algebra, having Σ as a complete slice, and C̃ = C �
Ext2

C (DC, C) be its relation extension. The following lemma is borrowed from [ABDLS]; we include
the proof for the convenience of the reader.

Lemma 2. Let C be a tilted algebra, Σ a complete slice in mod C and M ∈ Σ , then we have:

(a) M ⊗C Ext2
C (DC, C) = 0, and

(b) HomC (Ext2
C (DC, C), τC M) = 0.

Proof. (a) Let A = End(
⊕

X∈Σ X) and T A be a tilting module such that C = End T A . Since M ∈ Σ ,
there exists an injective A-module I such that MC ∼= HomA(T , I). Using standard functorial isomor-
phisms, we have:

D
(
M ⊗C Ext2

C (DC, C)
) ∼= HomC

(
M, D Ext2

C (DC, C)
)

∼= HomC
(
HomA(T , I), D HomDb(mod A)(T , F T )

)
∼= HomC

(
HomA(T , I), D HomDb(mod A)

(
T , τ−1T [1]))

∼= HomC
(
HomA(T , I), D HomDb(mod A)

(
τ T , T [1]))

∼= HomC
(
HomA(T , I), D Ext1

Db(mod A)
(τ T , T )

)
∼= HomC

(
HomA(T , I),HomA

(
T , τ 2T

))
∼= HomA

(
I, t

(
τ 2T

))
,

where t(τ 2T ) ∼= HomA(T , τ 2T ) ⊗C T is the torsion part of the A-module τ 2T in the torsion pair
induced by T in mod A. Since τ 2T is not an injective A-module, neither is its submodule t(τ 2T ).
Since A is hereditary, and I is injective, we get HomA(I, τ 2T ) = 0.

(b) Since τC M precedes the complete slice Σ in mod C , it suffices to prove that Ext2
C (DC, C) suc-

cedes it. Note first that

Ext2
C (DC, C) ∼= Ext1

C

(
DC,Ω−1C

)
∼= DHomC

(
τ−1Ω−1C, DC

)
,

using the first cosyzygy Ω−1C of C and the Auslander–Reiten formula. Now notice that for every
indecomposable summand X of Ω−1C , there exists an injective C-module J such that HomC ( J , X) �=
0. But all injectives are successors of Σ , so there exists L ∈ Σ such that we have a path L → J →
X → ∗ → τ−1 X . This shows that every indecomposable summand of τ−1Ω−1C succedes (properly)
the slice Σ . Since no indecomposable projective module is a successor of Σ , we get

HomC
(
τ−1Ω−1C, DC

) = HomC
(
τ−1Ω−1C, DC

)
.

Hence

Ext2
C (DC, C)C ∼= D HomC

(
τ−1Ω−1C, DC

) ∼= τ−1Ω−1CC .

But as we have already shown, every indecomposable summand of τ−1Ω−1CC is a (proper) successor
of Σ . The required statement follows at once. �
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3.2.

Proposition 3. Let C be a tilted algebra, Σ be a complete slice in mod C and M ∈ Σ . Then:

(a) τC M ∼= τC̃ M, and

(b) τ−1
C M ∼= τ−1

C̃
M.

Proof. Part (a) follows directly from Lemma 2 and the main result of [AZ]. Part (b) follows by dual-
ity. �

3.3. We need to apply Proposition 3 also to the cluster repetitive algebra Č of C .

Corollary 4. Let C be a tilted algebra, Σ be a complete slice in mod C and M ∈ Σ . Then:

(a) τC M ∼= τČ M,

(b) τ−1
C M ∼= τ−1

Č
M.

3.4. For the next lemma, we need some notations: let A be a hereditary algebra, T be a tilting
A-module such that EndA T = C and EndC A T = C̃ (where C A denotes the cluster category associated
to A). Let also P̃ x, Ĩ x and Tx be the indecomposable projective C̃-module, the indecomposable injec-
tive C̃-module and the indecomposable summand of T corresponding to an object x in C̃ . Note that
part (a) of the lemma below is well known and actually used, for instance, in [ABS2, 3.2].

Lemma 5. With the above notation:

(a) For every object x in C̃ , we have HomC A (T , τ 2Tx) ∼= Ĩ x .
(b) For every pair of objects x, y in C̃ , we have an isomorphism of the spaces of irreducible morphisms

IrrC̃ ( P̃ x, P̃ y) ∼= IrrC̃ ( Ĩ x, Ĩ y).

Proof. Using standard functorial isomorphisms we have:

(a) Ĩ x ∼= D HomC A (Tx, T )

∼= D HomDb(mod A)(Tx, T ) ⊕ D HomDb(mod A)

(
Tx, τ

−1T [1])
∼= Ext1

Db(mod A)
(T , τ Tx) ⊕ D Ext1

Db(mod A)

(
Tx, τ

−1T
)

∼= HomDb(mod A)

(
T , τ T [1]) ⊕ HomDb(mod A)

(
T , τ 2Tx

)
∼= HomC A

(
T , τ 2Tx

)
,

(b) IrrC̃ ( P̃ x, P̃ y) ∼= IrrC A (Tx, T y)

∼= IrrC A

(
τ 2Tx, τ

2T y
)

∼= IrrC̃

(
HomC A

(
T , τ 2Tx

)
,HomC A

(
T , τ 2T y

))
∼= IrrC̃ ( Ĩ x, Ĩ y),

where we have used the category equivalence HomC A (T ,−) : C A/ iadd(τ T ) → mod C̃ of [BMR], and
part (a) above. �
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Remark 6. Statement (b) above does not hold true for arbitrary algebras. Let indeed C be given by the
quiver

1 2
γ

3
β

4
α

bound by α β = 0. Note that IrrC (I1, I2) = 0 while IrrC (P1, P2) = k.

4. Reflections

4.1. The objective of this section is to define a notion of reflection on a local slice in a cluster-tilted
algebra. This will in turn induce a notion of reflection on a tilted subalgebra of the given cluster-tilted
algebra.

Let, as before, C be a tilted algebra, C̃ = C � Ext2
C (DC, C) its relation–extension algebra and Č its

cluster repetitive algebra. We still identify C with the full convex subcategory C0 of Č . We assume
throughout that C is of tree type.

Let Γ be a connecting component of mod C , and Σ be a complete slice in Γ .
Assume first that M ∈ Σ is a source in Σ which is not injective, then (Σ \ {M}) ∪ {τ−1

C M} is also
a complete slice in Γ . In the language of [BOW], these two slices are homotopic. Homotopy is clearly
an equivalence relation on slices, and there are either one or two equivalence classes in mod C (two
if and only if C is concealed). We need distinguished representatives of these classes. If there exists a
complete slice in which all sources are injective C-modules, then such a slice is unique and is called
the rightmost slice of mod C . We denote it as Σ+ . Dually, we define the leftmost slice Σ− of mod C .
Note that, if C is representation-finite, then rightmost and leftmost slices exist.

