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Abstract

In this paper, we describe finite, additively commutative, congruence simple semirings. The main
result is that the only such semirings are those of order 2, zero-multiplication rings of prime order,
matrix rings over finite fields, ones with trivial addition, and those that are additively idempotent.
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1. Introduction to semirings

The notion of semirings seems to have first appeared in the literature in a 1934 paper by
Vandiver [4]. Though the concept of a semiring might seem a bit strange and unmotivated,
additively commutative semirings arise naturally as the endomorphisms of commutative
semigroups. Furthermore, every such semiring is isomorphic to a sub-semiring of such
endomorphisms [2]. For a more thorough introduction to semirings and a large collection
of references, the reader is referred to [2].

Definition 1. A semiringis a nonempty sef together with two associative operations,
and-, suchthatforalk,b,ce S,a-(b+c)=a-b+a-cand(a+b)-c=a-c+b-c.

A semiring is calledadditively (multiplicatively) commutativeif (S,+) ((S,-)) is
commutative. If botR(S, +) and(S, -) are commutatives is simply calledcommutative

The classification of finitely generated c-simple (see Definition 4) commutative semi-
rings has only recently been given in [1]. In this paper, we progress toward a classification
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of the class of finite c-simple semirings which are only additively commutative. The main
result will be given in Theorem 12.

Definition 2. An elementy of a semiring is calle@dditively(multiplicatively) absorbing
fo+tx=x4+a=a(x-x=x-a=c)forallx € S. An elemento of a semiring is called
aninfinity if it is both additively and multiplicatively absorbing.

Note that an additive identity in a semiring need not be multiplicatively absorbing. If,
however, a semiring has a multiplicatively absorbing additive identity, we calkzérg
and denote it by 0. A semiring with additive identityo is calledzero-sum fredf for all
a,beS,a+b=oimpliesa=>b=o.

Definition 3. Let S be a semiring and8 C S a subset. The#8 is called abi-ideal of S if
forallbeBands e S,b+s,s +b,bs,sbeb.

Definition 4. A congruence relatiomn a semiringS is an equivalence relation that also
satisfies

c+x1~c+ x2,
X1+c~x2+c,
cX1 ™~ CX2,
X1C ~ X2C,

X1~ X2 =

for all x1, x2, ¢ € S. A semiringS that admits no congruence relations other than the trivial
ones, id¢ andS x S, is said to becongruence-simpj®r c-simple

Note that the trivial semiring of order 1 and every semiring of order 2 are congruence-
simple. Also note that if3 C S is a bi-ideal then ig U (B x B) is a congruence relation.
Thus, if BC S is a bi-ideal ands is c-simple, then5| =1 orB=3S.

The following theorem, due to Bashir, Hurt, &arék, and Kepka in [1, Theorem 14.1],
classifies finite c-simple commutative semirings.

Theorem 5. Let S be a commutative, congruence-simple, finite semiring. Then one of the
following holds

(1) S is isomorphic to one of the five semirings . . ., 75 of order2 defined inTable 1;
(2) S is afinite field

(3) Sis a zero-multiplication ring of prime order

(4) S isisomorphic toV (G) (defined beloyy for some finite abelian grou@.

For a multiplicative abelian grou@, setV(G) = G U {oo}. Extend the multiplication
of G to V(G) by the rulexoo = cox = oo for all x € V(G). Define an addition o (G)
by the rulest +x =x, x + y = oo for all x, y € V(G) with x # y.
We first note that a complete classification up to isomorphism of finite, additively
commutative, c-simple semirings is probably not possible. To see this, not& tiigt
is c-simple for any finite grou. Furthermore, ifG1 and G2 are two non-isomorphic
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Table 1
Commutative semirings of order two
(T1,+) | 0 1 -1 0 1 (To,+) | 0 1 -0 1
0|0 O 0|0 O 0|0 O 0|0 O
110 O 1/10 O 110 O 110 1
(T3,+) | 0 1 0 1 (Tg,+) | 0 1 0 1
0|0 O 0 O 0|0 O 1 1
10 1 1/0 O 10 1 111 1
(Is,+) | 0 1 0 1 (Ts,+) | 0 1 0 1
0|0 O 0 1 0|0 O 0O 0
10 1 111 1 10 1 10 1
(T7,+) | 0 1 0 1 (Ig,+) | 0 1 0 1
0|0 1 0|0 O 0|0 1 0|0 O
111 O 110 O 111 O 110 1

