Periodic solutions of second order superquadratic Hamiltonian systems with potential changing sign (I)

Mei-Yue Jiang

LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China

Received 12 August 2004
Available online 10 August 2005

Abstract

We consider the periodic solutions of the second order Hamiltonian system

\[-\ddot{x} + \lambda x = h(t)V'(x)\]

with V being positive and superquadratic at infinity, h being continuous, 2π-periodic, sign changing and satisfying $\{t|h(t) > 0\} \cap \{t|h(t) < 0\} = \emptyset$. Some existence and multiplicity results of periodic solutions are given.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

The existence of periodic solutions of the second order Hamiltonian system

\[-\ddot{x} + \lambda x = V'_x(t, x)\] \hspace{0.5cm} (1.1)
where \(x \in \mathbb{R}^m \) and \(V \) is \(2\pi \)-periodic in \(t \), has been extensively studied in the last two decades by the variational methods. The case that the potential \(V \) is positive at infinity, there are many results of periodic solutions for both subquadratic and superquadratic potentials, (see [9,19]) and the references therein. In particular, if \(V(t,x) = V(x) + f(t) \) with \(f \) being periodic and \(V \) satisfying the Ambresetti–Rabinowitz superquadratic condition: there are constants \(\theta > 2 \) and \(r > 0 \) such that
\[
V'(x) \cdot x \geq \theta V(x), \quad |x| \geq r,
\]
(V1)
it is proved in [2,18] that (1.1) has an unbounded sequence of periodic solutions.

We consider the case that the potential has the form \(V(t,x) = h(t)V(x) \) with \(h \) being sign changing by the Morse theory. This problem has been considered by several authors (see [1,4,8,10–14,16,17,21]). Roughly speaking, in these papers, the potential \(V \) is either positive homogeneous of degree \(p \) or asymptotic to \(|x|^p \) at infinity for some \(p > 2 \). We assume in this paper that \(V \) satisfies (V1) and \(h \) is a continuous, \(2\pi \)-periodic function and satisfies the thick zero condition
\[
\{ t \in [0, 2\pi] | h(t) < 0 \} \cap \{ t \in [0, 2\pi] | h(t) > 0 \} = \emptyset,
\]
(h0)
and the sets \(S_+ = \{ t \in [0, 2\pi] | h(t) > 0 \} \), \(S_- = \{ t \in [0, 2\pi] | h(t) < 0 \} \), \(S_0 = S^1 \setminus (S_+ \cup S_-) \), are nonempty, consist of finite intervals. The case that \(h \) satisfies the thin zero condition
\[
h \in C^1, \quad h'(t) \neq 0 \text{ whenever } h(t) = 0
\]
(h1)
will be considered in a sequel paper to this one [15].

In case of \(h > 0 \), it is known that the Palais–Smale condition holds for the associated functional \(I \) if \(V \) satisfies (V1). Besides the (P.S) condition, in applying the Morse theory to (1.1), the fact that all critical groups of \(I \) at infinity are zero plays an important role. However, in the case \(h \) changes sign in \(t \), both the (P.S) condition and the above fact on the critical groups of \(I \) at infinity become nontrivial. Some additional conditions are needed in order to get these conclusions.

In considering the thick zero case, the set \(\sigma(S_0) \) of the eigenvalues of
\[
-\ddot{x} = \lambda x
\]
(1.2)
with Dirichlet boundary value on \(S_0 \) plays an important role. Let \(\lambda_* > 0 \) be the first eigenvalue in \(\sigma(S_0) \). Let \(\sigma(S^1) = \{ k^2, k \text{ is an integer} \} \) be the set of the eigenvalues of \((1.2) \) with periodic boundary conditions \(x(0) = x(2\pi), \dot{x}(0) = \dot{x}(2\pi) \). It is shown in [21] that if \(\lambda < \lambda_* \) and \(\lambda \notin \sigma(S^1) \), \(V \) is superquadratic at 0 and asymptotic to \(|x|^p \) for some \(p > 2 \) at infinity, then (1.1) has a nonzero solution, and moreover, if \(V \) is even, then (1.1) has an unbounded sequence of periodic solutions.

We will prove the following result in this paper.
Theorem 1. Let V_1 and V_2 be C^2 functions satisfying the superquadratic condition (V1), and let h be a continuous 2π-periodic function satisfying the thick zero condition (h_0). Set $h_- = \min\{0, h\}$ and $h_+ = \max\{0, h\}$. Suppose $\lambda \notin \sigma(S_0)$. Then

$$-\ddot{x} - \lambda x = h_-(t)V_1'(x) + h_+(t)V_2'(x)$$

has a nonzero 2π-periodic solution if either $\lambda \notin \sigma(S^1)$, V_1 and V_2 satisfy

$$|V_1'(x)| = |V_2'(x)| = o(|x|) \quad \text{at } x = 0;$$

or there is a symmetric neighborhood U of 0 in \mathbb{R}^m such that

$$V_1(-x) = V_1(x), \quad V_2(-x) = V_2(x), \quad x \in U.$$

(V3)

If V_1 and V_2 are even in x, then (1.3) has an unbounded sequence of 2π-periodic solutions.

Comparing this theorem with the known results, the potential V is much more general, and V_1 and V_2 may have different behaviors at infinity. Moreover, the assumption $\lambda < \lambda_*$ is removed.