We recall from [HW] that a point x ∈ C0 is a strong sink if the injective module Ix has no injective
module as a proper predecessor in mod C . Clearly, strong sinks are sinks.

Lemma 7. A point x ∈ C0 is a strong sink if and only if Ix is an injective source of the rightmost slice Σ+ .

Proof. Assume first that Ix is an injective source of Σ+ . If x is not a strong sink, then there exists
y �= x in C such that we have a path I y � Ix . Since Σ+ is sincere, there exist M ∈ Σ+ and a morphism
M → I y yielding a path M → I y → Ix . Since Σ+ is convex in ind C , we get I y ∈ Σ+ which contradicts
the hypothesis that Ix is a source in Σ+ .

Conversely, assume x to be a strong sink in C , and suppose that Ix is not an injective source of Σ+ .
Because Σ+ is sincere, then there exist N ∈ Σ+ and a morphism N → Ix . Now there exists a source
(necessarily injective) Iz in Σ+ and a path Iz � N in Σ+ . This yields a path Iz � N → Ix , contrary
to the hypothesis. �
4.2. The completion Gx

Let x be a strong sink in C . We define the completion Gx of x in Σ+ to be a non-empty full
connected subquiver of Σ+ such that:

(a) Ix ∈ Gx .
(b) Gx is closed under predecessors in Σ+ .
(c) If I → M is an arrow in Σ+ , with I ∈ Gx injective, then M ∈ Gx .
(d) If N → I is an arrow in Σ+ , with I ∈ Gx injective, then N is injective (and in Gx).

Completions do not always exist.
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Example 8. The tilted algebra C given by the quiver

1 2
γ

β

3
α

bound by α β = 0 admits the complete rightmost slice consisting of the modules I1, S2 and I2, and
I1 is the only source. A part of the Auslander–Reiten quiver of mod C containing this slice is shown
below, where modules are represented by their dimension vectors.

· · · I1 = 121

· · · S2 = 010 I3 = 001

· · · I2 = 011

In this example G1 does not exist, because by condition (c) it would contain both S2 and I2, and this
contradicts condition (d).

The tilted algebra C in the example above is of Euclidean type Ã2, so it is not of tree type. The
following lemma guarantees the existence of some completion in a rightmost slice, if the tilted algebra
is of tree type.

Lemma 9. Let C be a tilted algebra of tree type having a rightmost slice Σ+ . Then there exists a strong sink x
in C such that the completion Gx exists.

Proof. Let Ix1 be a source in Σ+ and G ′
1 its closure under condition (c) above, then let G1 be the

closure of G ′
1 under condition (b).

If G1 satisfies condition (d), then we are done. Otherwise there exist an injective I ∈ G1 and an
arrow N → I in Σ+ with N not injective. Then there exists a sectional path in Σ+ ending at N . Let
Ix2 be the source of such a path.

Let G ′
2 be the closure of Ix2 under condition (c), and then let G2 be the closure of G ′

2 under
condition (b). Clearly, G ′

2 does not contain the injective I , since there is an arrow N → I in the
sectional path, with N non-injective. Using that Σ+ is a tree, we see that Ix1 /∈ G2.

If G2 satisfies condition (d), then we are done. Otherwise we repeat the procedure. Since Σ+ is a
tree, this procedure must ultimately stop. �
Example 10. Let C be the tilted algebra of tree type D5 given by the quiver

1

2

γ

3

β

δ
5

α

4

bound by α β γ = 0 and α δ = 0. Its Auslander–Reiten quiver is shown below.
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4
3
2
1

3
2 4
1

3
2

5
3
2

5
3

2
1

3
2 4 3 5

1 2
3
4

(here, modules are represented by their composition factors). The rightmost slice

⎧⎨
⎩

3
2
1

,
3
2

,
3
4

,

5
3
2

, 3

⎫⎬
⎭

in this example has the two injective sources: I1 and I4. We have

G1 =
⎧⎨
⎩

3
2
1

,
3
2

⎫⎬
⎭ and G4 =

⎧⎨
⎩

3
2
1

,
3
2

,
3
4

, 3

⎫⎬
⎭ .

4.3. The reflection of a slice

Let now x be a strong sink in C such that the completion Gx exists. We then say that x is an
admissible sink. We are now able to define the reflection Σ ′ = σ+

x Σ+ of the complete slice Σ+ . The
set of objects in Gx is of the form J � M, where J and M consist respectively of the injective, and
the non-injectives in Gx . Let P = {Px ∈ mod C1 | Ix ∈ J }, where we recall that C1 is the copy of C
next to C0 on the diagonal blocks of Č . We then set

σ+
x Σ+ = (

Σ+ \ Gx
) ∪ P ∪ τ−1

Č
M.

Recall that, by Corollary 4, τ−1
Č

M ∼= τ−1
C M for every M ∈ Σ+ .

Lemma 11. σ+
x Σ+ is a local slice in mod Č .

Proof. We first consider in the cluster category C A the full subquiver defined by:

Σ ′′ = (
Σ+ \ Gx

) ∪ τ−1
C M ∪ τ−1

C A
I.

Thus Σ ′′ is a local slice in C A because Gx is closed under predecessors and we have Σ ′ =
(Σ ′′ \ τ−1

C A
I) � P .

We claim that Σ ′ is connected. The objects lying in Σ ′ and Σ ′′ are in one-to-one correspondence,
since any object of Σ ′ is either an object of Σ ′′ or the Auslander–Reiten translate of an object in Σ ′′ .
Hence it is enough to show that whenever there is an arrow between M ′′, N ′′ in Σ ′′ , then there is an
arrow between the two corresponding objects M ′, N ′ in Σ ′ .
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Because of Lemma 5(b), we only need to consider the case where M ′′ ∈ (Σ+ \ Gx) ∪ τ−1
C M and

N ′′ ∈ τ−1
C A

I . Thus M ′ = M ′′ and N ′ = τ−1
C A

N ′′ = τ−2
C A

I for some I ∈ I ⊂ Gx .
Either we have M ′′ → N ′′ or N ′′ → M ′′ in Σ ′′ . In the latter case, there is an arrow from (M ′ = M ′′)

to (N ′ = τ−1
C A

N ′′) in Σ ′ , and we are done. On the other hand, if M ′′ → N ′′ , then there is an arrow
τC A N ′′ → M ′′ with τC A N ′′ = I ∈ Gx injective, and thus M ′ ∈ Gx , by condition (c) of the completion Gx .
This establishes our claim.

