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SUMMARY

One of the most intriguing aspects of adaptive
behavior involves the inference of regularities and
rules in ever-changing environments. Rules are often
deduced through evidence-based learning which
relies on the prefrontal cortex (PFC). This is a highly
dynamic process, evolving trial by trial and therefore
may not be adequately captured by averaging single-
unit responses over numerous repetitions. Here, we
employed advanced statistical techniques to visu-
alize the trajectories of ensembles of simultaneously
recorded medial PFC neurons on a trial-by-trial basis
as rats deduced a novel rule in a set-shifting task.
Neural populations formed clearly distinct and
lasting representations of familiar and novel rules
by entering unique network states. During rule acqui-
sition, the recorded ensembles often exhibited
abrupt transitions, rather than evolving continuously,
in tight temporal relation to behavioral performance
shifts. These results support the idea that rule
learning is an evidence-based decision process,
perhaps accompanied by moments of sudden
insight.

INTRODUCTION

We are constantly faced with changes in our daily lives and are

often forced to realize that behavioral strategies that were

once appropriate may now be highly disadvantageous. In these

situations, novel response strategies must be developed and old

ones abandoned. Often, however, environmental situations are

complex with many unknowns such that underlying regularities

must be probed through trial and error or evidence-driven

deductive search. Most species are capable of this type of

trial-and-error learning, which may either proceed in a slow

incremental fashion or be accompanied by an ‘‘a-ha’’ moment

in which the problem is solved all at once through ‘‘sudden
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insight’’ (Aziz-Zadeh et al., 2009; Bowden et al., 2005; Gallistel

et al., 2004).

One task that classically assesses trial-and-error learning in

humans is the Wisconsin card-sorting test (WCST). This task

intermittently requires subjects to deduce a new sorting strategy

based on feedback from the experimenter. The ability to switch

to a different sorting rule (an extra-dimensional shift) is critically

dependent on an intact prefrontal cortex (PFC) (Milner, 1963).

Furthermore, the dorsolateral and medial PFC (mPFC) are

consistently activated on this and a variety of other trial-and-

error learning tasks (Boettiger and D’Esposito, 2005; Landmann

et al., 2007; Nakahara et al., 2002; Sandkühler and Bhattacharya,

2008). Electrophysiology studies in animals employing analo-

gous behavioral tasks have also confirmed the involvement of

the PFC at the single-cell level. Neurons within the mPFC exhibit

robust error-related correlates (Mansouri et al., 2006, 2007) and

cells in both the dorsolateral PFC and mPFC also show task-

specific activity as monkeys learn novel touch sequences or

mappings through trial and error or instructional cues (Genove-

sio et al., 2005; Procyk et al., 2000). Moreover, subgroups of

neurons in both PFC regions show greater activity on rule-search

trials than on trials in which the monkey is simply repeating

a known sequence. In rats, mPFC activity changes as they

switch task strategies even if both strategies require identical

behaviors (Rich and Shapiro, 2009).

While activity in the mPFC is tightly correlated with various

aspects of the trial-and-error learning process, it is unclear

how the neural dynamics unfold in time as the animal progresses

trial-by-trial from a familiar to a novel rule. Is it the case that the

network moves along a more-or-less linear, incremental course

as the animal gradually abandons an old strategy, slowly begins

to relearn, and finally responds according to the new rule? Or, as

suggested by Gallistel et al. (2004), is there a moment at which an

abrupt transition occurs, perhaps accompanied by a ‘‘sudden

insight,’’ when sufficient evidence for a new environmental

contingency has accrued? These questions are difficult to

answer with the traditional method of averaging single-unit

responses over tens to hundreds of trials. Instead, it is necessary

to track neural behavior on a trial-to-trial basis. With the advance

of multiple single-unit recording techniques and appropriate

multivariate statistical methods (Chapin and Nicolelis, 1999;
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Figure 1. Single-Unit and Population Discrimination

among Task Rules and Cues

(A) Examples of single units which show significant discrimina-

tion among the two task rules (left) or between the two cue

lights (right). Examples are the units with the highest rule and

cue selectivity indices, respectively, from the data set shown

in (B) and (C). Note that while cue selectivity is transient, rule

selectivity for this cell is maintained throughout the whole 8 s

analysis period. Error bars = SEM.