Our proof of the theorem is variational, which means we are going to look for the critical points of the functional

$$I(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{x}|^2 - \lambda |x|^2) \, dt - \int_0^{2\pi} h_-(t)V_1(x) \, dt - \int_0^{2\pi} h_+(t)V_2(x) \, dt$$

which is defined on

$$H^1(S^1) = \left\{ x : [0, 2\pi] \rightarrow \mathbb{R}^m, \ x(0) = x(2\pi), \ \int_0^{2\pi} (|\dot{x}|^2 + |x|^2) \, dt < \infty \right\}.$$

The basic idea of the proof is same as in [7] where a semilinear elliptic BVP with superlinear and indefinite nonlinearities is discussed. Indeed, the results for (1.3) are quite similar to those for the semilinear elliptic BVP. We refer to [7] and the references therein for related results of the elliptic BVP. The key point is that with the assumptions of the theorem, the functional I satisfies the (P.S) condition, the critical groups of I at infinity are well defined and are zero as in the case of $h > 0$. Having these facts, the existence and multiplicity of periodic solutions of (1.3) follow from the Morse inequality easily. In case of V_1 and V_2 are even, this approach also yields an unbounded sequence of 2π-periodic solutions as pointed out in [3]. This is different from the usual symmetric mountain pass theorem argument in [11,19], which needs the functional satisfying some additional geometric conditions at 0 and infinity, and has been used in [7,21].
2. The Palais–Smale condition

This section concerns with the (P.S) condition for the functional I. We begin with a simple decomposition lemma of the space $H^1(S^1)$. For simplicity, we assume that S_+ and S_- have only one component. Then the condition (h_0) implies that S_0 has two components S_1^0 and S_2^0, $S^1 = S_+ \cup S_1^0 \cup S_- \cup S_2^0$. For any interval $[a, b] \subset S^1$, we identify $H^1_0([a, b])$ with its image of the natural inclusion in $H^1(S^1)$.

Lemma 2. There is a direct sum decomposition

$$H^1(S^1) = X_1 \oplus X_2$$

with $X_1 = H^1_0(S_0^1 \cup S_- \cup S_2^0)$ and

$$X_2 = \left\{ x \in H^1_0(S_0^1 \cup S_+ \cup S_2^0) \mid \int_0^{2\pi} \dot{x} \cdot \dot{y} \, dt = 0, \forall y \in H^1_0(S_0^1 \cup S_2^0) \right\}.$$

Proof. The proof is quite simple. It is same as in [7]. Indeed, it is simpler here since the domain is an interval. First, we note that $H^1_0(S_-), H^1_0(S_+)$ and $H^1_0(S_0)$ are orthogonal to each other in $H^1(S^1)$. Let $E_1 = H^1_0(S_0) \oplus H^1_0(S_-) \oplus H^1_0(S_+)$, and let

$$E_2 = \left\{ x \in H^1(S^1) \mid \int_0^{2\pi} \dot{x} \cdot \dot{y} \, dt = 0, \forall y \in E_1 \right\}.$$

Then $H^1(S^1)$ is the direct sum of E_1 and E_2, $H^1(S^1) = E_1 \oplus E_2$. It is easy to see that

$$E_2 = \{ x \in H^1(S^1) \mid -\ddot{x} = 0 \text{ on } S_-, S_+, S_0 \},$$

which is the direct sum of E_3 and E_4, where

$$E_3 = \{ x \in H^1_0(S_0 \cup S_-) \mid -\ddot{x} = 0 \text{ on } S_-, S_0 \},$$

$$E_4 = \{ x \in H^1_0(S_0 \cup S_+) \mid -\ddot{x} = 0 \text{ on } S_+, S_0 \}.$$

Let $X_1 = E_3 \oplus H^1_0(S_0) \oplus H^1_0(S_-) = H^1_0(S_0 \cup S_-)$ and $X_2 = E_4 \oplus H^1_0(S_+)$, then

$$H^1(S^1) = X_1 \oplus X_2.$$

This completes the proof. □
We note that the dimension of E_2 is $4m$ and that of E_3, E_4 is $2m$. Hence all norms on these spaces are equivalent. We will use this fact later.

For $x \in H^1(S^1)$, set $x = y + z$ with $y \in X_1$ and $z \in X_2$. Then we have

\[
I(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 + 2s \dot{y} \cdot \dot{z} + |\dot{z}|^2 - \lambda |y + z|^2) \, dt - \int_0^{2\pi} h_-(t)V_1(y + z) \, dt - \int_0^{2\pi} h_+(t)V_2(y + z) \, dt = \frac{1}{2} \int_0^{2\pi} (|\dot{y} + \dot{z}|^2 - \lambda |y + z|^2) \, dt - \int_0^{2\pi} h_-(t)V_1(y + z) \, dt - \int_0^{2\pi} h_+(t)V_2(y + z) \, dt = I(y, z). \tag{2.2}
\]

Now, we introduce a family of functionals I_s, $s \in [0, 1]$, as follows:

\[
I_s(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 + 2s \dot{y} \cdot \dot{z} + |\dot{z}|^2 - \lambda (|y|^2 + 2s y \cdot z + |z|^2)) \, dt - \int_0^{2\pi} h_-(t)V_1(y) \, dt - \int_0^{2\pi} h_+(t)V_2(z) \, dt, \tag{2.3}
\]

which connects I to

\[
I_0(x) = J_1(y) + J_2(z),
\]

and the later is of separable variables, where

\[
J_1(y) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 - \lambda |y|^2) \, dt - \int_0^{2\pi} h_- V_1(y) \, dt,
\]

\[
J_2(z) = \frac{1}{2} \int_0^{2\pi} (|\dot{z}|^2 - \lambda |z|^2) \, dt - \int_0^{2\pi} h_+ V_2(z) \, dt.
\]

The following is the main result of this section.

Proposition 3. Let $V_1, V_2 \in C^1$ satisfy (V1) and let h be a continuous, 2π-periodic function satisfying (h_0) and $\lambda \notin \sigma(S_0)$. Let C be a constant and $s_n \in [0, 1], x_n \in H^1(S^1)$
such that
\[I_{s_n}(x_n) \leq C, \quad \|I'_{s_n}(x_n)\| = o(\|x_n\|) \text{ as } n \to \infty. \tag{2.4} \]

Then \(\{x_n\}\) is bounded and contains a convergent subsequence.