Consequently, Σ ′ may be identified to a local slice in Db(mod C). Since, furthermore, Σ ′ consists
of Č-modules then, by [ABS2, 3.6] and [ABS3, Theorem 1], σ ′ is a local slice in mod Č . �
4.4. A hereditary subcategory

We deduce from our definition of reflection of Σ+ a definition of reflection of the tilted algebra C ,
which we denote by σ+

x C .
Define Sx to be the full subcategory of C consisting of the objects y such that I y ∈ Gx .

Lemma 12. With the above notation:

(a) Sx is hereditary,
(b) Sx is closed under successors in C ,
(c) C may be written in the form

C =
[

H 0

M C ′
]

with H hereditary, C ′ tilted and M a C ′–H-bimodule.

Proof. (a) We let H = End(
⊕

y∈Sx
I y). Then H is a full subcategory of the hereditary algebra

End(
⊕

X∈Σ+ X). Therefore H is also hereditary, that is, Sx is hereditary.
(b) Let y ∈ Sx and y → z be an arrow in C . Then there exists a morphism Iz → I y . Since Iz is an

injective C-module and Σ+ is sincere, there exist N ∈ Σ+ and a morphism N → Iz . Thus we have
N → Iz → I y . Since N, I y ∈ Σ+ and Σ+ is convex in mod C , then Iz ∈ Σ+ and so z ∈ Sx .

(c) This follows at once from (a) and (b). �
4.5. The structure of the cluster duplicated algebra

We recall from [ABS3, 4.1] that the cluster duplicated algebra C of C is the (finite dimensional)
matrix algebra

C =
[

C 0

Ext2
C (DC, C) C

]

with the ordinary matrix addition and the multiplication induced from that of C and from the C–C-
bimodule structure of Ext2

C (DC, C). Clearly, C is useful as a “building block” for the cluster repetitive
algebra Č .

Corollary 13. The cluster duplicated algebra of C is of the form

C =

⎡
⎢⎢⎢⎣

H 0 0 0

M C ′ 0 0

0 F0 H 0

0 F1 M C ′

⎤
⎥⎥⎥⎦ ,

where F0 = Ext2
C (DC ′, H) and F1 = Ext2

C (DC ′, C ′).
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Proof. We start by writing C in the matrix form of Lemma 12(c). Since, by definition, H consists of
the objects y in C such that I y ∈ Gx ⊂ Σ+ , then the projective dimension pdC D H is at most 1, hence
Ext2

C (D H,−) = 0. The result follows upon multiplying by idempotents. �
4.6. The reflection of a tilted algebra

We can now define the reflection σ+
x C of C to be the matrix algebra

σ+
x C =

[
C ′ 0

F0 H

]
,

where F0 = Ext2
C (DC ′, H). Note that σ+

x C is a quotient algebra of Č .
We now prove that this definition is compatible with the definition of reflection of local slices. We

recall that the support Supp X of a subclass X of Č is the full subcategory of Č having as objects the
x in Č such that there exists a module M ∈ X satisfying M(x) �= 0.

Proposition 14. The reflection σ+
x C is a tilted algebra having σ+

x Σ+ as a complete slice. Moreover, the cluster-
tilted algebras of C and σ+

x C and the cluster repetitive algebras of C and σ+
x C are isomorphic.

Proof. It follows directly from the definition of σ+
x Σ+ that Supp(σ+

x Σ+) ⊂ σ+
x C . Indeed, in the

notation of Lemma 11, we have σ+
x Σ+ = (Σ+ \ Gx) ∪ P ∪ τ−1

Č
M. Since, as observed before,

τ−1
Č

M ∼= τ−1
C M by Corollary 4, and the injectives in I are replaced by the projectives in P , then

we get the wanted inclusion.
Now, as shown in Lemma 11, σ+

x Σ+ is a local slice in mod Č . Denoting by Gλ : mod Č → mod C̃ the
pushdown functor associated to the Galois covering G : Č → C̃ , we get that Gλ(σ

+
x Σ+) is a local slice

in mod C̃ . By [ABS2], C∗ = C̃/Ann(Gλ(σ
+
x Σ+)) is a tilted algebra of the same type as C . Moreover we

have C̃ = C � Ext2
C (DC, C) ∼= C∗ � Ext2

C∗ (DC∗, C∗) so that we also have Č = Č∗ .
On the other hand, σ+

x Σ+ is a complete slice in mod C∗ so, in particular, it is sincere over
C∗ . Therefore, Suppσ+

x Σ+ = C∗ . Using that Č = Č∗ , we thus have C∗ ⊂ σ+
x C . Finally, since the

Grothendieck groups of C∗, σ+
x C and C are all of the same rank, it follows that the full subcategories

C∗ and σ+
x C of C̃ are equal. This completes the proof. �

Dually, one defines coreflections σ−
x with respect to admissible sources x. We leave the straight-

forward statements to the reader.

5. Main result

5.1. The distance between two local slices

We introduce the following notation. Let Σ1,Σ2 be two local slices in mod Č , considered as em-
bedded in Db(mod C). We define ď(Σ1,Σ2) to be the number of τ F j Ti (where 1 � i � rk K0(C) and
j ∈ Z) in Db(mod C) such that either Σ1 < τ F j Ti < Σ2, or Σ2 < τ F j Ti < Σ1.

Note that ď(Σ1,Σ2) is always a non-negative integer but it can be arbitrarily large. Also, if Č is
locally representation-finite (that is, C̃ is representation-finite), then ď(Σ1,Σ2) = 0 if and only if the
local slices GλΣ1 and GλΣ2 in mod C̃ are homotopic in the sense of [BOW] (see Section 4.1 above).

Lemma 15. Let Σ1,Σ2,Σ3 be local slices in mod C̃ , then:

(a) ď(Σ1,Σ2) = ď(Σ2,Σ1),
(b) ď(Σ1,Σ3) � ď(Σ1,Σ2) + ď(Σ2,Σ3).
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Proof. (a) is obvious and (b) follows from a straightforward counting argument. �
5.2. The metric space of fibre quotients of a cluster repetitive algebra

Clearly, ď is not yet a distance function. Our objective is to use it in order to define a distance
function. We say that an algebra C ′ is a fibre quotient of Č if C ′ is tilted and such that Č ′ ∼= Č . This
terminology is motivated by the observation that such an algebra C ′ lies in the fibre of Č under the
mapping C �→ Č from the class of tilted algebras to the class of cluster repetitive algebras.

Let now C1, C2 be two fibre quotients of Č , and Σ1,Σ2 be complete slices in mod C1,mod C2
respectively, considered as local slices in mod Č . Then we set

ď(C1, C2) = ď(Σ1,Σ2).