groups, thenV(G1) and V(G2) are non-isomorphic semirings. Thus a classification of
finite, additively commutative, c-simple semirings up to isomorphism would require a clas-
sification of finite groups.

2. Basic results

The goal of this section is to derive some basic structure information for finite, additively
commutative, c-simple semirings.

Lemma6. Let S be afinite, additively commutative, c-simple semiring. If the multiplication
table ofS has two identical rowgcolumn$, then one of the following holds

(1) there exists € S such thatvy =c forall x, y € S;
(2 I1S1=2.

Proof. Observe that the relatior defined by
x~y if xz=yz forallzeS

is a congruence relation. By assumption, there exigtro suchthak1z =rpz forallz € S
so~ =S8 x §. Thus

xz=yz forallx,y,zeS. Q)
Suppose thats, -) is not left-cancellative. Then there exigib, c,d € S such that
da =db=canda #b. Butxa = ya,xb=yb forall x,y € S. Henceda = ya, db = yb
and soya = yb = c for all y € S. Consider now the congruence relatisrdefined by

x~y if zx=zy forallzes.
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Sincea # b anda =~ b, it follows that~ = § x §, whencezx = zy forall x, y,z € S. Then
forall x,y € S we havexy = xa =da =c.

Suppose now thdts, -) is left-cancellative. Fix € S and letz = x2. Thenxz = zx. But
yz =xz andyx = zx for all y € S, soyz = yx. By left-cancellationx? = z = x, S0 S is
multiplicatively idempotent. Furthermore, forafle S w + w = w? + w? = (w + w)w =
w? =w, so§ is additively idempotent. We will now show, by contradiction, thgjt< 2.

SupposéS| =n > 2. For each nonempty subsétC S let

oa=Y x

xeA

and o = os. Suppose that ¢ S with |A| = n — 1. Consider the relationr = idgU
{(oa,0), (0,04)}. Clearly,~ is an equivalence relation. Sin¢g, -) is idempotent, Eq. (1)
implies that for eacla € S,

cop=0404 =04 and co=o00 =o0.

Thus,cos ~ co. Similarly,

O’AC=C2=C and occ=c?=c

so thatosc ~ oc. Since(S, +) is idempotenty + ¢ = o and

oa, ifceA,

oate= { o, otherwise.

Thus~ is a congruence relation. Sintg > 2, it must be the case that=idg, SOcs = 0o
for all properA C S with |A| =n — 1.

By induction, we will now show that4 = o for any nonempty subset € S. Suppose
this is known to hold for allA with |[A| =k > 2. Let A C S with |A| =k — 1 and again
consider the relation

~=idsU{(oa.0), (0,04)}.
As above~ is a multiplicative equivalence relation. Furthermore,

_|oa, ifceA,

oAtc= oAU, otherwise.
But ¢ ¢ A implies|A U {c}| =k, SOoau() = o by the inductive assumption. Thus is
again a congruence relation. Sineez S x S, it follows that~ = idg, soos4 =0

In particular, this shows that for eaah € S, w = oy,) = o, a contradiction. Thus
|S| = 2.

It only remains to see that the same statement holds if “rows” is replaced by “columns.”
If S has two identical columns, consider the reciprocal semitifig+, ®) defined by
(8',4+) =(8,+) andx ® y = yx. This semiring is c-simple and has two identical rows so
the above argument appliest
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Lemma 7. Let S be a finite, additively commutative, c-simple semiring. Then one of the
following holds

e (S8,+) isagroup, hencés, +, -) is aring;
¢ S has an additively absorbing element

Proof. Consider the relation defined by
x~y if x+t=y+r forsometes.

