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Abstract

In this paper, we describe finite, additively commutative, congruence simple semirings. Th
result is that the only such semirings are those of order 2, zero-multiplication rings of prime
matrix rings over finite fields, ones with trivial addition, and those that are additively idempote
 2004 Elsevier Inc. All rights reserved.
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1. Introduction to semirings

The notion of semirings seems to have first appeared in the literature in a 1934 pa
Vandiver [4]. Though the concept of a semiring might seem a bit strange and unmot
additively commutative semirings arise naturally as the endomorphisms of commu
semigroups. Furthermore, every such semiring is isomorphic to a sub-semiring o
endomorphisms [2]. For a more thorough introduction to semirings and a large coll
of references, the reader is referred to [2].

Definition 1. A semiringis a nonempty setS together with two associative operations,+
and·, such that for alla, b, c ∈ S, a · (b+ c)= a · b+ a · c and(a + b) · c= a · c+ b · c.

A semiring is calledadditively (multiplicatively) commutativeif (S,+) ((S, ·)) is
commutative. If both(S,+) and(S, ·) are commutative,S is simply calledcommutative.

The classification of finitely generated c-simple (see Definition 4) commutative s
rings has only recently been given in [1]. In this paper, we progress toward a classifi
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of the class of finite c-simple semirings which are only additively commutative. The
result will be given in Theorem 12.

Definition 2. An elementα of a semiring is calledadditively(multiplicatively) absorbing
if α+x = x+α = α (α ·x = x ·α = α) for all x ∈ S. An element∞ of a semiring is called
an infinity if it is both additively and multiplicatively absorbing.

Note that an additive identity in a semiring need not be multiplicatively absorbin
however, a semiring has a multiplicatively absorbing additive identity, we call it azero,
and denote it by 0. A semiringS with additive identityo is calledzero-sum freeif for all
a, b ∈ S, a + b = o impliesa = b = o.

Definition 3. Let S be a semiring andB ⊆ S a subset. ThenB is called abi-ideal of S if
for all b ∈ B ands ∈ S, b+ s, s + b, bs, sb ∈ B.

Definition 4. A congruence relationon a semiringS is an equivalence relation∼ that also
satisfies

x1 ∼ x2 ⇒



c+ x1 ∼ c+ x2,

x1 + c∼ x2 + c,
cx1 ∼ cx2,

x1c∼ x2c,

for all x1, x2, c ∈ S. A semiringS that admits no congruence relations other than the tr
ones, idS andS × S, is said to becongruence-simple, or c-simple.

Note that the trivial semiring of order 1 and every semiring of order 2 are congru
simple. Also note that ifB ⊆ S is a bi-ideal then idS ∪ (B × B) is a congruence relation
Thus, ifB ⊆ S is a bi-ideal andS is c-simple, then|B| = 1 orB = S.

The following theorem, due to Bashir, Hurt, Jančǎrék, and Kepka in [1, Theorem 14.1
classifies finite c-simple commutative semirings.

Theorem 5. Let S be a commutative, congruence-simple, finite semiring. Then one
following holds:

(1) S is isomorphic to one of the five semiringsT1, . . . , T5 of order2 defined inTable 1;
(2) S is a finite field;
(3) S is a zero-multiplication ring of prime order;
(4) S is isomorphic toV (G) (defined below), for some finite abelian groupG.

For a multiplicative abelian groupG, setV (G)=G ∪ {∞}. Extend the multiplication
of G to V (G) by the rulex∞ = ∞x = ∞ for all x ∈ V (G). Define an addition onV (G)
by the rulesx + x = x, x + y = ∞ for all x, y ∈ V (G) with x �= y.

We first note that a complete classification up to isomorphism of finite, addit
commutative, c-simple semirings is probably not possible. To see this, note thatV (G)

is c-simple for any finite groupG. Furthermore, ifG1 andG2 are two non-isomorphi



848 C. Monico / Journal of Algebra 271 (2004) 846–854

of
clas-

tively

tion
Table 1
Commutative semirings of order two

(T1,+) 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 0

(T2,+) 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 1

(T3,+) 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 0

(T4,+) 0 1
0 0 0
1 0 1

· 0 1
0 1 1
1 1 1

(T5,+) 0 1
0 0 0
1 0 1

· 0 1
0 0 1
1 1 1

(T6,+) 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 1

(T7,+) 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 0

(T8,+) 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

groups, thenV (G1) andV (G2) are non-isomorphic semirings. Thus a classification
finite, additively commutative, c-simple semirings up to isomorphism would require a
sification of finite groups.