This does not depend on the choice of the complete slices Σ1 and Σ2. Indeed, let Σ1,Σ
′
1 be two

complete slices in mod C1, then it is clear that ď(Σ1,Σ
′
1) = 0. Hence Lemma 15(b) yields ď(Σ1,Σ2) �

ď(Σ1,Σ
′
1) + ď(Σ ′

1,Σ2) = ď(Σ ′
1,Σ2). Similarly, ď(Σ ′

1,Σ2) � ď(Σ1,Σ2), so ď(Σ1,Σ2) = ď(Σ ′
1,Σ2), and

our notion is well defined.

Proposition 16. Let C1, C2 be two fibre quotients of Č , then ď(C1, C2) = 0 if and only if C1 = C2 .

Proof. Assume indeed that ď(C1, C2) = 0. Let Σ1,Σ2 be complete slices in mod C1,mod C2, re-
spectively, considered as local slices in mod Č . By [ABS2, 3.6], we have C1 = Č/Ann Σ1 and C2 =
Č/Ann Σ2.

Let T be a tilting module over the hereditary algebra A such that EndA T ∼= C , and EndC A T ∼= C̃ (so
that EndDb(mod A)(

⊕
i∈Z

F i T ) = Č ). By [ABS2, 3.7], the annihilator Ann Σ1 is generated by the arrows

α : (x0, i) → (y0, j) of Č (here x0, y0 are points of C1, while i, j ∈ Z) such that the corresponding
morphism fα : F j T y0 → F i Tx0 in the derived category lies in HomDb(mod A)(F j T , F j+1 T ) and Σ1 =
F j D A. Now, this is the case if and only if

F j T y0 � Σ1 � τ 2 F j+1Tx0

in Db(mod A). Indeed, notice first that the existence of the arrow α means that i ∈ { j, j+1}. Moreover
τ 2 F Tx0 = τ Tx0 [1] � D A implies τ 2 F j+1Tx0 � F j D A = Σ1. On the other hand, T y0 � D A gives clearly
F j T y0 � F j D A = Σ1.

We next claim that ď(Σ1,Σ2) = 0 implies

F j T y0 � Σ2 � τ 2 F j+1Tx0 .

Indeed, if F j T y0 � Σ2, then Σ2 < F j T y0 , so that Σ2 < τ F j T y0 because τ F j T y0 /∈ Σ2. This implies that

Σ2 < τ F j T y0 < Σ1 and we have a contradiction to ď(Σ1,Σ2) = ď(C1, C2) = 0. On the other hand, if
Σ2 � τ 2 F j+1Tx0 , then τ 2 F j+1Tx0 < Σ2 and so τ F j+1Tx0 < Σ2 because τ F j+1Tx0 /∈ Σ2. This implies

that Σ1 < τ F j+1Tx0 < Σ2, another contradiction to ď(Σ1,Σ2) = ď(C1, C2) = 0. This establishes our
claim.

Now, that claim implies that the annihilators of Σ1 and Σ2 have the same generators. Therefore
C1 = C2. Since the converse is obvious, the proof of the proposition is complete. �
Corollary 17. The set F̌ of all fibre quotients of Č is a discrete metric space with the distance ď.

Proof. It follows from Lemma 15 and Proposition 16 that ď is a distance in F̌ . It is clear that the
resulting metric space is discrete. �
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5.3. The metric space of fibre quotients of a cluster-tilted algebra

We now bring down this information to C̃ . We say that an algebra C ′ is a fibre quotient of C̃ if C ′
is tilted and such that C̃ ′ ∼= C̃ . Let C1, C2 be two fibre quotients of C̃ , then we set

d(C1, C2) = min
C∗

1 ,C∗
2∈F̌

{
ď
(
C∗

1, C∗
2

) ∣∣ GC∗
1 = C1, GC∗

2 = C2
}
.

Corollary 18. Let C1, C2 be two fibre quotients of C̃ , then d(C1, C2) = 0 if and only if C1 = C2 .

Proof. This follows immediately from Proposition 16. �
Remark 19. This gives another interpretation and proof of [BOW, Theorem 4.13].

Notice that while our definition implies that the set F̌ of fibre quotients of Č is infinite, clearly
the set F̃ of fibre quotients of C̃ is finite. Moreover, it is easily seen that F̌ is (trivially) a topological
covering of F̃ .

Corollary 20. The set F̃ of all fibre quotients of C̃ is a discrete metric space with the distance d.

Proof. This follows from Corollary 17. �
5.4. The following lemma and its proof, which relate fibre quotients of C̃ and Č , are valid without

assuming that C is of tree type.

Lemma 21. Let C be a tilted algebra. If C ′ is a fibre quotient of C̃ , then G−1(C) is the ϕ-orbit of a fibre quotient
of Č . Conversely, if C∗ is a fibre quotient of Č , then G(C∗) is a fibre quotient of C̃ .

Remark 22. By abuse of language, we quote from now on this lemma by saying that C ′ is a fibre
quotient of C̃ if and only if C ′ is a fibre quotient of Č .

Proof. Suppose Č = Č∗ . Let Σ be a complete slice in mod C considered as a local slice in Č = Č∗ .
By [ABS2, 3.4], Σ lifts isomorphically as a section both in Db(mod C) and in Db(mod C∗). This

implies that we have equivalences of triangulated categories φ : Db(mod C)
∼=→ Db(mod kΣ) and

φ∗ : Db(mod C∗)
∼=→ Db(mod kΣ). Let T = φC and T ∗ = φ∗C∗ . Then:

EndDb(mod kΣ)

(⊕
j∈Z

F j T

)
∼= EndDb(mod C)

(⊕
j∈Z

F jC

)

∼= Č

∼= Č∗

∼= EndDb(mod C ′)

(⊕
j∈Z

F jC∗
)

∼= EndDb(modkΣ)

(⊕
j∈Z

F j T ∗
)

.
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3
1

4
3 5 2

3
1

3
4 5
3

3
1 2

3

5
3 4 1

3
2

5
3
1

1
4

4
3
2

Fig. 1. Auslander–Reiten quiver of Example 5.5.

Define C ′ = G(C∗), then, passing to the cluster category, we have CC ∼= CkΣ
∼= CC ′ and

C̃ ∼= EndCC C

∼= EndCkΣ
T

∼= EndCkΣ
T ∗

∼= EndCC ′ C ′

∼= C̃ ′.

