On finite congruence-simple semirings

Chris Monico
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA
Received 6 May 2002
Communicated by Michel Broué

Abstract

In this paper, we describe finite, additively commutative, congruence simple semirings. The main result is that the only such semirings are those of order 2 , zero-multiplication rings of prime order, matrix rings over finite fields, ones with trivial addition, and those that are additively idempotent. © 2004 Elsevier Inc. All rights reserved.

Keywords: Semirings; Congruence simple; Congruence free

1. Introduction to semirings

The notion of semirings seems to have first appeared in the literature in a 1934 paper by Vandiver [4]. Though the concept of a semiring might seem a bit strange and unmotivated, additively commutative semirings arise naturally as the endomorphisms of commutative semigroups. Furthermore, every such semiring is isomorphic to a sub-semiring of such endomorphisms [2]. For a more thorough introduction to semirings and a large collection of references, the reader is referred to [2].

Definition 1. A semiring is a nonempty set S together with two associative operations, + and \cdot, such that for all $a, b, c \in S, a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+b \cdot c$.

A semiring is called additively (multiplicatively) commutative if $(S,+)((S, \cdot))$ is commutative. If both $(S,+)$ and (S, \cdot) are commutative, S is simply called commutative.

The classification of finitely generated c-simple (see Definition 4) commutative semirings has only recently been given in [1]. In this paper, we progress toward a classification

[^0]of the class of finite c-simple semirings which are only additively commutative. The main result will be given in Theorem 12.

Definition 2. An element α of a semiring is called additively (multiplicatively) absorbing if $\alpha+x=x+\alpha=\alpha(\alpha \cdot x=x \cdot \alpha=\alpha)$ for all $x \in S$. An element ∞ of a semiring is called an infinity if it is both additively and multiplicatively absorbing.

Note that an additive identity in a semiring need not be multiplicatively absorbing. If, however, a semiring has a multiplicatively absorbing additive identity, we call it a zero, and denote it by 0 . A semiring S with additive identity o is called zero-sum free if for all $a, b \in S, a+b=o$ implies $a=b=o$.

Definition 3. Let S be a semiring and $\mathcal{B} \subseteq S$ a subset. Then \mathcal{B} is called a bi-ideal of S if for all $b \in \mathcal{B}$ and $s \in S, b+s, s+b, b s, s b \in \mathcal{B}$.

Definition 4. A congruence relation on a semiring S is an equivalence relation \sim that also satisfies

$$
x_{1} \sim x_{2} \Rightarrow\left\{\begin{array}{l}
c+x_{1} \sim c+x_{2} \\
x_{1}+c \sim x_{2}+c \\
c x_{1} \sim c x_{2} \\
x_{1} c \sim x_{2} c
\end{array}\right.
$$

for all $x_{1}, x_{2}, c \in S$. A semiring S that admits no congruence relations other than the trivial ones, id_{S} and $S \times S$, is said to be congruence-simple, or c-simple.

Note that the trivial semiring of order 1 and every semiring of order 2 are congruencesimple. Also note that if $\mathcal{B} \subseteq S$ is a bi-ideal then $\operatorname{id}_{S} \cup(\mathcal{B} \times \mathcal{B})$ is a congruence relation. Thus, if $\mathcal{B} \subseteq S$ is a bi-ideal and S is c-simple, then $|\mathcal{B}|=1$ or $\mathcal{B}=S$.

The following theorem, due to Bashir, Hurt, Jančařék, and Kepka in [1, Theorem 14.1], classifies finite c -simple commutative semirings.

Theorem 5. Let S be a commutative, congruence-simple, finite semiring. Then one of the following holds:
(1) S is isomorphic to one of the five semirings T_{1}, \ldots, T_{5} of order 2 defined in Table 1 ;
(2) S is a finite field;
(3) S is a zero-multiplication ring of prime order;
(4) S is isomorphic to $V(G)$ (defined below), for some finite abelian group G.