Proof. As in the elliptic BVP problem, it suffices to show that \(\{x_n\}\) is bounded. In following, we denote \(C\) a constant independent of \(n\). Let
\[
\tilde{x}_n = \frac{x_n}{\|y_n\|_2 + \|z_n\|_2}, \quad \tilde{y}_n = \frac{y_n}{\|y_n\|_2 + \|z_n\|_2}, \quad \tilde{z}_n = \frac{z_n}{\|y_n\|_2 + \|z_n\|_2}.
\]
We assume that \(\|y_n\|_2 + \|z_n\|_2 \geq 1\). If \(\|y_n\|_2 + \|z_n\|_2 \leq 1\), the following arguments show that \(\{y_n\}\) and \(\{z_n\}\) are bounded. Therefore, \(\{x_n\}\) is bounded.

Claim 1. \(\{\tilde{y}_n\}\) and \(\{\tilde{z}_n\}\) are bounded.

First, we have
\[
\frac{\langle \varepsilon_n, \tilde{y}_n \rangle}{\|y_n\|_2 + \|z_n\|_2} = \frac{\langle I'_{s_n}(x_n), \tilde{y}_n \rangle}{\|y_n\|_2 + \|z_n\|_2}
\]
\[
= \int_0^{2\pi} (\tilde{y}_n^2 - \lambda \tilde{y}_n^2) dt - \frac{\int_0^{2\pi} h_- V'(y_n) \cdot \tilde{y}_n dt}{\|y_n\|_2 + \|z_n\|_2}
\]
\[
+ s_n \int_0^{2\pi} (\tilde{y}_n \cdot \tilde{z}_n - \lambda \tilde{y}_n \cdot \tilde{z}_n) dt
\]
\[
\geq \int_0^{2\pi} (\tilde{y}_n^2 + s_n \tilde{y}_n \cdot \tilde{z}_n) dt - C, \tag{2.5}
\]

since \(h_- \leq 0, \|\tilde{y}_n\|_2 \leq 1\) and \(\|\tilde{z}_n\|_2 \leq 1\). Now we estimate \(\int_0^{2\pi} \tilde{y}_n \cdot \tilde{z}_n dt\). Since \(\tilde{z}_n \in X_2 = H^1_0(S_+) \oplus E_4\), we have \(\tilde{z}_n = \tilde{z}_{1,n} + \tilde{z}_{2,n}\) with \(\tilde{z}_{1,n} \in H^1_0(S_+)\) and \(\tilde{z}_{2,n} \in E_4\).

Using \(\text{supp}(\tilde{y}_n) \subset S^1_+ \cup S_- \cup S^2_0\) we have
\[
\left| \int_0^{2\pi} \tilde{y}_n \cdot \tilde{z}_n dt \right| = \left| \int_0^{2\pi} \tilde{y}_n \cdot \tilde{z}_{2,n} dt \right|
\]
\[
\leq \|\tilde{y}_n\| \|\tilde{z}_{2,n}\|_2 + 1
\]
\[
\leq C\|\tilde{y}_n\| \|\tilde{z}_{2,n}\|_2 + 1
\]
\[
\leq C(1 + \|\tilde{y}_n\|) \tag{2.6}
\]

since \(E_4\) is finite dimensional and
\[
\|\tilde{z}_{2,n}\| \leq C\|\tilde{z}_{2,n}\|_2 \leq C\|\tilde{z}_n\|_2 \leq C.
\]
Substituting (2.6) to (2.5), we get

\[\| \tilde{y}_n \|^2 \leq C + o(1) \| \tilde{y}_n \| \| \tilde{x}_n \| \leq C + o(1) \| \tilde{y}_n \| (\| \tilde{y}_n \| + \| \tilde{z}_n \|). \]

(2.7)

This implies

\[\| \tilde{y}_n \|^2 \leq C + o(1) \| \tilde{z}_n \|^2. \]

(2.8)

Simple computation shows

\[
\frac{1}{(\| y_n \|_2 + \| z_n \|_2)^2} \left(I_{s_n}(x_n) - \frac{1}{\theta}(e_n, z_n) \right) \\
= \frac{1}{2} \int_0^{2\pi} (|\dot{\tilde{y}}_n|^2 - \lambda |\tilde{y}_n|^2) \, dt + \left(\frac{1}{2} - \frac{1}{\theta} \right) \int_0^{2\pi} (|\dot{\tilde{z}}_n|^2 - \lambda |\tilde{z}_n|^2) \, dt \\
+ \left(1 - \frac{1}{\theta} \right) s_n \int_0^{2\pi} (\tilde{y}_n \cdot \dot{\tilde{z}}_n - \lambda \tilde{y}_n \cdot \tilde{z}_n) \, dt \\
- \int_0^{2\pi} h_-(t) V_1(y_n) \, dt + \int_0^{2\pi} h_+(t) \left(\frac{1}{2} V'_2(z_n) \cdot z_n - V_2(z_n) \right) \, dt \\
\geq \frac{1}{2} \left(\frac{1}{2} - \frac{1}{\theta} \right) \| \tilde{z}_n \|^2 - C (\| \tilde{y}_n \|^2 + 1) \\
\geq \epsilon_0 \| \tilde{z}_n \|^2 - C
\] (2.9)

for some \(\epsilon_0 > 0 \) by (2.8). The LHS of (2.9) satisfies

\[
\frac{1}{(\| y_n \|_2 + \| z_n \|_2)^2} \left(I_{s_n}(x_n) - \frac{1}{\theta}(e_n, z_n) \right) \leq C + o(1) \| \tilde{z}_n \|^2
\]

by (2.4). Then from (2.9), we obtain \(\| \tilde{z}_n \| \leq C \) and \(\| \tilde{y}_n \| \leq C \) by (2.8).

Claim 2. \(\{ \| y_n \|_2 + \| z_n \|_2 \} \) is bounded, hence \(\{ \| y_n \| + \| z_n \| \} \) is bounded.