It is easy to see that is a congruence relation. # = idg, then (S, +) is cancellative,
hence a group. It follows easily thd&s, +,-) is a ring. On the other hand, suppose
~ =S8 x §. Thenfor allx, y € § there exists, , € S such thatc + 1, , =y +1, ,. Set

a:Zx and a=o0 +o.

xes

Forx, y € S there existg’ € § such thab =, , +¢'. Then
x+o=x+ty+o' =y+itx,+o' =y+o.
In particularx + 0 =0 + o forall x € S. Thus, for allx € S,

x+a=x+o0+4+0c=(+0)+0=0+0=qa. O

Theorem 8. Let S be a finite, additively commutative, c-simple semiring. Then one of the
following holds

e (S,4,)isaring;
e S has an infinity
e S is additively idempotent.

Proof. With respect to Lemma 7, one may assume that there is an additively absorbing
elementr € S. Consider the relatiofi defined by

xTy if 2x=2y.
ThenT is a congruence relation, whenfe=ids or7 = § x S.

Caset SupposeT =S x S. Thenforallx e S, x +x =o + o = «. Thus,xa =
x(o + a) =xo + xa =a. Similarly, ax = a so« is an infinity.
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Case It Supposd’ =idg. Consider the congruence relatisndefined byx ~ y if there
existu, v € S U {o} andi > 0 such that

2x=y+u, 2'y =x 4.
Then 22x) = (x) + 3x and 2x) = (2x) + 0, sox ~2x forall x € S. If ~ = idg, then
x = 2x for all x € S, whence(S, +) is idempotent. Suppose now that= S x S and let
x € S. Thenxa ~ «, so there exists € SU {0} andi > 0 such that 2ca = a + v =a.
Then
xo = x(Zia) =2xa=aq,

soxa = «. Similarly, ax = o S0« is an infinity. 0O

Corollary 9. If S is a finite, additively commutative, c-simple semiring with zero then one
of the following holds

e §=Mat,(F,) for somen > 1 and some finite fiell,;
e S is a zero-multiplication ring $2 = {0}) of prime order
e S is additively idempotent.

3. The oo case

In this section, we show that a finite, additively commutative, c-simple semiring with
oo is either additively idempotent, has trivial addition, or has order 2.

Lemma 10. Let S be a finite, additively commutative, c-simple semiring withand
|S| > 2. Then one of the following holds

(1) S is additively idempotent
(2) S+ S ={occ}and(s, -) is a congruence-free semigroup.

Proof. Consider the congruence relation defined by
xTy if 2x=2y.

Casel T =ids. Thena =2yiff x = y. Setx ~ y if there exists > 0 andu, v € SU {0}
such that

2x=y+u, 2'y =x 4.

Then~ is a congruence relation and~ 2x for all x € S. But x ~ oo for x # oo, so
~# 8§ x §. Thus,~ =idg, and saS is additively idempotent.
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Casell T=SxS.Thenx +x=occforallxeS.For@£ACS,let

A=Y .

xeA

Let N =|S| and suppose thati| = N — 1. Thenfor every € S, o4 + ¢ = 00, Sincec € A,
¢ =00, 0ros = oo. Furthermore,

oo, if cx1 = cxp for some distinckq, x2 € A,
coq = Zcx _ 1=cx2 1, X2
o4, Otherwise.

xXeA
Similarly, cac = 00 or o4c = 04. Thus,B= {04 | A C Swith |[A| = N — 1} is a bi-
ideal. Furthermorepo € A implies o4 = co. Thus,|B| <2 and soB =S = |S| = 2,
a contradiction. Thu$ = {oo}, S04 = oo forall A C S with |[A|=N — 1.
By induction, we will show thaty = oo for all A C S with |A] =2. Assumery = oo

forall Ac Swith |[A|=k+ 1> 2.
Suppose now that C S with |A| =k > 2. Then forc € S,

00, ifceA,

oAte= { O AU(c}» otherwise.