This proves the sufficiency. The necessity is obvious. �
5.5. Example

Let C̃ be the cluster-tilted algebra of type A5 given by the quiver

1
α

4

β

3
γ

μ

2
ν

5

λ

bound by α β = 0, β γ = 0, γ α = 0 λμ = 0, μν = 0 and ν λ = 0. Its Auslander–Reiten quiver is
shown in Fig. 1, where modules are represented by their Loewy series and we identify the vertices
that have the same label, thus creating a Moebius strip. Let Σ1,Σ2,Σ3 be respectively given by
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Σ1 =
⎧⎨
⎩

4
3
2

,
4
3

,
4 5
3

, 4 ,
1
4

⎫⎬
⎭ ,

Σ2 =
⎧⎨
⎩

5
3
1

,
5
3

,
4 5
3

, 5 ,
2
5

⎫⎬
⎭ ,

Σ3 =
⎧⎨
⎩

2
5

, 2 ,
3

1 2
,

3
2

,

4
3
2

⎫⎬
⎭ .

Then C1 = C̃/Ann Σ1 is given by the quiver

1
α

4

β

3
μ

2 5

λ

while C2 = C̃/Ann Σ2 is given by the quiver

1 4

β

3
γ

2
ν

5

λ

and C3 = C̃/Ann Σ3 is given by the quiver

1 4

β

3
γ

μ

2
ν

5

with the inherited relations in each case. Then we have d(C1, C2) = d(C1, C3) = d(C2, C3) = 2. Notice
that if C̃ has n points, then clearly, for any two fibre quotients C1, C2 of C̃ , we have d(C1, C2) � � n

2 �.

5.6. We are now able to state and prove the key lemma.

Lemma 23. Let Σ1,Σ2 be two local slices in the same transjective component of mod Č such that ď(Σ1,Σ2) �=
0. Then either:
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(a) there exists a rightmost slice Σ+
1 such that ď(Σ1,Σ

+
1 ) = 0 and a reflection σ+

x such that ď(σ+
x Σ+

1 ,Σ2) <

ď(Σ1,Σ2), or
(b) there exists a leftmost slice Σ−

1 such that ď(Σ1,Σ
−
1 ) = 0 and a coreflection σ−

y such that ď(σ−
y Σ−

1 ,Σ2)<

ď(Σ1,Σ2).

Proof. (1) Assume first that Σ1 ∩ Σ2 = ∅, then we can assume without loss of generality that
Σ1 < Σ2. Let Σ+

1 be the rightmost slice such that ď(Σ1,Σ
+
1 ) = 0. Such a rightmost slice exists since

ď(Σ1,Σ2) �= 0 and the two slices lie in the same transjective component. Let x = (x0, j) be an admis-
sible sink in Σ+

1 . We claim that σ+
x Σ+

1 gives the result. Indeed, Tx0 is such that

Σ1 < τ F j Tx0 < Σ2

in Db(mod C), but τ F j Tx0 < σ+
x Σ+

1 . Also, if T y0 is such that σ+
x Σ+

1 < τ F i T y0 < Σ2 in Db(mod C),
then Σ1 � Σ+

1 < τ F i T y0 < Σ2. Moreover, Σ2 < τ F i T y0 < σ+
x Σ+

1 is impossible, because σ+
x Σ+

1 � Σ2.
We deduce that d(σ+

x Σ+
1 ,Σ2) < d(Σ1,Σ2). This proves (a). Similarly, assuming Σ2 < Σ1 yields (b).

(2) Suppose now that Σ1 ∩ Σ2 �= ∅. Since ď(Σ1,Σ2) �= 0, there exists z = (z0, j) such that either
Σ1 < τ F j T z0 < Σ2 or Σ2 < τ F j T z0 < Σ1. Assume Σ1 < τ F j T z0 < Σ2 and let x = (x0, i) be an admis-
sible sink in Σ+

1 such that

Σ+
1 < τ F i Tx0 < Σ2.

We claim that ď(σ+
x Σ+

1 ,Σ2) < ď(Σ1,Σ2).
We first prove that Gx < Σ2 (see Section 4.2 for the notation Gx). By definition, Gx is constructed

by taking closures under socle factors of injectives (lying on the slice) and predecessors. Taking pre-
decessors (of predecessors) of Σ2 cannot create elements of Σ2 or successors of Σ2. Therefore, it
suffices to show that, if I is an injective predecessor of Σ2 and I → M , then M < Σ2. Suppose that
this is not the case, then M ∈ Σ2 and, since Σ2 is a local slice and I is injective, then I must belong
to Σ2, a contradiction.

Now the same argument as in case (1) above completes the proof of (a). Similarly, in case Σ2 <

τ F j T z0 < Σ1, we get (b). �
5.7. The main result

We may now state and prove our main theorem.

Theorem 24. Let C be a tilted algebra having a tree Σ as complete slice and C ′ be a tilted algebra. The following
conditions are equivalent:

(a) C ′ is a fibre quotient of C̃ .
(b) C ′ is a fibre quotient of Č .
(c) There exists a sequence of reflections and coreflections σ1, . . . , σt such that C ′ = σ1 · · ·σt C has Σ ′ =

σ1 · · ·σtΣ as complete slice and C ′ = C̃/Ann Σ ′ .

Proof. Since the equivalence of (a) and (b) follows from Lemma 21, and since Proposition 14 yields
easily that (c) implies (a), it suffices to prove that (a) implies (c).

Let C ′ be a fibre quotient of C̃ . Then there exist two local slices Σ and Σ ′′ in mod C̃ such that
C = C̃/Ann Σ and C ′ = C̃/Ann Σ ′′ (because of [ABS2, 3.6]). Lifting this information to Č , there exist
two local slices Σ̌ and Σ̌ ′′ lying in the same transjective component of Γ (mod Č) such that GλΣ̌ =
Σ and GλΣ̌

′′ = Σ ′′ . Applying Lemma 23 and an obvious induction, the finiteness of the distance
function yields a sequence of reflections and coreflections σ1, . . . , σt such that ď(σ1 · · ·σtΣ̌, Σ̌ ′′) = 0.
This implies that d(σ1 · · ·σtΣ,Σ ′′) = 0. Let Σ ′ = σ1 · · ·σtΣ . By Proposition 14, C ′ = σ1 · · ·σt C is tilted
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and has Σ ′ as a complete slice. Let C∗ = C̃/Ann Σ ′ , then d(Σ ′,Σ ′′) = 0 implies d(C∗, C ′) = 0. Because
of Corollary 18, we get indeed C ′ = C∗ . This completes the proof. �
5.8. Example

Let again C̃ be the cluster-tilted algebra of Example 5.5. We assume that C is the tilted algebra
given by the quiver

1
α

4

β

3
μ

2 5

λ

bound by α β = 0, λμ = 0. A rightmost complete slice Σ of mod C is given by

Σ =
⎧⎨
⎩

4
3
2

,
4
3

,
4 5
3

, 4 ,
1
4

⎫⎬
⎭ .