For a multiplicative abelian group G, set $V(G)=G \cup\{\infty\}$. Extend the multiplication of G to $V(G)$ by the rule $x \infty=\infty x=\infty$ for all $x \in V(G)$. Define an addition on $V(G)$ by the rules $x+x=x, x+y=\infty$ for all $x, y \in V(G)$ with $x \neq y$.

We first note that a complete classification up to isomorphism of finite, additively commutative, c-simple semirings is probably not possible. To see this, note that $V(G)$ is c-simple for any finite group G. Furthermore, if G_{1} and G_{2} are two non-isomorphic

Table 1
Commutative semirings of order two

$\left(T_{1},+\right)$	0	1	.	0	1	$\left(T_{2},+\right)$	0	1		0	1
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0	0	1	0	1
$\left(T_{3},+\right)$	0	1	.	0	1	$\left(T_{4},+\right)$	0	1		0	1
0	0	0	0	0	0	0	0	0	0	1	1
1	0	1	1	0	0	1	0	1	1	1	1
$\left(T_{5},+\right)$	0	1	.	0	1	$\left(T_{6},+\right)$	0	1		0	1
0	0	0	0	0	1	0	0	0	0	0	0
1	0	1	1	1	1	1	0	1	1	0	1
$\left(T_{7},+\right)$	0	1	.	0	1	$\left(T_{8},+\right)$	0	1	.	0	1
0	0	1	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	1	1	0	1	0	1

groups, then $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ are non-isomorphic semirings. Thus a classification of finite, additively commutative, c -simple semirings up to isomorphism would require a classification of finite groups.

2. Basic results

The goal of this section is to derive some basic structure information for finite, additively commutative, c-simple semirings.

Lemma 6. Let S be a finite, additively commutative, c-simple semiring. If the multiplication table of S has two identical rows (columns), then one of the following holds:
(1) there exists $c \in S$ such that $x y=c$ for all $x, y \in S$;
(2) $|S|=2$.

Proof. Observe that the relation \sim defined by

$$
x \sim y \quad \text { if } \quad x z=y z \quad \text { for all } z \in S
$$

is a congruence relation. By assumption, there exist $r_{1} \neq r_{2}$ such that $r_{1} z=r_{2} z$ for all $z \in S$ so $\sim=S \times S$. Thus

$$
\begin{equation*}
x z=y z \quad \text { for all } x, y, z \in S \tag{1}
\end{equation*}
$$

Suppose that (S, \cdot) is not left-cancellative. Then there exist $a, b, c, d \in S$ such that $d a=d b=c$ and $a \neq b$. But $x a=y a, x b=y b$ for all $x, y \in S$. Hence $d a=y a, d b=y b$ and so $y a=y b=c$ for all $y \in S$. Consider now the congruence relation \approx defined by

$$
x \approx y \quad \text { if } \quad z x=z y \quad \text { for all } z \in S
$$

Since $a \neq b$ and $a \approx b$, it follows that $\approx=S \times S$, whence $z x=z y$ for all $x, y, z \in S$. Then for all $x, y \in S$ we have $x y=x a=d a=c$.

Suppose now that ($S, \cdot \cdot$) is left-cancellative. Fix $x \in S$ and let $z=x^{2}$. Then $x z=z x$. But $y z=x z$ and $y x=z x$ for all $y \in S$, so $y z=y x$. By left-cancellation, $x^{2}=z=x$, so S is multiplicatively idempotent. Furthermore, for all $w \in S w+w=w^{2}+w^{2}=(w+w) w=$ $w^{2}=w$, so S is additively idempotent. We will now show, by contradiction, that $|S| \leqslant 2$.