Assume \(\| y_n \|_2 + \| z_n \|_2 \to \infty \) as \(n \to \infty \), then by Claim 1, we have \(\| \tilde{z}_n \| \leq C \) and \(\| \tilde{y}_n \| \leq C \). We may assume

\[\tilde{y}_n \to y_0, \quad \tilde{z}_n \to z_0, \quad \tilde{x}_n \to x_0 \text{ weakly in } H^1(S^1) \]

and

\[\tilde{y}_n \to y_0, \quad \tilde{z}_n \to z_0, \quad \tilde{x}_n \to x_0 \text{ strongly in } L^2(S^1) \]

with \(x_0 = y_0 + z_0 \). Then \(x_0 \neq 0 \) as \(\| y_0 \|_2 + \| z_0 \|_2 = 1 \).
Let $\phi = \frac{y_n}{(\|y_n\|_2 + \|z_n\|_2)}$, we have

$$
(\varepsilon_n, \phi) = (I'_n(x_n), \phi)
= \int_0^{2\pi} (\hat{x}_n \cdot \hat{y}_n - \lambda \hat{x}_n \hat{y}_n) \, dt - \int_0^{2\pi} h_-(t) \frac{V'_1(y_n) \cdot y_n}{(\|y_n\|_2 + \|z_n\|_2)^2} \, dt
+ s_n \int_0^{2\pi} (\hat{y}_n \cdot \hat{z}_n - \lambda \hat{y}_n \cdot \hat{z}_n) \, dt.
$$

(2.10)

From this we get

$$
- \int_0^{2\pi} h_-(t) \frac{V'_1(y_n) \cdot y_n}{(\|y_n\|_2 + \|z_n\|_2)^2} \, dt \leq C.
$$

This and V_1 satisfies the superquadratic condition (V1) imply

$$
-(\|y_n\|_2 + \|z_n\|_2)^{\theta-2} \int_0^{2\pi} h_-|\tilde{y}_n|^\theta \, dt \leq C.
$$

(2.11)

Since for $n \to \infty$, $\tilde{y}_n \to y_0$ weakly in X so

$$
\int_0^{2\pi} h_-|\tilde{y}_n|^\theta \, dt \to \int_0^{2\pi} h_-|y_0|^\theta \, dt.
$$

As $\theta > 2$ and $\|y_n\|_2 + \|z_n\|_2 \to \infty$, from (2.11) we conclude

$$
- \int_0^{2\pi} h_-|y_0|^\theta \, dt = 0.
$$

Therefore,

$$
y_0(t) = 0, \quad t \in S_-.
$$

Similarly, computing $(\varepsilon_n, \frac{z_n}{(\|y_n\|_2 + \|z_n\|_2)^2})$ we have

$$
z_0(t) = 0, \quad t \in S_+.
$$

Hence

$$
z_0 = 0$$
because \(\ddot{z} = 0 \) in \(S_0 \) and \(z = 0 \) on the boundary of \(S_0 \) by the definition of \(X_2 \). Consequently,

\[
x_0(t) = y_0(t) + z_0(t) = y_0(t) = 0 \quad \forall t \notin S_0.
\]

(2.12)

For any \(\phi \in H^1_0(S_0) \) we have

\[
\int_0^{2\pi} (\dot{x}_n \cdot \dot{\phi} - \lambda \dot{x}_n \phi) \, dx + s_n \int_0^{2\pi} (\dot{\phi} \cdot \ddot{z}_n - \dot{\lambda} \phi \cdot z_n) \, dt = (\tilde{\epsilon}_n, \phi),
\]

where \(\tilde{\epsilon}_n = \frac{\epsilon_n}{\|y_0\|_2 + \|z_0\|_2} \). Let \(n \to \infty \) we get

\[
\int (\dot{x}_0 \cdot \dot{\phi} - \lambda x_0 \phi) \, dt = 0
\]

provided by \(\tilde{z}_n \to 0 \) weakly. This shows

\[
\ddot{x}_0 + \lambda x_0 = 0.
\]

(2.13)

Since \(x_0 \neq 0 \), (2.12) and (2.13) imply \(\lambda \in \sigma(S_0) \). This contradicts with the assumption. Therefore \(\{x_n\} \) is bounded. Having this fact, now the proof that \(\{x_n\} \) contains a convergent subsequence is standard. □

The following is a simple consequence of Proposition 3, which is needed in the computation of critical groups of \(I \) at infinity by a deformation argument.

Proposition 4. There are constants \(A \) and \(\delta > 0 \) such that for \(s \in [0, 1] \),

\[
\|I_s'(x)\| \geq \delta \|x\| \quad \text{if} \quad I_s(x) \leq A.
\]

(2.14)

3. The critical groups and the existence of periodic solutions

In this section, we first give a result on the critical groups of the functional \(I \) at infinity by a deformation argument. Then we will apply the Morse theory to get the periodic solutions of

\[
-\ddot{x} - \lambda x = h_-(t)V_1'(x) + h_+(t)V_2'(x).
\]

(3.1)

From now on we assume \(V_1 \) and \(V_2 \) are \(C^2 \). Then the functional \(I \) defined by

\[
I(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{x}|^2 - \lambda |x|^2) \, dt - \int_0^{2\pi} h_-(t)V_1(x) \, dt - \int_0^{2\pi} h_+(t)V_2(x) \, dt
\]
is C^2. We take a number $a < A$, where A is the constant given by Proposition 4. Let

$$I_a = \{ x \in X | I(x) \leq a \}.$$

The critical groups of I at infinity are defined as

$$C_\ast(I, \infty) = H_\ast(X, I_a), \quad \ast = 0, 1, 2, \ldots.$$

The coefficient group of the homology is G. They are well defined and independent of the choices of $a < A$. Set $m_\ast(\infty) = \text{rank} C_\ast(I, \infty)$ and