Reflecting successively at all admissible sinks yields successively the local slices

σ2Σ =
{

4 5
3

, 5 , 4 ,
2
5

,
1
4

}
,

σ3σ2Σ =
{

2
5

,
1
4

, 2 , 1 ,
3

1 2

}
,

σ4σ3σ2Σ =
⎧⎨
⎩

2
5

, 2 ,
3

1 2
,

3
2

,

4
3
2

⎫⎬
⎭ ,

σ5σ3σ2Σ =
⎧⎨
⎩

1
4

, 1 ,
3

1 2
,

3
1

,

5
3
1

⎫⎬
⎭ ,

σ5σ4σ3σ2Σ =
⎧⎨
⎩

3
1 2

,
3
1

,
3
2

,

5
3
1

,

4
3
2

⎫⎬
⎭ .

Then we have Σ ′ = σ5σ4σ3σ2Σ = σ4σ5σ3σ2Σ . The rightmost slice corresponding to Σ ′ is

Σ ′+ =
⎧⎨
⎩

4
3
2

,

5
3
1

,
4
3

,
5
3

,
4 5
3

⎫⎬
⎭ ,

therefore
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σ2Σ
′+ =

⎧⎨
⎩

5
3
1

,
5
3

,
4 5
3

, 5 ,
2
5

⎫⎬
⎭ ,

while σ1Σ
′+ = Σ . Therefore the fibre quotients of C̃ are the algebras:

(1) σ2C given by the quiver

1
α

4

β

3

2
ν

5

λ

bound by α β = 0 and ν λ = 0.
(2) σ3σ2C given by the quiver

1
α

4

3
γ

μ

2
ν

5

bound by γ α = 0 and μν = 0.
(3) σ4σ3σ2C given by the quiver

1 4

β

3
γ

μ

2
ν

5

bound by β γ = 0 and μν = 0.
(4) σ5σ3σ2C given by the quiver

1
α

4

3
γ

μ

2 5

λ

bound by γ α = 0 and λμ = 0.
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(5) σ5σ4σ3σ2C = σ4σ5σ3σ2C given by the quiver

1 4

β

3
γ

μ

2 5

λ

bound by β γ = 0 and λμ = 0.
(6) σ2σ5σ4σ3σ2C given by the quiver

1 4

β

3
γ

2
ν

5

λ

bound by β γ = 0 and ν λ = 0.

Finally σ1σ5σ4σ3σ2C = C . It is easily seen that we so obtain all fibre quotients of C̃ .
The reader can easily locate these reflections (fibre quotients) of C in the quiver of Č :

4 1
α

4
β

1
α

4
β

1
α

4
β

1
α

4
β

3

γ

μ

3

γ

μ

3

γ

μ

3

γ

μ

5 2
ν

5

λ

2
ν

5

λ

2
ν

5

λ

2
ν

5

λ

bound by the lifted relations α β = 0, β γ = 0, γ α = 0 λμ = 0, μν = 0 and ν λ = 0. We have illus-
trated one copy of C in bold face.

6. Algorithm

6.1. Let C be a tilted algebra of tree type, and Γ a connecting component of mod C . We recall that
a tilted algebra has a unique connecting component, except if it is concealed, in which case it has
two. We denote by Σ+ and Σ− , respectively, the rightmost and leftmost slice in Γ . We assume both
Σ+ and Σ− exist. Let Γ1 be the full subquiver of Γ having as points

Γ1 = {
M ∈ ind C

∣∣ τΣ− � M � τ−1Σ+}
.
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Lemma 25. With the above notation:

(a) Γ1 embeds as a full subquiver of Γ (mod Č).
(b) Let M be a Č -module such that τΣ− � M � τ−1Σ+ then M is a C-module lying in Γ1 .

Proof. (a) follows from Proposition 3.
(b) Let M be such a Č-module. It follows from the structure of Γ (mod Č) that M lies in a tran-

sjective component and furthermore there exists t � 0 such that τ−t
Č

M ∈ Σ+ , that is, there exists a

C-module N ∈ Σ+ such that τ−t
Č

M = N . Applying Proposition 3, we get M = τ t
Č
τ−t

Č
M = τ t

Č
N ∼= τ t

C N ,
hence the statement. �
Remark 26. Note that if, for instance, Σ− does not exist, but Σ+ does, then the statement of the
lemma applies to the full subquiver of Γ with points {M ∈ ind C | M � τ−1Σ+}.

6.2. Let now x be an admissible sink in C such that Gx is contained in the rightmost slice Σ+ of
mod C . Let I y be a source in Gx and define a Č-module P y by

top P y = S y,

rad P y = τ−1
C (I y/S y) =

⊕
I y→M

(
τ−1

C M
)
.

Note that, since I y is a source, then all indecomposable modules M such that there exists an arrow
I y → M in Γ (mod C) lie in Gx (see Section 4.2). Also, as morphisms from top P y to rad P y , we take,
for every arrow α : y → z, the linear map fα : P y(y) → P y(z) defined by the right multiplication by
the residual class of the arrow α in Č = kQ̌ / Ǐ .

Recursively, for every Iz in Gx with the property that for each predecessor I w of Iz in Gx , we have
already introduced a corresponding projective module P w , we define P z by

top P z = Sz,

rad P z = τ−1
C (Iz/Sz)

⊕( ⊕
I w→Iz

P w

)
,

where the second direct sum is taken over all arrows I w → Iz in Gx .
Again, for morphisms from top P z to rad P z , we take, for every arrow α : z → v , the linear map

fα : P z(z) → P z(v) defined by the right multiplication by the residual class of the arrow α in Č =
kQ̌ / Ǐ . The module P z is thus located at the position τ−2 Iz in Γ (mod Č).

Lemma 27. For each injective module I y in Gx, the Č -module P y thus constructed is isomorphic to the inde-

composable projective Č -module P̌ y at y.

Proof. Clearly, it suffices to show that rad P̌ y = rad P y . We have that rad P̌ y is the direct sum of all
N ∈ ind Č such that there exists an arrow N → P̌ y in Γ (mod Č). There are two possibilities for such a
radical summand N:

Either N is not projective, and then there exists an arrow I y → M with M ∼= τČ N because P̌ y is

also situated at the position τ−2 I y in Γ (mod Č) (see Lemma 5(a)), or N = P̌ w is projective, and then
there exists an arrow P̌ w → P̌ z in Γ (mod Č).
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Thus

rad P̌ y =
( ⊕

I y→M

τ−1
Č

M

)⊕( ⊕
P̌ w→ P̌ z

P̌ w

)
,

where the two direct sums are taken over arrows in Γ (mod Č).
Now, if I y = Ǐ y is a source in Gx , then there is no arrow Iz → I y in Γ (mod C) and, because of

Lemma 25, there is no arrow Ǐ z → Ǐ y in Γ (mod Č). By Lemma 5(b), there is no arrow P̌ z → P̌ x in
Γ (mod Č). Therefore, using Proposition 3,

radČ P̌ y =
⊕

Ǐ y→M

τ−1
Č

M =
⊕

I y→M

τ−1
C M = radČ P y,

where the first direct sum is taken over arrows in Γ (mod Č) and the second over arrows in Γ (mod C).
Now assume that Iz is not a source in Gz . By induction, we may suppose that P̌ w = P w for all w

such that I w precedes Iz in Gx . Thus

⊕
P̌ w→ P̌ z

P̌ w ∼=
⊕

Ǐ w→ Ǐ z

P̌ w ∼=
⊕

I w→Iz

P̌ w ∼=
⊕

I w→Iz

P w ,

where the last equality holds by induction. Since we have, as before,

⊕
Ǐ z→M

τ−1
Č

M =
⊕

Iz→M

τ−1
C M,

the proof is complete. �
6.3.