2. Basic results

The goal of this section is to derive some basic structure information for finite, addi
commutative, c-simple semirings.

Lemma 6. LetS be a finite, additively commutative, c-simple semiring. If the multiplica
table ofS has two identical rows(columns), then one of the following holds:

(1) there existsc ∈ S such thatxy = c for all x, y ∈ S;
(2) |S| = 2.

Proof. Observe that the relation∼ defined by

x ∼ y if xz= yz for all z ∈ S
is a congruence relation. By assumption, there existr1 �= r2 such thatr1z= r2z for all z ∈ S
so∼ = S × S. Thus

xz= yz for all x, y, z ∈ S. (1)

Suppose that(S, ·) is not left-cancellative. Then there exista, b, c, d ∈ S such that
da = db = c anda �= b. But xa = ya, xb = yb for all x, y ∈ S. Henceda = ya, db = yb
and soya = yb= c for all y ∈ S. Consider now the congruence relation≈ defined by

x ≈ y if zx = zy for all z ∈ S.
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Sincea �= b anda ≈ b, it follows that≈= S× S, whencezx = zy for all x, y, z ∈ S. Then
for all x, y ∈ S we havexy = xa = da = c.

Suppose now that(S, ·) is left-cancellative. Fixx ∈ S and letz= x2. Thenxz= zx. But
yz= xz andyx = zx for all y ∈ S, soyz = yx. By left-cancellation,x2 = z = x, soS is
multiplicatively idempotent. Furthermore, for allw ∈ S w+w =w2 +w2 = (w+w)w =
w2 =w, soS is additively idempotent. We will now show, by contradiction, that|S| � 2.

Suppose|S| = n > 2. For each nonempty subsetA⊆ S let

σA =
∑
x∈A

x

and σ = σS . Suppose thatA ⊂ S with |A| = n − 1. Consider the relation∼ = idS ∪
{(σA,σ ), (σ,σA)}. Clearly,∼ is an equivalence relation. Since(S, ·) is idempotent, Eq. (1
implies that for eachc ∈ S,

cσA = σAσA = σA and cσ = σσ = σ.
Thus,cσA ∼ cσ . Similarly,

σAc= c2 = c and σc= c2 = c
so thatσAc∼ σc. Since(S,+) is idempotent,σ + c= σ and

σA + c=
{
σA, if c ∈A,
σ, otherwise.

Thus∼ is a congruence relation. Since|S|> 2, it must be the case that∼ = idS , soσA = σ
for all properA⊂ S with |A| = n− 1.

By induction, we will now show thatσA = σ for any nonempty subsetA⊆ S. Suppose
this is known to hold for allA with |A| = k � 2. LetA ⊂ S with |A| = k − 1 and again
consider the relation

∼ = idS ∪ {
(σA,σ ), (σ,σA)

}
.

As above,∼ is a multiplicative equivalence relation. Furthermore,

σA + c=
{
σA, if c ∈A,
σA∪{c}, otherwise.

But c /∈ A implies |A ∪ {c}| = k, soσA∪{c} = σ by the inductive assumption. Thus∼ is
again a congruence relation. Since∼ �= S × S, it follows that∼ = idS , soσA = σ .

In particular, this shows that for eachw ∈ S, w = σ{w} = σ , a contradiction. Thu
|S| = 2.

It only remains to see that the same statement holds if “rows” is replaced by “colu
If S has two identical columns, consider the reciprocal semiring(S′,+,⊗) defined by
(S′,+)= (S,+) andx ⊗ y = yx. This semiring is c-simple and has two identical rows
the above argument applies.✷
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Lemma 7. Let S be a finite, additively commutative, c-simple semiring. Then one o
following holds:

• (S,+) is a group, hence(S,+, ·) is a ring;
• S has an additively absorbing elementα.

Proof. Consider the relation∼ defined by

x ∼ y if x + t = y + t for somet ∈ S.