By assumption, it ¢ A theno sy} = 00, S0o4 +c=oo forall c € S. Also

00, if cxg = cxp for some distinckq, x2 € A,
cop = E cx = .
op, forsome|B|=k otherwise.

xeA

The same is easily seen to hold f@fc. Observe thaty = co for someX c § with
|X| =k, so

B={oa|AcCSwith|A| =k}
is a bi-ideal ofS.
Case(i): B ={oc}. Thenoy = oo for all A C S with |A| =k, so we may apply the
induction and conclude thaty = oo forall A C S with |[A| =2. Thus,x + y = oo for all
x,y€S.
Case(ii): B =S. We will show directly thatv + y = oo for all x, y € S. By assumption

this holds forx = y, so suppose # y. Then there exisA1, Ap C S with |A1] = |A2| =k
al’]d()’A1 =X,04, =Y,

A1NA#0 = x+y=o04,+04, =009,

A1NAx=0 = x+y=o04,+04,=04U4,-
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But |[A1 U Az| > k. In particular, eithefA; U A2| = k + 1 or there existd # By, B2 C S
with |[B1]=k+1,BiNBx=@ andB1 U B> = A1 U Ap. By assumptiongp, = co and we
have

x+y = 0AUA, = OB UB, = 0By +GBZ =00 +GBZ = 0Q.

Thusx + y = oo for all x,y € S. Finally, note that sinceS + S = {co}, any nontrivial
congruence relation off, -) is also a nontrivial congruence relation 61 +, -), whence
(S, -) is a congruence-free semigroup

The following is [3, Theorem 3.7.1].

Theorem 11. Letl ={1,2,...,m}, A={1,2,...,n},and P = (p;;) be ann x m matrix

of 1's and 0's such that no row or column is identically zero, no two rows are identical,
and no two columns are identical. L&t= (I x A) U {oo} and define a binary relation on

S by

N G ow ifpyy=1, SN AN e e
@A) (J,u)—{oo otherwise, (i,A)-00=00"-(i,A) =00 00 =00.

ThenS is a congruence-free semigroup of ordenr + 1. Conversely, every finite congru-
ence-free semigroup with an absorbing element is isomorphic to one of this kind.

4, Main theorem

Theorem 12. Let S be a finite, additively commutative, congruence-simple semiring. Then
one of the following holds

@) I1s1<2;

(2) S =Mat,(F,) for some finite field", and some: > 1;

(3) S is azero multiplication ring of prime order

(4) S is additively idempotent

(5) (S, ) is a semigroup as in Theorefrl with absorbing elemento € S andS + S =
{o0}.

Proof. Apply Theorems 8 and 11, Lemma 10, and Corollary 9. Also notice th&t i is
a semigroup as in Theorem 11, and we define S = {oo}, then(S, +, -) is necessarily
congruence-free. O

Observe the similarity between this theorem and Theorem 5. Recall that for a finite
group G, V(G) is a finite, additively commutative, c-simple semiring and is additively
idempotent. So the semiring5(G) do fall into the fourth case of Theorem 12. Note also
that forn > 1, the matrix semiring Ma{V (G)) is not c-simple. To see this, consider
a matrix with all but one entry equal to infinity, and apply Lemma 6. In view of this,
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Table 2
A c-simple semiring of order 3
+]la 1 b -la 1 b
“ala 1 b "ala a b
1|11 1 b 1]la 1 b
b|b b b bjla b b

it might be tempting to conjecture that the additively idempotent semirings are precisely
those of the forn¥V (G). However, the semiring in Table 2 provides a counter-example to
that conjecture. This semiring is additively idempotent yet has order 3 and is not of the form
V(G). At present, we have no strongly supported conjecture for a meaningful description
of the semirings in the fourth case of Theorem 12, though we do believe that some good
description might be possible.
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