(B) Projection of the multiple single-unit activity (MSUA) (total of

16 units) onto the two most discriminating dimensions using DA

(see text). Dots in bluish (spatial rule) and reddish (visual rule)

colors mark activity vectors belonging to one of the two rule

sets, while darker colors (red, blue) mark activity vectors corre-

sponding to left cue light and lighter colors (magenta, cyan)

those corresponding to right cue light trials. The polygons

show the convex hull of the cue and rule representations, i.e.,

their largest extent in the data.

(C) Selectivity indices for all single units, compared to the

selectivity index of the whole network (red line), for discrimina-

tion among rule sets (left) and among cues (right).

Neuron

Neural Ensemble Dynamics during Rule Learning
Deadwyler and Hampson, 1997; Brown et al., 2004) the extrac-

tion of network-level information from single trials has become

more feasible (Churchland et al., 2007; Jones et al., 2007; Lapish

et al., 2008; Yu et al., 2009). Here, we used this approach to visu-

alize the dynamics of an ensemble of simultaneously recorded

mPFC neurons as rats shifted away from a familiar cue-based

response strategy in an operant chamber and began to acquire

an egocentric response strategy by gathering evidence through

trial and error. This task is considered a rodent analog of the

WCST and is severely disrupted by inactivation of the rat

mPFC (Floresco et al., 2008; Ragozzino et al., 1999).

RESULTS

Neural Population Representation of Rules and Cues
Thirteen animals were first trained to perform a simple visual

cue-based discrimination task (termed ‘‘visual rule’’ in the

following; Figure S1A). After reaching criterion, on one day,

unknown to the animal, the reward contingencies were changed

after 20 trials on the visual rule such that only responses to the

left or the right lever were rewarded, regardless of the cue light

location (termed ‘‘spatial rule’’ in the following). To study the

neural representation of these two rules, we first focused on

those last 20 trials of the visual rule right before the shift to the

spatial rule, and the last 20 trials of the spatial rule after it had

become established. The behavioral error rates during these

trials were low (<12% on average), and they will be subsequently

referred to as the visual rule and spatial rule ‘‘steady states,’’

respectively. Individual spike trains of all isolated units were
Neuron
convolved with Gaussian kernels and converted

into a time series of instantaneous firing rates for

each unit i as a function of time bin t, ri(t), with bin

width Dt = 500 ms (we checked a range of binning

and kernel parameters; see Experimental Proce-

dures). All of the N simultaneously recorded cells

from each individual rat were then combined into
population vectors r(t) evolving as a function of time bin. Rate

vectors were aligned to the start of each trial.

There were a number of individual cells significantly discrimi-

nating in their average firing activity between the two behavioral

rules (>30% according to conservative criteria; see Supple-

mental Experimental Procedures available online; Figure 1A,

left panel) or between the two cue lights (>8%; Figure 1A, right

panel) denoting the correct response during the visual rule. Inter-

estingly, rule-selective cells often maintained (in �1/3 of the

cases) their differential firing rates throughout the examined

time window (8 s), including 4 s of precue time, while cue-selec-

tive cells limited their selective rate changes to comparatively

short periods around the presentation of the cues (a phenom-

enon also confirmed at the population level; Figure S2). The

selectivity of single units for a particular rule or cue was evalu-

ated during the 3 s postcue period indicated in Figure 1A using

the sensitivity parameter d0 i = j hri(1)i � hri(2)i j/sqrt(si(1)
2 + si(2)