Suppose $|S|=n>2$. For each nonempty subset $A \subseteq S$ let

$$
\sigma_{A}=\sum_{x \in A} x
$$

and $\sigma=\sigma_{S}$. Suppose that $A \subset S$ with $|A|=n-1$. Consider the relation $\sim=\operatorname{id}_{S} \cup$ $\left\{\left(\sigma_{A}, \sigma\right),\left(\sigma, \sigma_{A}\right)\right\}$. Clearly, \sim is an equivalence relation. Since (S, \cdot) is idempotent, Eq. (1) implies that for each $c \in S$,

$$
c \sigma_{A}=\sigma_{A} \sigma_{A}=\sigma_{A} \quad \text { and } \quad c \sigma=\sigma \sigma=\sigma .
$$

Thus, $c \sigma_{A} \sim c \sigma$. Similarly,

$$
\sigma_{A} c=c^{2}=c \quad \text { and } \quad \sigma c=c^{2}=c
$$

so that $\sigma_{A} c \sim \sigma c$. Since $(S,+)$ is idempotent, $\sigma+c=\sigma$ and

$$
\sigma_{A}+c= \begin{cases}\sigma_{A}, & \text { if } c \in A \\ \sigma, & \text { otherwise }\end{cases}
$$

Thus \sim is a congruence relation. Since $|S|>2$, it must be the case that $\sim=\operatorname{id}_{S}$, so $\sigma_{A}=\sigma$ for all proper $A \subset S$ with $|A|=n-1$.

By induction, we will now show that $\sigma_{A}=\sigma$ for any nonempty subset $A \subseteq S$. Suppose this is known to hold for all A with $|A|=k \geqslant 2$. Let $A \subset S$ with $|A|=k-1$ and again consider the relation

$$
\sim=\operatorname{id}_{S} \cup\left\{\left(\sigma_{A}, \sigma\right),\left(\sigma, \sigma_{A}\right)\right\} .
$$

As above, \sim is a multiplicative equivalence relation. Furthermore,

$$
\sigma_{A}+c= \begin{cases}\sigma_{A}, & \text { if } c \in A \\ \sigma_{A \cup\{c\}}, & \text { otherwise }\end{cases}
$$

But $c \notin A$ implies $|A \cup\{c\}|=k$, so $\sigma_{A \cup\{c\}}=\sigma$ by the inductive assumption. Thus \sim is again a congruence relation. Since $\sim \neq S \times S$, it follows that $\sim=\mathrm{id}_{S}$, so $\sigma_{A}=\sigma$.

In particular, this shows that for each $w \in S, w=\sigma_{\{w\}}=\sigma$, a contradiction. Thus $|S|=2$.

It only remains to see that the same statement holds if "rows" is replaced by "columns." If S has two identical columns, consider the reciprocal semiring ($S^{\prime},+, \otimes$) defined by $\left(S^{\prime},+\right)=(S,+)$ and $x \otimes y=y x$. This semiring is c-simple and has two identical rows so the above argument applies.

Lemma 7. Let S be a finite, additively commutative, c-simple semiring. Then one of the following holds:

- $(S,+)$ is a group, hence $(S,+, \cdot)$ is a ring;
- S has an additively absorbing element α.

Proof. Consider the relation \sim defined by

$$
x \sim y \quad \text { if } \quad x+t=y+t \quad \text { for some } t \in S
$$

It is easy to see that \sim is a congruence relation. If $\sim=\operatorname{id}_{S}$, then $(S,+)$ is cancellative, hence a group. It follows easily that $(S,+, \cdot)$ is a ring. On the other hand, suppose $\sim=S \times S$. Then for all $x, y \in S$ there exists $t_{x, y} \in S$ such that $x+t_{x, y}=y+t_{x, y}$. Set

$$
\sigma=\sum_{x \in S} x \quad \text { and } \quad \alpha=\sigma+\sigma
$$

For $x, y \in S$ there exists $\sigma^{\prime} \in S$ such that $\sigma=t_{x, y}+\sigma^{\prime}$. Then

$$
x+\sigma=x+t_{x, y}+\sigma^{\prime}=y+t_{x, y}+\sigma^{\prime}=y+\sigma .
$$

In particular, $x+\sigma=\sigma+\sigma$ for all $x \in S$. Thus, for all $x \in S$,

$$
x+\alpha=x+\sigma+\sigma=(\sigma+\sigma)+\sigma=\sigma+\sigma=\alpha .
$$

Theorem 8. Let S be a finite, additively commutative, c-simple semiring. Then one of the following holds:

- $(S,+, \cdot)$ is a ring;
- S has an infinity;
- S is additively idempotent.