$$P(\infty, t) = \sum_{i \geq 0} m_i(\infty) t^i.$$

For an isolated 2π-periodic solution x of (3.1), let

$$C_\ast(I, x) = H_\ast(U \cap I_c, (U \setminus \{ x \}) \cap I_c)$$

where U is a neighborhood of x such that I has no critical point other than x in U and $c = I(x)$. Set $m_\ast(I, x) = \text{rank} C_\ast(I, x)$ and

$$P(x, t) = \sum_{i \geq 0} m_i(I, x) t^i.$$

For any isolated critical point x, $P(x, t)$ is a finite sum. The Morse inequality is as follows: Let $\{ x_1, x_2, \ldots \}$ be the set of 2π-periodic solutions of (3.1). We assume it is a finite set, hence each x_i is isolated in particular. With this assumption, there is a polynomial $Q(t)$ with nonnegative integer as its coefficients such that

$$\sum P(x_i, t) = P(\infty, t) + (1 + t)Q(t). \quad (3.2)$$

Proposition 5. Let $h \in C^0$ satisfy (h_0), V_1 and V_2 be C^2 functions satisfying the superquadratic condition $(V1)$ and $\lambda \notin \sigma(S_0)$. Then

$$C_\ast(I, \infty) = 0, \quad \ast = 0, 1, \ldots.$$

We use the homotopy invariance of the critical groups to prove this result. Consider the family of functionals I_s introduced in the last section. By Proposition 4, for $s \in [0, 1]$, the critical groups of I_s at infinity $C_\ast(I_s, \infty)$ are well defined. We will show that for all $s \in [0, 1]$, $C_\ast(I_s, \infty)$ are isomorphic. The proof consists of several steps. We only give a sketch here since it is essentially the same as that in the superlinear elliptic BVP in [7].
Step 1: Consider the following differential equation on X:

\[
\frac{d}{ds}\sigma(s, x) = -\frac{\partial_x I_x(\sigma(s, x))}{\|I_x'(\sigma(s, x))\|^2}, \quad \sigma(0, x) = x.
\] (3.4)

The RHS of (3.4) is local Lipschitz since $I_x \in C^2$. Using Proposition 4 and $|\partial_x I_x(\sigma(s, x))| \leq C\|\sigma(s, x)\|^2$, we know that the RHS of (3.4) is at most linear growth if $I_x(\sigma(s, x)) \leq a$. Noting $\frac{dI_x(\sigma(s, x))}{ds} = 0$ from (3.4), hence the solution exists for $s \in [0, 1]$ if $x \in I_0(x) \leq a$ and the map

$$
x \to \sigma(1, x)
$$

is a homoeomorphism between $I_{0,a}$ and I_a. Hence

$$
C_*(I_0, \infty) = C_*(I, \infty).
$$ (3.5)

Noting $I_0(x) = J_1(y) + J_2(z)$.

Step 2: The functionals J_1 and J_2 satisfy (P.S) condition and the critical groups at infinity are well defined. Moreover, the following Künneth type formula holds, for a proof of this formula, (see [7])

$$
C_p(I_0, \infty) = \bigoplus_{i+j=p, i,j \geq 0} C_i(J_1, \infty) \otimes C_j(J_2, \infty).
$$ (3.6)

Step 3: All critical groups of J_2 at infinity are trivial,

$$
C_*(J_2, \infty) = 0, \quad * = 0, 1, \ldots.
$$ (3.7)

This follows from:

(i) For any $z \in X_2$ with $\|z\| = 1$,

$$
\lim_{t \to +\infty} J_2(tz) = -\infty.
$$

(ii) There is a constant A such that

$$
\frac{d}{dt} J_2(tz) < 0 \quad \text{if} \quad J_2(tz) < A.
$$

By which, it can be proved that the level set $J_{2,a}$ is homotopy equivalent to the unit sphere in X_2 if $a \leq A$ as in [5,20]. Both (i) and (ii) are consequence of the superquadratic condition and the fact that if $z \in X_2$ and $\int_0^{2\pi} h_+(t)|z|^2 dt = 0$, then $z = 0$.
Step 4: Determining the critical groups of J_1 at infinity. Using the decomposition $X_1 = H_0^1(S_0) \oplus H_0^1(S_-) \oplus E_3$, for $y \in X_1$, we have $y = y_1 + y_2$ with $y_1 \in H_0^1(S_0)$ and $y_2 \in H_0^1(S_-) \oplus E_3$. From

$$
\int_0^{2\pi} \dot{y}_1 \cdot \dot{y}_2 \, dt = 0
$$

and $\text{supp}(y_1) \subset S_0$ we have

$$
J_1(y) = J_1(y_1 + y_2)
= \int_0^{2\pi} \left(\frac{1}{2} |\dot{y}_1 + \dot{y}_2|^2 \, dt - \lambda |y_1 + y_2|^2 \right) \, dt - \int_0^{2\pi} h_-(t) V_1(y_1 + y_2) \, dt
= \frac{1}{2} \int_0^{2\pi} |\dot{y}_1|^2 \, dt - \frac{\lambda}{2} \int_0^{2\pi} |y_1|^2 \, dt - \int_0^{2\pi} y_1 \cdot y_2 \, dt
+ \frac{1}{2} \int_0^{2\pi} |\dot{y}_2|^2 \, dt - \frac{\lambda}{2} \int_0^{2\pi} |y_2|^2 \, dt - \int_0^{2\pi} h_-(t) V_1(y_2) \, dt
= J_3(y_1) + J_4(y_2) - \lambda \int_0^{2\pi} y_1 \cdot y_2 \, dt, \quad (3.8)
$$

where

$$
J_3(y_1) = \frac{1}{2} \int_0^{2\pi} |\dot{y}_1|^2 \, dt - \frac{\lambda}{2} \int_0^{2\pi} |y_1|^2 \, dt,
$$

$$
J_4(y_2) = \frac{1}{2} \int_0^{2\pi} |\dot{y}_2|^2 \, dt - \frac{\lambda}{2} \int_0^{2\pi} |y_2|^2 \, dt - \int_0^{2\pi} h_-(t) V_1(y_2) \, dt,
$$

they are defined on $H_0^1(S_0)$ and $H_0^1(S_-) \oplus E_3$, respectively. Similar to Step 2, J_3 and J_4 satisfy (P.S) condition, their critical groups at infinity are well defined and satisfy

$$
C_p(J_1, \infty) = \bigoplus_{i+j=p, i, j \geq 0} C_i(J_3, \infty) \otimes C_j(J_4, \infty). \quad (3.9)
$$