It is easy to see that∼ is a congruence relation. If∼ = idS , then(S,+) is cancellative,
hence a group. It follows easily that(S,+, ·) is a ring. On the other hand, suppo
∼ = S × S. Then for allx, y ∈ S there existstx,y ∈ S such thatx + tx,y = y + tx,y . Set

σ =
∑
x∈S

x and α = σ + σ.

Forx, y ∈ S there existsσ ′ ∈ S such thatσ = tx,y + σ ′. Then

x + σ = x + tx,y + σ ′ = y + tx,y + σ ′ = y + σ.

In particular,x + σ = σ + σ for all x ∈ S. Thus, for allx ∈ S,

x + α = x + σ + σ = (σ + σ)+ σ = σ + σ = α. ✷
Theorem 8. Let S be a finite, additively commutative, c-simple semiring. Then one o
following holds:

• (S,+, ·) is a ring;
• S has an infinity;
• S is additively idempotent.

Proof. With respect to Lemma 7, one may assume that there is an additively abs
elementα ∈ S. Consider the relationT defined by

x T y if 2x = 2y.

ThenT is a congruence relation, whenceT = idS or T = S × S.

Case I: SupposeT = S × S. Then for all x ∈ S, x + x = α + α = α. Thus,xα =
x(α+ α)= xα + xα = α. Similarly,αx = α soα is an infinity.



C. Monico / Journal of Algebra 271 (2004) 846–854 851

one

with
Case II: SupposeT = idS . Consider the congruence relation∼ defined byx ∼ y if there
existu,v ∈ S ∪ {o} andi � 0 such that

2ix = y + u, 2iy = x + v.

Then 2(2x) = (x) + 3x and 2(x) = (2x)+ o, so x ∼ 2x for all x ∈ S. If ∼ = idS , then
x = 2x for all x ∈ S, whence(S,+) is idempotent. Suppose now that∼ = S × S and let
x ∈ S. Thenxα ∼ α, so there existsv ∈ S ∪ {o} and i � 0 such that 2ixα = α + v = α.
Then

xα = x(2iα) = 2ixα = α,

soxα = α. Similarly,αx = α soα is an infinity. ✷
Corollary 9. If S is a finite, additively commutative, c-simple semiring with zero then
of the following holds:

• S ∼= Matn(Fq) for somen� 1 and some finite fieldFq ;
• S is a zero-multiplication ring(S2 = {0}) of prime order;
• S is additively idempotent.

3. The ∞ case

In this section, we show that a finite, additively commutative, c-simple semiring
∞ is either additively idempotent, has trivial addition, or has order 2.

Lemma 10. Let S be a finite, additively commutative, c-simple semiring with∞ and
|S|> 2. Then one of the following holds:

(1) S is additively idempotent;
(2) S + S = {∞} and(S, ·) is a congruence-free semigroup.

Proof. Consider the congruence relation defined by

x T y if 2x = 2y.

Case I: T = idS . Then 2x = 2y iff x = y. Setx ∼ y if there existsi � 0 andu,v ∈ S∪{o}
such that

2ix = y + u, 2iy = x + v.

Then∼ is a congruence relation andx ∼ 2x for all x ∈ S. But x � ∞ for x �= ∞, so
∼ �= S × S. Thus,∼ = idS , and soS is additively idempotent.
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Case II: T = S × S. Thenx + x = ∞ for all x ∈ S. For∅ �=A⊆ S, let

σA =
∑
x∈A

x.

LetN = |S| and suppose that|A| =N −1. Then for everyc ∈ S, σA+ c= ∞, sincec ∈A,
c= ∞, or σA = ∞. Furthermore,

cσA =
∑
x∈A

cx =
{∞, if cx1 = cx2 for some distinctx1, x2 ∈A,
σA, otherwise.

Similarly, σAc = ∞ or σAc = σA. Thus,B = {σA | A ⊂ S with |A| = N − 1} is a bi-
ideal. Furthermore,∞ ∈ A implies σA = ∞. Thus, |B| � 2 and soB = S ⇒ |S| = 2,
a contradiction. ThusB = {∞}, soσA = ∞ for all A⊂ S with |A| =N − 1.

By induction, we will show thatσA = ∞ for all A⊂ S with |A| = 2. AssumeσA = ∞
for all A⊂ S with |A| = k + 1> 2.

Suppose now thatA⊂ S with |A| = k � 2. Then forc ∈ S,

σA + c=
{∞, if c ∈A,
σA∪{c}, otherwise.