Corollary 28. With the above notation, we have

σ+
x Σ+ = {Σ \ Gx} ∪ {P y | I y ∈ Gx injective} ∪ {

τ−1
C M

∣∣ M ∈ Gx not injective
}
.

Proof. This follows directly from Lemma 27 and the construction in Section 4.3.

Remark 29. Clearly, the dual construction, starting from an admissible source y in C and constructing
the local slice σyΣ

− in Γ (mod Č) holds as well. We leave its statement to the reader.

6.4. We now describe an algorithm allowing to construct the transjective component of a cluster-
tilted algebra C̃ knowing only a complete slice of a tilted algebra C . Since the pushdown functor
Gλ : mod Č → mod C̃ is dense and thus induces an isomorphism of quivers Γ (mod C̃) ∼= Γ (mod Č)/Z
(see [ABS3]), it suffices to construct a transjective component of Č .

Let Σ be a complete slice in mod C , then Σ embeds as a local slice in a transjective component
Γ of the cluster repetitive algebra Č . For clarity, we treat separately the representation-finite and the
representation-infinite case.

(a) Assume C̃ is representation-finite, that is, Č is locally representation-finite. In this case, Σ is a
Dynkin quiver. We carry out the following steps.
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(1) If there exists a source M of Σ which is not injective, then we replace Σ by

Σ ′ = {
Σ \ {M}} ∪ {

τ−1M
}

(here, the Auslander–Reiten translation τ is computed with respect to the support of Σ

which, at the start, is equal to C ). If not go to 2. Repeat until every source is injective.
(2) If all sources of Σ are injective then there exists a source Ix in Σ such that Gx exists (because

of Lemma 9). Then we replace Σ by

Σ ′ = σ+
x Σ.

Go to 1.
Since Č is locally representation-finite, we eventually construct a slice Σ such that for every
module M in Σ , the module ϕ−1M has already been constructed before, where ϕ is the auto-
morphism of Č inducing the covering Č → C̃ (see Section 3.3). At this point the algorithm stops.
After identification under ϕ , we have thus obtained the Auslander–Reiten quiver of the cluster-
tilted algebra C̃ .

(b) Assume C̃ is representation-infinite, that is, Č is locally representation-infinite. We carry out the
following steps.
(1) If there exists a source M of Σ which is not injective, then we replace Σ by

Σ ′ = {
Σ \ {M}} ∪ {

τ−1M
}

(where, again, τ−1 is computed with respect to the support of Σ ). Repeat. If this procedure
produces a Σ in which every source is injective, then go to 2. If not, then this procedure
produces the right stable part of Γ . Then go to 3.

(2) If all sources of Σ are injective then there exists a source Ix in Σ such that Gx exists. Then
we replace Σ by

Σ ′ = σxΣ.

Go to 1. Since there are finitely many injectives in Γ then, at some point, we get to 3.
(3) Return to the initial slice Σ .
(4) If there exists a sink N of Σ which is not projective, then we replace Σ by

Σ ′ = {
Σ \ {N}} ∪ {τ N}

(where, again, τ is computed with respect to the support of Σ ). Repeat. If this procedure
produces a Σ in which every sink is projective, then go to 5. If not, then this procedure
produces the left stable part of Γ . Then the algorithm stops.

(5) If all sinks of Σ are projective then there exists a sink P y in Σ such that G y exists. Then we
replace Σ by

Σ ′ = σyΣ.

Go to 4. Since there are finitely many projectives in Γ then, at some point, the algorithm
stops.

Theorem 30. Let C be a tilted algebra of tree type. Then the transjective component of Γ (mod C̃) is constructed
by the preceding algorithm. Moreover, if C is of Dynkin type, then the algorithm yields Γ (mod C̃).
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Proof. This follows from Corollary 28 and the density of the pushdown functor Gλ : mod Č →
mod C̃ . �
6.5. A representation-finite example

Let C be the tilted algebra of type D4 given by the quiver

2
β

1 4

α

γ

3
δ

bound by αβ = γ δ. We construct its Auslander–Reiten quiver until we reach its rightmost slice

Σ+ =
⎧⎨
⎩

4
2 3
1

,
4

2 3
,

4
2

,
4
3

⎫⎬
⎭ .

Since Σ+ has a unique source
4

2 3
1

, the corresponding sink 1 is admissible and so we get

σ+
1 Σ+ =

{
4
2

,
4
3

, 4, ,
1
4

}
.

In the next step we must move the points 4
2

and 4
3

simultaneously (because G2 = G3), hence we get

σ+
2 σ+

1 Σ+ = σ+
3 σ+

1 Σ+ =
{

1
4

, 1 ,
2
1

,
3
1

}
.

A further reflection yields

σ+
4 σ+

2 σ+
1 Σ+ =

⎧⎨
⎩

2
1

,
3
1

,
2 3
1

,

4
2 3
1

⎫⎬
⎭ ,

which is the leftmost slice Σ− in Γ (mod C). The Auslander–Reiten quiver of C̃ is of the form shown
in Fig. 2.

6.6. A representation-infinite example

Let C be the tilted algebra of type D̃4 given by the quiver

2
β

5 4
ε

1

α

γ

3

δ
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2
1

3
4
2

2
1

1
2 3
1

4
2 3
1

4
2 3

4
1
4

1

3
1

2
4
3

3
1

Fig. 2. Auslander–Reiten quiver of Example 6.5.

bound by α β = γ δ and α β ε = 0. Here, C̃ is representation-infinite. We show part of its transjective
component.