J_3 is a nondegenerate quadratic form, so

$$
C_*(J_3, \infty) = \delta_{*, j_0} G, \quad (3.10)
$$

where j_0 is the Morse index of J_3 on $H_0^1(S_0)$. As for $C_*(J_4, \infty)$ we have

$$
C_*(J_4, \infty) = \delta_{*, 0} G. \quad (3.11)
$$
This follows from the fact that J_4 is bounded from below since $\int_0^{2\pi} h_-(t)V_1(y_2) \, dt$ is superquadratic in y_2. It can be proved as follows. If there is a sequence $\{y_{2,n}\} \subset H^1_0(S_-) \oplus E_3$ such that $J_4(y_{2,n}) \leq -n$. Then

$$
\frac{1}{\|y_{2,n}\|^2_2} \left(\frac{1}{2} \int_0^{2\pi} |\dot{y}_{2,n}|^2 \, dt - \frac{\lambda}{2} \int_0^{2\pi} |y_{2,n}|^2 \, dt - \int_0^{2\pi} h_-(t)V_1(y_{2,n}) \, dt \right) \leq 0.
$$

Therefore, $\{\tilde{y}_{2,n}\}$ is bounded since $h_- \leq 0$, where $\tilde{y}_{2,n} = \frac{y_{2,n}}{\|y_{2,n}\|_2}$. We may assume $\tilde{y}_{2,n} \to \tilde{y}_2$ weakly as $n \to \infty$. As in the last section we have

$$
- \int_0^{2\pi} h_-|\tilde{y}_2|^2 \, dt = 0.
$$

This proves (3.12). Setting $t = -1$ in (3.13), we get $\sum_i P(x_i, -1) \neq 0$. This concludes that there must be a solution x_i such that $P(x_i, -1) \neq 0$. Indeed, we can get more information on the critical point x. Let $Q(t) = q_0 + q_1 t + \cdots + q_k t^k + \cdots$ and let N_0 be the

\textbf{Proof of Theorem 1.} For the existence of one nonzero 2π-periodic solution, we may assume that the number of 2π-periodic solutions of (3.1) is finite. Otherwise, we have a sequence of solutions. In particular, all solutions are isolated. Let $\{x_1, \ldots, x_k\}$ be the set of solutions. Then by the Morse inequality (3.2) and (3.3) we have

$$
P(0, t) + \sum_i P(x_i, t) = P(\infty, t) + (1 + t)Q(t) = (1 + t)Q(t).
$$

Now we show

$$
P(0, -1) \equiv 1 \pmod{\mathbb{Z}_2}.
$$

With the condition (V2) and $\lambda \notin \sigma(S^1)$, 0 is a nondegenerate critical point of I, hence $C_*(I, 0) = \delta_{i_0} G$, and $P(0, -1) = (-1)^{i_0}$, where i_0 is the Morse index of 0. If (V3) holds, then the functional I is even in a neighborhood of 0. $I'(x) = x - K(x)$ with $K : X \to X$ being a compact and odd map. 0 is an isolated zero of $x - K(x)$, so the fixed point index $\text{ind}(x - K(x), 0)$ is an odd number by the Borsuk-Ulam theorem. But according to a theorem in [5] we have

$$
P(0, -1) = \sum_i (-1)^{i} m_i(0) = \text{ind}(x - K(x), 0).
$$

This proves (3.14). Setting $t = -1$ in (3.13), we get $\sum_i P(x_i, -1) \neq 0$. This concludes that there must be a solution x_i such that $P(x_i, -1) \neq 0$. Indeed, we can get more information on the critical point x. Let $Q(t) = q_0 + q_1 t + \cdots + q_k t^k + \cdots$ and let N_0 be the
degree of \(P(0, t) \). From (3.13), we conclude that there must be an integer \(0 \leq i \leq N_0 + 1 \) and a critical point \(x_j \) such that
\[
m_i(x_j) \neq 0. \tag{3.15}
\]
Hence, the Morse index of \(x_j \) satisfies
\[
i(x_j) \leq N_0 + 1 \tag{3.16}
\]
by the Morse lemma and the shifting theorem for the critical groups for \(I \). For the details we refer to [5].

Indeed, if \(m_i(x_j) = 0 \) for \(0 \leq i \leq N_0 \) and all \(x_j \), comparing the coefficients of the term \(t^{N_0} \) in the LHS and the RHS of (3.13), we have
\[
q_{N_0-1} + q_{N_0} \neq 0.
\]
If \(q_{N_0} = 0 \), from (3.13) we have
\[
P(0, t) = (1 + t) \left(q_0 + q_1 t + \cdots + q_{N_0-1} t^{N_0-1}\right).
\]
This contradicts with \(P(0, -1) \) is odd. Therefore,
\[
q_{N_0} \neq 0.
\]
Substituting this into (3.13), we obtain
\[
\sum_j m_{N_0+1}(x_j) \geq q_{N_0} > 0. \tag{3.17}
\]
This proves (3.15) for \(i = N_0 + 1 \) if (V2) or (V3) holds.