2)

as introduced in signal detection theory. In words, these values

take the (absolute) difference between the mean firing rates

(denoted by h$i) associated with two sets of trials, divided by

the square root of the sum of their variances. The sets ri(1) and

ri(2) correspond either to steady-state trials with left or right cue

light presentations (for cue selectivity) or to the steady-state

trials on which the visual or spatial rule was the correct strategy

(for rule selectivity), respectively. The larger the mean difference

between the two sets of firing rates and the smaller their vari-

ance, the greater is the sensitivity of that unit for the difference

between rules/ cues. (In probabilistic terms, a value of d0 > 2 im-

plies a misclassification rate of less than 8% based on normality
66, 438–448, May 13, 2010 ª2010 Elsevier Inc. 439
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Figure 2. Summary Statistics for Rule and Cue Discrimination

Summary statistics for discrimination among rules and cues as determined

from the maximum (along trajectories) Mahalanobis distances among the

respective sets of points, averaged across all 13 data sets. L = left, R = right,

VR = visual rule, SR = spatial rule. Error bars = SEM. See also Figure S2.
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assumptions.) Distributions of these selectivity indices are

shown in Figure 1C for discrimination among rules (left panel)

and cues (right panel) for one of the 13 data sets collected.

To visualize the discrimination among rules and cues at the

population level, Fisher’s discriminant criterion (e.g., Krzanow-

ski, 2000) was used to derive a two-dimensional plane from

the N-dimensional vector time series r(t) (Figure 1B). Discrimi-

nant analysis (DA) is a standard statistical procedure similar to

principal component analysis, with the crucial difference that

the axes of the reduced space are determined such that the

differences between the group means are maximized while the

within-group scatter is minimized (i.e., according to a criterion

which is a multidimensional extension of d0 above, the Mahala-

nobis distance among groups). Hence, the two axes shown in

Figure 1B are the ones which most clearly bring out differences

in PFC network activity between the different conditions. Each of

the new axes represents a linear combination of the firing rates of

the recorded units. As exemplified in Figure 1B and confirmed

statistically further below, in most of the data sets (R9/13) the

two rules (bluish and reddish clusters) could clearly be sepa-

rated, and often the two cues (darker versus lighter colors) as

well. To compare the selectivity of single units to the discrimina-

tive power of the network as a whole, we also calculated d0 for

each recorded network on the most discriminating DA axis

with regards to separation among rules (dashed line in Figure 1C,

left) or cues (Figure 1C, right). This analysis demonstrates that

several units combine their discriminative power to give rise to

the network level performance. Thus, the two rules and cues

are associated with four separable and coherent clusters of firing

rate patterns across the recorded population.

To evaluate the statistical significance of these observations

across all 13 data sets obtained, for each data set we computed

the Mahalanobis distances (the criterion maximized by DA; see

Supplemental Information and Figure S2A for the rationale

behind this approach; Krzanowski, 2000) (a) between the
440 Neuron 66, 438–448, May 13, 2010 ª2010 Elsevier Inc.
N-dimensional vectors associated with the two steady-state

rule sets, (b) between the sets of population vectors associated

with the two different cues across both rules, and (c) as a control,

between two sets of vectors where each of the correctly per-

formed steady-state trials was randomly assigned to one of

the two cue conditions. Hence, for each of the 13 data sets we

obtained three numbers for the conditions a–c defined above,

and we tested the specific hypotheses a > b, a > c, and b > c

through paired t tests. As shown in Figure 2, across all 13 data

sets the Mahalanobis distances between population vectors

associated with the two cues were significantly larger (t(12) >

4.83, p < 3 3 10�4) than when trials were assigned randomly

(b > c). Furthermore, the differences among the two rule sets

were significantly larger than those between either cue sets

(a > b; t(12) > 3.4, p < 3 3 10�3) or between the random control

sets (a > c; t(12) > 4.87, p < 2x10�4), confirming our visual inspec-

tion of the data.

Transition Trials: Correlation between Neural States
and Behavioral Choices
Next, we examined the neural population dynamics specifically

during the transition period from the well-learned visual rule to

the novel and conflicting spatial rule. It should be noted that

there were no extrinsic indications other than the changes in

response-reward contingencies that would inform the animal

about the change in rules. Figure 3A replots the example from

Figure 1B using two bivariate normal distributions with parame-

ters estimated from the data to represent the two rule steady

states. In addition it plots the (smoothed) trajectory which repre-

sents the temporal evolution of neural population activity within

this two-dimensional plane as it moves from one to the other

rule steady state (color-coded according to trial number). To

relate the neural transition dynamics to behavioral performance,

we focused specifically on those transition trials where the visual

and spatial rules were in conflict, e.g., when the rat had to press

the left lever according to the spatial rule, but the cue light would

have indicated a right lever response under the visual rule.