Proof. With respect to Lemma 7, one may assume that there is an additively absorbing element $\alpha \in S$. Consider the relation T defined by

$$
x T y \quad \text { if } \quad 2 x=2 y .
$$

Then T is a congruence relation, whence $T=\mathrm{id}_{S}$ or $T=S \times S$.

Case I: Suppose $T=S \times S$. Then for all $x \in S, x+x=\alpha+\alpha=\alpha$. Thus, $x \alpha=$ $x(\alpha+\alpha)=x \alpha+x \alpha=\alpha$. Similarly, $\alpha x=\alpha$ so α is an infinity.

Case II: Suppose $T=\operatorname{id}_{S}$. Consider the congruence relation \sim defined by $x \sim y$ if there exist $u, v \in S \cup\{o\}$ and $i \geqslant 0$ such that

$$
2^{i} x=y+u, \quad 2^{i} y=x+v
$$

Then $2(2 x)=(x)+3 x$ and $2(x)=(2 x)+o$, so $x \sim 2 x$ for all $x \in S$. If $\sim \operatorname{id}_{S}$, then $x=2 x$ for all $x \in S$, whence $(S,+)$ is idempotent. Suppose now that $\sim S \times S$ and let $x \in S$. Then $x \alpha \sim \alpha$, so there exists $v \in S \cup\{o\}$ and $i \geqslant 0$ such that $2^{i} x \alpha=\alpha+v=\alpha$. Then

$$
x \alpha=x\left(2^{i} \alpha\right)=2^{i} x \alpha=\alpha
$$

so $x \alpha=\alpha$. Similarly, $\alpha x=\alpha$ so α is an infinity.
Corollary 9. If S is a finite, additively commutative, c-simple semiring with zero then one of the following holds:

- $S \cong \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ for some $n \geqslant 1$ and some finite field \mathbb{F}_{q};
- S is a zero-multiplication ring $\left(S^{2}=\{0\}\right)$ of prime order;
- S is additively idempotent.

3. The ∞ case

In this section, we show that a finite, additively commutative, c-simple semiring with ∞ is either additively idempotent, has trivial addition, or has order 2.

Lemma 10. Let S be a finite, additively commutative, c-simple semiring with ∞ and $|S|>2$. Then one of the following holds:
(1) S is additively idempotent;
(2) $S+S=\{\infty\}$ and (S, \cdot) is a congruence-free semigroup.

Proof. Consider the congruence relation defined by

$$
x T y \quad \text { if } \quad 2 x=2 y
$$

Case I: $\quad T=\operatorname{id}_{S}$. Then $2 x=2 y$ iff $x=y$. Set $x \sim y$ if there exists $i \geqslant 0$ and $u, v \in S \cup\{o\}$ such that

$$
2^{i} x=y+u, \quad 2^{i} y=x+v
$$

Then \sim is a congruence relation and $x \sim 2 x$ for all $x \in S$. But $x \nsim \infty$ for $x \neq \infty$, so $\sim \neq S \times S$. Thus, $\sim=\operatorname{id}_{S}$, and so S is additively idempotent.

Case II: $\quad T=S \times S$. Then $x+x=\infty$ for all $x \in S$. For $\emptyset \neq A \subseteq S$, let

$$
\sigma_{A}=\sum_{x \in A} x .
$$

Let $N=|S|$ and suppose that $|A|=N-1$. Then for every $c \in S, \sigma_{A}+c=\infty$, since $c \in A$, $c=\infty$, or $\sigma_{A}=\infty$. Furthermore,

$$
c \sigma_{A}=\sum_{x \in A} c x= \begin{cases}\infty, & \text { if } c x_{1}=c x_{2} \text { for some distinct } x_{1}, x_{2} \in A \\ \sigma_{A}, & \text { otherwise } .\end{cases}
$$