4
5

2 3
4 4
5
1

1
2 3
4

4
5

1 1
2 3

5
1

3
4
5
1

2
4
5

3
4 2

1
3

5
1
2

4
5

1 1
3

2 3
4 4 4
5 5
1

2 3
4 4
5

2 3
4

1
2 3

5
1 1
2 3

4
5 5

1 1 1
2 3

2 3
4 4
5 5
1

4
2 3
4
5

5
1

2 3
1

4
5 5
1 1
2 3

2
4
5
1

3
4
5

2
4 3

1
2

5
1
3

4
5

1 1
2

The rest of the transjective component is constructed by the “knitting” procedure, constructing suc-
cessively the Auslander–Reiten translates of the modules thus obtained. The remaining projectives lie
in the tubes. The cluster repetitive algebra Č is given by the quiver

2
β

2
β

2
β

· · · 5 4
ε

λ

1
γ

α

5
μ

4
ε

λ

1
γ

α

5
μ

4
ε

λ

· · ·
γ

α

3

δ

3

δ

3

δ

bound by α β = γ δ, α β ε = 0, β λ = β ε μ, λα = ε μα, δ λ = 0 and λγ = 0.
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7. Tubes

The same algorithm seems to work for the tubes of the cluster-tilted algebras of Euclidean type.
We have no proof of this fact but we give partial results and an example here.

We recall from [Ri, p. 241] that the Auslander–Reiten quiver of a representation-infinite tilted
algebra of Euclidean type contains, besides the postprojective and the preinjective component, also an
infinite family of so-called tubes (see [Ri, p. 113]), only finitely many of which have rank larger than
one, and thus may contain projectives (or injectives). Consequently, cluster tilted algebras of Euclidean
type also contain tubes, see [ABS2, 3.3].

Let A be a hereditary algebra of Euclidean type and T be a tilting A-module without preinjective
summands. Assume that Ti is a summand of T that lies in a tube and such that i is a source of
C = EndA T . Denote by r the quasi-length of Ti and let M be the quasi-simple module that lies on
the same ray as Ti on the mouth of the tube.

Lemma 31. The immediate predecessor of Ti on the semi-ray ending at Ti is a summand of T .

Proof. If r = 1, then M = Ti and the result holds since there is no such predecessor. If r > 1, it follows
from the assumption that i is a source in C . �

We denote this predecessor by T j . Thus there is a sectional path M → · → · · · → T j → Ti of length
r − 1, and M lies on the mouth of the tube.

Lemma 32. In the above situation, we have

HomA
(
T , τ 2Ti

) ∼= HomA
(
T , τ 2M

)
.

Proof. Applying the functor HomA(T ,−) to the short exact sequence

0 → τ 2M → τ 2Ti → τ T j → 0,

the result follows from HomA(T , τ T j) = D ExtA(T j, T ) = 0. �
Lemma 33. In the above situation, let Ĩ i denote the indecomposable injective and S̃i the indecomposable
simple module of the cluster-tilted algebra C � Ext2

C (DC, C) corresponding to the point i. Then

Ĩi/ S̃ i = HomA
(
T , τ 2Ti

)
.

Proof. A straightforward computation shows that

Ĩ i = HomC
(
T , τ 2Ti

)
= HomA

(
T , τ 2Ti

) ⊕ HomDb(mod A)

(
τ T [−1], τ 2Ti

)
= HomA

(
T , τ 2Ti

) ⊕ D HomA
(
τ 2Ti, τ

2T
)
.

The simple socle of Ĩ i corresponds in this description to the direct summand D HomA(τ 2Ti, τ
2Ti) of

the second term. Thus

Ĩ i/ S̃ i = HomA
(
T , τ 2Ti

) ⊕ D HomA
(
τ 2Ti, τ

2T
)
,

where T ⊕ Ti = T . The statement now follows, because HomA(τ 2Ti, τ
2T ) = HomA(Ti, T ) = 0, because

i is a source in C . �
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Now consider the image of the tube in the module category of the tilted algebra C = EndA T . The
A-modules T j and Ti correspond to the indecomposable projective C-modules P j and Pi respectively.
Moreover P j is a direct summand of the radical of Pi . Since Pi lies in a tube its radical rad Pi =
P j ⊕ N , for some indecomposable C-module N . Since i is a source, it follows from the construction of
the tube in mod C from the tube in mod A that τC N = HomA(T , τ 2 M).

Lemma 34. With the notation above,

Ĩ i/ S̃ i = τC N.

Proof. τC N = HomA(T .τ 2 M) = HomA(T , τ 2Ti) = Ĩ i/ S̃ i , where the second equality follows from
Lemma 32 and the last from Lemma 33. �

This shows that at least in certain cases, a similar algorithm as for the transjective component
can be used to construct the tubes of the cluster-tilted algebra. Starting from the tube of the tilted
algebra, we use knitting to the left until we reach an indecomposable projective C-module Pi . We
insert a new injective at the position τ 2 Pi by requiring that its socle quotient is equal to τC of the
unique non-projective indecomposable summand of the radical of Pi in mod C . Lemma 34 shows that
this module is actually the indecomposable injective module Ĩ i of the cluster-tilted algebra.

The arguments above will stop functioning if we come to another projective P� inside the same
tube for which there is no sectional path from P� to Pi . The algorithm still seems to work in all the
examples we have computed, but we do not know how to prove it.

Example 35. We conclude with an example of a tube. Let C be given by the quiver

1
α

3
β

δ
4

2
γ

bound by the relations αβ = 0 and γ δ = 0. One of the two exceptional tubes in mod C is given as

1
3
4

3
4

1
3
4

3
4

1
3 3
4 4

3 3
4 4

1
3 3
4 4

3 3
4 4

...

...
...

where modules with identical labels must be identified. The module P1 =
1
3
4

is projective and each

module in the tube lies in the τ -orbit of P1.
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We use our algorithm to construct the tube of the corresponding cluster-tilted algebra C̃ = C �
Ext2

C (DC, C) which is given by the quiver

1
α

3
β

δ
4

σ

ρ
2

γ

bound by the relations αβ = βσ = σα = γ δ = δρ = ργ = 0. First we construct the new injective
module

1
3
4
1

1
3
4

3
4

1
3
4

3
4

1
3 3
4 4

3 3
4 4

3
4

1
3 3
4 4

3 3
4 4

...

...
...

...

and then we continue knitting to the left until the modules start repeating.

1
3
4
1

1
3
4
1

1
3
4

3
4

1
3
4

3
4
1

1
3
4

3
4

1
3 3
4 4

3 3
4 4

3
4

1
3 3
4 4
1

3
4

1
3 3
4 4

3 3
4 4

...

3 3
4 4
1

1
3 3
4 4

3 3
4 4

...

...

3 3
4 4

...



2502 I. Assem et al. / Journal of Algebra 324 (2010) 2475–2502
The tube in the cluster-tilted algebra consists of the modules in bold face. Modules (in bold face)
with identical labels must be identified. Note that the tube of the cluster-tilted algebra in this example
is obtained by inserting a coray into the tilted tube.
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