Across all of these trials for each animal, the level of agreement

between the behavioral and the neural choices was computed.

Denoting the difference between the Mahalanobis distances to

the visual and spatial rules on trial i by Si = Di
(visual) - Di

(spatial),

neural choices were defined as the sign of the z-transformed

values Si. Thus, a ‘‘�1’’ would indicate a neural preference for

the visual rule and a ‘‘+1’’ for the spatial rule. Figure 3B (blue

bars) plots for all data sets the percentage of trials where the

neural and behavioral choices agree (with 50% being chance

level). Across all data sets (t(12) > 3.58, p < 0.005), and for

7 out of the 13 data sets evaluated individually (based on the

binomial distribution with p < 0.05), the level of agreement was

significantly above chance level, despite the fact that during a

large proportion of the transition period the animal may not be

aware of the correct strategy and may thus be expected to

respond rather randomly. Moreover, as demonstrated in Fig-

ure 3C, the percentage of correctly predicted behavioral choices

increased steadily as the trajectory approached one of the two

rule steady states, i.e., the accuracy of prediction is directly

related to the degree to which the neural dynamics indicates

one or the other choice.
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Figure 3. Transition between the Visual and the Spatial Rule

(A) The same MSUA space projection and data as in Figure 1B are shown

with the neural trajectory (smoothed with a Gaussian kernel with SD = 3 trials)

connecting the two rule steady states during the transition phase. The two rule

steady states are represented by 1 SD contours of bivariate normal densities

fitted to the distributions in Figure 1B. The trajectory is color-coded according

to trials (see legend), and the first (#21) and last (#120) transition trials (right

after or before the steady states) are indicated.

(B) Prediction of behavioral choices during the transition phase. Relative

number of correct predictions of the behavioral choices based on the neural

rule preference for each of the 13 data sets (blue bars), evaluated on those

trials where visual and spatial rules were in conflict (chance level = 0.5). The

seven data sets marked by stars exceeded chance performance individually

when evaluated through the binomial distribution. Green bars indicate behav-

ioral prediction accuracy evaluated only from a 3 s period preceding cue onset

by 1 s (i.e., between-trials periods), while brown bars are the same for the 3 s

period starting with cue onset (i.e., within-trial periods). Prediction accuracy is

significantly better for within-trial periods (t(12) > 2.18, p < 0.05; where also

9/13 individual comparisons became significant), yet behavioral choices can

also be predicted with beyond chance accuracy from between-trial periods

(t(12) > 4, p < 0.001, for averages, and for 4/13 individual data sets).

(C) Prediction accuracy as a function of the distance to one of the two rule steady

states. The abscissa gives the normalized relative proximity to one of the two rule

states (the higher Ddiff, the closer the neural trajectory is to one and the farther

from the other of the tworule states).Theordinateshows predictionperformance

cumulated for relative distance values up to the ones given on the abscissa.

Error bars = SEM.

Neuron

Neural Ensemble Dynamics during Rule Learning
Sudden Transitions of the Neural Ensemble Dynamics
during the Rule Switch
We next addressed quantitatively the behavior of the neural

trajectories during the transition period. When examining the

neural choice criterion as defined above on a trial-by-trial basis,

i.e., the difference between visual and spatial rule distances, we

noticed that in many data sets there were quite steep transitions
within the trial time series of this measure (Figure 4A). Sometimes

the neural dynamic seemed to jump directly from the visual to the

spatial rule (Figure 4A, left), while on other occasions there

appeared to be an intermediate state of ‘‘indecisiveness’’ inter-

vening between the two rule states (Figure 4A, right). To quantify

these apparent transitions between states, we first fitted hidden

Markov models (HMM) to the trial time series of the neural

distance differences Si. An HMM assumes that there is an under-

lying sequence zk of states hidden to the observer which emit the

observable variables with probability p(Sjzk). Given such a model

and the data, the Viterbi algorithm (e.g., Bishop, 2006) finds the

most likely sequence of the states zk as indicated by the color

coding in Figure 4A.