Similarly, $\sigma_{A} c=\infty$ or $\sigma_{A} c=\sigma_{A}$. Thus, $\mathcal{B}=\left\{\sigma_{A} \mid A \subset S\right.$ with $\left.|A|=N-1\right\}$ is a biideal. Furthermore, $\infty \in A$ implies $\sigma_{A}=\infty$. Thus, $|\mathcal{B}| \leqslant 2$ and so $\mathcal{B}=S \Rightarrow|S|=2$, a contradiction. Thus $\mathcal{B}=\{\infty\}$, so $\sigma_{A}=\infty$ for all $A \subset S$ with $|A|=N-1$.

By induction, we will show that $\sigma_{A}=\infty$ for all $A \subset S$ with $|A|=2$. Assume $\sigma_{A}=\infty$ for all $A \subset S$ with $|A|=k+1>2$.

Suppose now that $A \subset S$ with $|A|=k \geqslant 2$. Then for $c \in S$,

$$
\sigma_{A}+c= \begin{cases}\infty, & \text { if } c \in A, \\ \sigma_{A \cup\{c\}}, & \text { otherwise }\end{cases}
$$

By assumption, if $c \notin A$ then $\sigma_{A \cup\{c\}}=\infty$, so $\sigma_{A}+c=\infty$ for all $c \in S$. Also

$$
c \sigma_{A}=\sum_{x \in A} c x= \begin{cases}\infty, & \text { if } c x_{1}=c x_{2} \text { for some distinct } x_{1}, x_{2} \in A, \\ \sigma_{B}, & \text { for some }|B|=k \text { otherwise } .\end{cases}
$$

The same is easily seen to hold for $\sigma_{A} c$. Observe that $\sigma_{X}=\infty$ for some $X \subset S$ with $|X|=k$, so

$$
\mathcal{B}=\left\{\sigma_{A} \mid A \subset S \text { with }|A|=k\right\}
$$

is a bi-ideal of S.

Case (i): $\mathcal{B}=\{\infty\}$. Then $\sigma_{A}=\infty$ for all $A \subset S$ with $|A|=k$, so we may apply the induction and conclude that $\sigma_{A}=\infty$ for all $A \subset S$ with $|A|=2$. Thus, $x+y=\infty$ for all $x, y \in S$.

Case (ii): $\mathcal{B}=S$. We will show directly that $x+y=\infty$ for all $x, y \in S$. By assumption this holds for $x=y$, so suppose $x \neq y$. Then there exist $A_{1}, A_{2} \subset S$ with $\left|A_{1}\right|=\left|A_{2}\right|=k$ and $\sigma_{A_{1}}=x, \sigma_{A_{2}}=y$,

$$
\begin{aligned}
& A_{1} \cap A_{2} \neq \emptyset \quad \Rightarrow \quad x+y=\sigma_{A_{1}}+\sigma_{A_{2}}=\infty \\
& A_{1} \cap A_{2}=\emptyset \quad \Rightarrow \quad x+y=\sigma_{A_{1}}+\sigma_{A_{2}}=\sigma_{A_{1} \cup A_{2}}
\end{aligned}
$$

But $\left|A_{1} \cup A_{2}\right|>k$. In particular, either $\left|A_{1} \cup A_{2}\right|=k+1$ or there exist $\emptyset \neq B_{1}, B_{2} \subset S$ with $\left|B_{1}\right|=k+1, B_{1} \cap B_{2}=\emptyset$ and $B_{1} \cup B_{2}=A_{1} \cup A_{2}$. By assumption, $\sigma_{B_{1}}=\infty$ and we have

$$
x+y=\sigma_{A_{1} \cup A_{2}}=\sigma_{B_{1} \cup B_{2}}=\sigma_{B_{1}}+\sigma_{B_{2}}=\infty+\sigma_{B_{2}}=\infty .
$$

Thus $x+y=\infty$ for all $x, y \in S$. Finally, note that since $S+S=\{\infty\}$, any nontrivial congruence relation on (S, \cdot) is also a nontrivial congruence relation on $(S,+, \cdot)$, whence (S, \cdot) is a congruence-free semigroup.