Now we assume that \(V_1 \) and \(V_2 \) are even in \(x \). Then, nonzero \(2\pi \)-periodic solutions of (3.1) appear in pairs \(\{-x, x\} \). We will show that for any real number \(b \), there is a critical point \(x \) such that \(I(x) \geq b \). Hence, there is a sequence of critical points \(x_n \) such that \(I(x_n) \to +\infty \). This implies \(\|x_n\|_\infty \to +\infty \) as \(n \to \infty \). Since if \(\{x_n\} \) is bounded in \(L^\infty \), then it is bounded in \(H^1 \), hence \(I(x_n) \) is bounded.

Suppose for some \(b \), there is no critical point of \(I \) satisfying \(I(x) \geq b \). Then
\[
C_\ast(I, \infty) = H_\ast(X, I_A) = H_\ast(I_b, I_A) = 0, \quad \ast = 0, 1, 2, \ldots \tag{3.18}
\]
since \(I_b \) is a strong deformation retract of \(X \) by the deformation lemma. By the (P.S) condition, the set of critical points \(K = \{x | I'(x) = 0\} \) is compact. If 0 is an isolated
solution, then we may assume that the number of solutions is finite by the Marino-Prodi perturbation, for the details we refer to [11]. Let \(\{x_1, -x_1, x_2, -x_2, \ldots \} \) be the set of nonzero solutions. For each nonzero periodic solution \(x \), we have critical groups \(C_*(I, x) \), and \(C_*(I, x) = C_*(I, -x) \), \(* = 0, 1, \ldots \). Hence \(P(x, t) = P(-x, t) \). Consider the Morse inequality

\[
P(0, t) + \sum_i P(x_i, t) + \sum_i P(-x_i, t) = P(\infty, t) + (1 + t)Q(t) \tag{3.19}
\]

and set \(t = -1 \) in (3.19), we get that the LHS of (3.19) is odd due to (3.14), but the RHS is 0. This is impossible. In case of 0 is not an isolated solution, some additional arguments are needed. It can proceed as follows. Consider the following flow on \(X \):

\[
\frac{d}{ds} \eta(s, x) = -\xi(\eta(s, x)), \\
\eta(0, x) = x, \tag{3.20}
\]

where

\[
\xi(x) = \min\{\text{dist}(x, K), 1\} \frac{I'(x)}{\|I'(x)\|}.
\]

The flow \(\eta \) is well defined on \(X \times \mathbb{R} \). Set

\[
[K] = \left\{ x \in X | \lim_{s \to -\infty} \eta(s, x), \lim_{s \to +\infty} \eta(s, x) \in K \right\}.
\]

Then \([K] \) is an isolated invariant set of the flow \(\eta \) and \((I_b, I_A) \) is a Conley index pair of \([K] \). We take a closed and symmetric neighborhood \(U \) of \(K \). Then by a result in [6], we have

\[
\deg(I'(x), U, 0) = \sum_i (-1)^i \text{rank}C_i(I_b, I_A) = 0. \tag{3.21}
\]

This is again impossible since \(I'(x) \) is an odd map and the LHS of (3.21) is odd by the Borsuk-Ulam theorem. \(\square \)

Remarks. (1) In case of (V2) or (V3) holds, the Morse index estimate (3.16) of the solution \(x \) is crucial in [15], in which we study the existence of periodic solutions of (3.1) in case that \(h \) satisfies \((h_1) \) by an approximation argument. However, in order to get the Morse index estimate of the whole sequence of solutions \(x_n \) if \(V_1 \) and \(V_2 \) are even, some additional arguments are needed.
(2) The assumption that h is continuous is not necessary. Theorem 1 holds if $h \in L^1(S^1)$ and satisfies

$$h(t) > 0 \text{ a.e. } t \in S_+, \quad h(t) < 0 \text{ a.e. } t \in S_-,$$

where $S_- \cap S_+ = \emptyset$, and $S^1 = S_- \cup S^1_0 \cup S_+ \cup S^2_0$, each S_k is a union of finite intervals. Since in our proof, we need the functional I is C^2, which only needs V_1 and V_2 are in C^2. In case of $h \in L^1(S^1)$, the solutions in Theorem 1 are weak solution, so (3.1) holds a.e.

4. A variant of Theorem 1

In Theorem 1, we assume that both V_1 and V_2 are superquadratic. From the proof, we see that the important point in our arguments is the (P.S) condition and all critical groups of I at infinity are zero. In order to get these facts, it is not necessary to assume both V_1 and V_2 are superquadratic. In this section, we show that the same conclusion holds if V_1 is a C^2 function satisfying the asymptotically linear condition at infinity

$$V_1(x) = V \cdot x + o(|x|) \quad |x| \to \infty \quad (V4)$$

for a constant symmetric matrix V. The proof is same as that of Theorem 1. We assume that $S_+ = \{t \in S^1 | h(t) > 0\} \neq S^1$ and it is a union of finite intervals. Then $S_0 = S^1 \setminus S_+ \neq \emptyset$ is a finite union of intervals. Let $\sigma(S_0)$ be the set of the eigenvalues of

$$-\ddot{x} - h_-(t)V \cdot x = \lambda x \quad (4.1)$$

with Dirichlet boundary values on S_0.

Theorem 6. Let V_1 be a C^2 function satisfying (V4) and (V2), and let V_2 be a C^2 function satisfying (V1) and (V2). Then if $\lambda \notin \sigma(S_0) \cup \sigma(S^1)$,

$$-\ddot{x} - \lambda x = h_-(t)V'_1(x) + h_+(t)V'_2(x) \quad (4.2)$$

has a nonzero 2π-periodic solution. Moreover, if V_1 and V_2 are even in x, then (4.2) has an unbounded sequence of 2π-periodic solutions.