By assumption, ifc /∈A thenσA∪{c} = ∞, soσA + c= ∞ for all c ∈ S. Also

cσA =
∑
x∈A

cx =
{∞, if cx1 = cx2 for some distinctx1, x2 ∈A,
σB, for some|B| = k otherwise.

The same is easily seen to hold forσAc. Observe thatσX = ∞ for someX ⊂ S with
|X| = k, so

B = {
σA

∣∣A⊂ S with |A| = k}

is a bi-ideal ofS.

Case(i): B = {∞}. ThenσA = ∞ for all A ⊂ S with |A| = k, so we may apply the
induction and conclude thatσA = ∞ for all A⊂ S with |A| = 2. Thus,x + y = ∞ for all
x, y ∈ S.

Case(ii): B = S. We will show directly thatx + y = ∞ for all x, y ∈ S. By assumption
this holds forx = y, so supposex �= y. Then there existA1,A2 ⊂ S with |A1| = |A2| = k
andσA1 = x, σA2 = y,

A1 ∩A2 �= ∅ ⇒ x + y = σA1 + σA2 = ∞,

A1 ∩A2 = ∅ ⇒ x + y = σA1 + σA2 = σA1∪A2.
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But |A1 ∪ A2| > k. In particular, either|A1 ∪ A2| = k + 1 or there exist∅ �= B1,B2 ⊂ S
with |B1| = k+ 1,B1 ∩B2 = ∅ andB1 ∪B2 =A1 ∪A2. By assumption,σB1 = ∞ and we
have

x + y = σA1∪A2 = σB1∪B2 = σB1 + σB2 = ∞ + σB2 = ∞.

Thusx + y = ∞ for all x, y ∈ S. Finally, note that sinceS + S = {∞}, any nontrivial
congruence relation on(S, ·) is also a nontrivial congruence relation on(S,+, ·), whence
(S, ·) is a congruence-free semigroup.✷

The following is [3, Theorem 3.7.1].

Theorem 11. Let I = {1,2, . . . ,m},Λ= {1,2, . . . , n}, andP = (pij ) be ann×m matrix
of 1’s and 0’s such that no row or column is identically zero, no two rows are identi
and no two columns are identical. LetS = (I ×Λ) ∪ {∞} and define a binary relation o
S by

(i, λ) · (j,µ)=
{
(i,µ) if pλj = 1,
∞ otherwise,

(i, λ) · ∞ = ∞ · (i, λ)= ∞ · ∞ = ∞.

ThenS is a congruence-free semigroup of ordermn+ 1. Conversely, every finite congr
ence-free semigroup with an absorbing element is isomorphic to one of this kind.

4. Main theorem

Theorem 12. LetS be a finite, additively commutative, congruence-simple semiring.
one of the following holds:

(1) |S| � 2;
(2) S ∼= Matn(Fq) for some finite fieldFq and somen� 1;
(3) S is a zero multiplication ring of prime order;
(4) S is additively idempotent;
(5) (S, ·) is a semigroup as in Theorem11 with absorbing element∞ ∈ S andS + S =

{∞}.

Proof. Apply Theorems 8 and 11, Lemma 10, and Corollary 9. Also notice that if(S, ·) is
a semigroup as in Theorem 11, and we defineS + S = {∞}, then(S,+, ·) is necessarily
congruence-free.✷

Observe the similarity between this theorem and Theorem 5. Recall that for a
groupG, V (G) is a finite, additively commutative, c-simple semiring and is additiv
idempotent. So the semiringsV (G) do fall into the fourth case of Theorem 12. Note a
that for n > 1, the matrix semiring Matn(V (G)) is not c-simple. To see this, consid
a matrix with all but one entry equal to infinity, and apply Lemma 6. In view of t
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Table 2
A c-simple semiring of order 3

+ a 1 b
a a 1 b
1 1 1 b
b b b b

· a 1 b
a a a b
1 a 1 b
b a b b

it might be tempting to conjecture that the additively idempotent semirings are pre
those of the formV (G). However, the semiring in Table 2 provides a counter-examp
that conjecture. This semiring is additively idempotent yet has order 3 and is not of the
V (G). At present, we have no strongly supported conjecture for a meaningful descr
of the semirings in the fourth case of Theorem 12, though we do believe that some
description might be possible.
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