The following is [3, Theorem 3.7.1].
Theorem 11. Let $I=\{1,2, \ldots, m\}, \Lambda=\{1,2, \ldots, n\}$, and $P=\left(p_{i j}\right)$ be an $n \times m$ matrix of 1 's and 0's such that no row or column is identically zero, no two rows are identical, and no two columns are identical. Let $S=(I \times \Lambda) \cup\{\infty\}$ and define a binary relation on Sby

$$
(i, \lambda) \cdot(j, \mu)=\left\{\begin{array}{ll}
(i, \mu) & \text { if } p_{\lambda j}=1, \\
\infty & \text { otherwise },
\end{array} \quad(i, \lambda) \cdot \infty=\infty \cdot(i, \lambda)=\infty \cdot \infty=\infty\right.
$$

Then S is a congruence-free semigroup of order $m n+1$. Conversely, every finite congru-ence-free semigroup with an absorbing element is isomorphic to one of this kind.

4. Main theorem

Theorem 12. Let S be a finite, additively commutative, congruence-simple semiring. Then one of the following holds:
(1) $|S| \leqslant 2$;
(2) $S \cong \operatorname{Mat}_{n}\left(\mathbb{F}_{q}\right)$ for some finite field \mathbb{F}_{q} and some $n \geqslant 1$;
(3) S is a zero multiplication ring of prime order;
(4) S is additively idempotent;
(5) (S, \cdot) is a semigroup as in Theorem 11 with absorbing element $\infty \in S$ and $S+S=$ $\{\infty\}$.

Proof. Apply Theorems 8 and 11, Lemma 10, and Corollary 9. Also notice that if (S, \cdot) is a semigroup as in Theorem 11, and we define $S+S=\{\infty\}$, then $(S,+, \cdot)$ is necessarily congruence-free.

Observe the similarity between this theorem and Theorem 5. Recall that for a finite group $G, V(G)$ is a finite, additively commutative, c-simple semiring and is additively idempotent. So the semirings $V(G)$ do fall into the fourth case of Theorem 12. Note also that for $n>1$, the matrix semiring $\operatorname{Mat}_{n}(V(G))$ is not c -simple. To see this, consider a matrix with all but one entry equal to infinity, and apply Lemma 6 . In view of this,

Table 2
A c-simple semiring of order 3

$+$	a	1	b	.	a	1	b
a	a	1	b	a	a	a	b
1	1	1	b	1	a	1	b
b	b	b	b	b	a	b	b

it might be tempting to conjecture that the additively idempotent semirings are precisely those of the form $V(G)$. However, the semiring in Table 2 provides a counter-example to that conjecture. This semiring is additively idempotent yet has order 3 and is not of the form $V(G)$. At present, we have no strongly supported conjecture for a meaningful description of the semirings in the fourth case of Theorem 12, though we do believe that some good description might be possible.

Acknowledgments

The author thanks the anonymous referee for his/her careful reading and valuable input which greatly increased the quality of this work. This research was supported by a fellowship from the Center for Applied Mathematics at the University of Notre Dame, and in part by NSF grant DMS-00-72383.

References

[1] R. El Bashir, J. Hurt, A. Jančǎ̌̌ék, T. Kepka, Simple commutative semirings, J. Algebra 236 (2001) 277-306, doi:10.1006/jabr.2000.8483.
[2] U. Hebisch, H.J. Weinert, Semirings and semifields, in: Handbook of Algebra, Vol. 1, Elsevier, Amsterdam, 1996.
[3] J. Howie, Fundamentals of Semigroup Theory, Oxford Univ. Press, Oxford, 1995.
[4] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of addition does not hold, Bull. Amer. Math. Soc. 40 (1934) 916-920.

[^0]: E-mail address: monico.1@nd.edu.
 0021-8693/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2003.09.034