Proof. The proof is similar to that of Theorem 1, we give a sketch. Similar to Lemma 2, we have the following direct decomposition:

$$H^1(S^1) = H^1_0(S_0) \oplus E_1. \quad (4.3)$$
where

\[E_1 = \left\{ x \in H^1(S^1) \mid \int_0^{2\pi} \dot{x} \cdot \dot{y} \, dt = 0, \ \forall y \in H^1_0(S_0) \right\}. \]

For \(x \in H^1(S^1) \), let \(x = y + z \), \(y \in H^1_0(S_0) \) and \(z \in E_1 \). Then

\[
I(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 - \lambda |y|^2) \, dt - \int_0^{2\pi} h_-(t)V_1(y + z) \, dt \\
+ \frac{1}{2} \int_0^{2\pi} (|\dot{z}|^2 - \lambda |z|^2) \, dt - \int_0^{2\pi} h_+(t)V_2(z) \, dt \\
- \lambda \int_0^{2\pi} y \cdot z \, dt. \quad (4.4)
\]

Step 1: The functional \(I \) satisfies (P.S) condition. Let \(x_n = y_n + z_n \) be a (P.S) sequence of \(I \). It suffice to show that \(\{x_n\} \) is bounded. Let \(\tilde{y}_n = \frac{y_n}{\|y_n\|_2 + \|z_n\|_2} \), \(\tilde{z}_n = \frac{z_n}{\|y_n\|_2 + \|z_n\|_2} \).

Then

\[
\frac{1}{\|y_n\|_2 + \|z_n\|_2} \left(I(x_n) - \frac{1}{\theta} \langle e_n, z_n \rangle \right) = \frac{1}{2} \int_0^{2\pi} \left(|\dot{\tilde{y}}_n|^2 - \lambda |\tilde{y}_n|^2 \right) \, dt + \left(\frac{1}{2} - \frac{1}{\theta} \right) \int_0^{2\pi} \left(|\dot{\tilde{z}}_n|^2 - \lambda |\tilde{z}_n|^2 \right) \, dt \\
- \left(\frac{1}{\theta} \right) \lambda \int_0^{2\pi} \tilde{y}_n \cdot \tilde{z}_n \, dt \\
- \frac{1}{\|y_n\|_2 + \|z_n\|_2} \int_0^{2\pi} h_-(t) \left(V_1(y_n + z_n) \right. \\
\left. - \frac{1}{\theta} V_1'(y_n + z_n) \cdot z_n \right) \, dt \\
- \frac{1}{\|y_n\|_2 + \|z_n\|_2} \int_0^{2\pi} h_+(t) \left(V_2(z_n) \right. \\
\left. - \frac{1}{\theta} V_2'(z_n) \cdot z_n \right) \, dt. \quad (4.5)
\]

Using the condition (V4) and \(V_2 \) satisfying (V1), we can show that \(\int_0^{2\pi} |\dot{\tilde{y}}_n|^2 \, dt \) and \(\int_0^{2\pi} |\dot{\tilde{z}}_n|^2 \, dt \) are bounded. Thus, we may assume \(\tilde{z}_n \to z_0 \) and \(\tilde{y}_n \to y_0 \) weakly in \(H^1(S^1) \) as \(n \to \infty \). Then as in Proposition 3, if \(\{\|y_n\|_2 + \|z_n\|_2\} \) is unbounded, computing \(\frac{1}{\|y_n\|_2 + \|z_n\|_2} \langle e_n, z_n \rangle \), we have \(\int_0^{2\pi} h_+ |z_0|^2 \, dt = 0 \), hence \(z_0 = 0 \) by \(z_0 \in E_1 \).
and \(\tilde{z}_n \to 0 \) weakly. Combining this with (V4) we can show \(y_0 \) satisfies
\[
-\ddot{y} - \lambda y = h_-(t)V \cdot y.
\]
This contradicts with \(\lambda \notin \sigma(S_0) \). Hence \(\{ \| y_n \|_2 + \| z_n \|_2 \} \) and \(\{ \| z_n \| + \| y_n \| \} \) are bounded.

\textit{Step 2}: All critical groups of \(I \) at infinity are zero. This follows from the deformation
\[
I_s(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 - \lambda|y|^2) \, dt - \frac{(1 - s)}{2} \int_0^{2\pi} h_-(t)(Vy, y) \, dt
+ \frac{1}{2} \int_0^{2\pi} (|\dot{z}|^2 - \lambda|z|^2) \, dt - \int_0^{2\pi} h_+(t)V_2(z) \, dt - \frac{(1 - s)}{2} \int_0^{2\pi} h_-(t)(Vz, z) \, dt
-s \lambda \int_0^{2\pi} y \cdot z \, dt - s \int_0^{2\pi} h_-(t)V_1(y + z) \, dt.
\]

We can prove as in Section 3 that the critical groups of \(I \) at infinity are well defined and same as those of
\[
\tilde{I}(x) = \frac{1}{2} \int_0^{2\pi} (|\dot{y}|^2 - \lambda|y|^2 - h_-(t)(Vy, y)) \, dt
+ \frac{1}{2} \int_0^{2\pi} (|\dot{z}|^2 - \lambda|z|^2 - h_-(t)(Vz, z)) \, dt - \int_0^{2\pi} h_+(t)V_2(z) \, dt
= \tilde{J}_1(y) + \tilde{J}_2(z).
\]
The functional \(\tilde{J}_1 \) is a nondegenerate quadratic form on \(H^1_0(S_0) \), and \(\tilde{J}_2 \) is superquadratic in \(z \in E_1 \) and satisfies \(C_*(\tilde{J}_2, \infty) = 0 \), \(* = 0, 1, 2, \ldots \). Then \(C_*(I, \infty) = C_*(\tilde{I}, \infty) = 0 \) follows from the Künneth formula (3.6). The remaining part of the proof is same as that of Theorem 1.

\textbf{References}

[13] M. Girardi, M. Matzeu, On periodic solutions of the system \(\ddot{x}(t) + b(t) (V_1(x(t)) + V_2(x(t))) = 0 \) where \(b(\cdot) \) changes sign and \(V_1, V_2 \) have different superquadratic growths, in: Proceedings Local and Variational Methods on Hamiltonian Systems, World Scientific, Singapore, 1995, pp. 65–76.