A measure of the abruptness of the transitions at the points

identified by the Viterbi algorithm was now defined as the

number of trials it takes the conditional probability p(zi = kjSi)

for the new state k given neural choice Si on trial i to rise from

0.1 3 to 0.9 3 its range. The analysis was focused on the last

of these points which mark the transitions to the spatial rule

steady state. Since the probability curves p(zi = kjSi) can be quite

bumpy, logistic functions were fitted to them using the least-

mean-squared-error criterion (with slope as the only free param-

eter) to obtain statistically more reliable estimates (Figure 4B).

The number of transition trials, Trange, was defined as the x

axis range corresponding to the 10%–90% interval of the y

axis range of these curves (see Figure 4B). As shown in

Figure 4C, according to this criterion about 25 trials on average

mark these state transitions. However, the median is just about

1.8, since there are cases contributing to the average for which

a transition point was hard to discern and which therefore in

principle can yield infinitely large ranges. Thus, according to

this criterion, for at least half of the data sets the transitions

occurred very fast.

To evaluate the statistical significance of this observation, we

constructed bootstrap sequences by randomly repositioning

the last transition point within some range (see Experimental

Procedures) and reassigning states to the trials according

to these shifts (see Figure S3). The conditional probabilities

p(zi = kjSi) were then recalculated for each bootstrap data set

based on these state reassignments. If there were no clear and

distinct transitions among states within the Si trial time series

but rather a gradual shifting of the neural position across trials,

the transition points would be expected to be more or less

randomly located, and the bootstraps should not be much

different from the original time series (as illustrated in Figure S3B).

However, across all 13 data sets and their matched bootstrap

means there was a highly significant difference between the

number of state-transition trials within the original and the

bootstrap data (Figure 4C; Wilcoxon sign-rank test, T = 0,

p < 3 3 10�4; t(12) > 3.8, p < 0.003). Moreover, nonparametrically

comparing transition times within the original data to those within

the corresponding bootstrap sequences, for 5/13 of the indi-

vidual transition points significance (p < 0.05) could be estab-

lished (compared to less than 1 by chance). Thus, the statistical

analysis of these state transitions as identified by HMMs

suggests the existence of distinct points in the time series that

exceed the usual fluctuations and drifts exhibited elsewhere

along the series.
Neuron 66, 438–448, May 13, 2010 ª2010 Elsevier Inc. 441
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Figure 4. Sudden Transitions among Neural Rule Sets

(A) Difference between the distances to the visual and the spatial steady state rule sets (Si, see text) as a function of trial number for two of the data sets.

The transition phase is enclosed by the two vertical dashed lines. Data points are color-coded according to the states identified by a hidden Markov model.

The steady state trials were excluded from the HMM fitting and are therefore indicated in gray. Left, example with two states. Note that a quite steep transition

occurs around trial 74. Right, example of a data set which exhibited a third intermediate state.

(B) Conditional probability of the final state, p(statejSi), associated with the spatial rule given the current position along the neural trajectory as quantified by Si.

These probabilities were fit with logistic functions (red traces) as indicated. The number of trials it took this probability function to traverse from 10% to 90% of its

range (as delimited by the green circles) was taken as the ‘‘steepness of transition’’ statistic, Trange (equivalently, the slope of the logistic function could have been

used).

(C) Average number of trials (Trange) it took the 13 recorded networks to transit from one state to the next (left bar), for those networks only which fell below the

median (MD, center bar), and for the bootstrap sets for which the transition points were randomly relocated (right bar).

Error bars = SEM. See also Figures S3 and S4.

Neuron

Neural Ensemble Dynamics during Rule Learning
Another way to address this phenomenon statistically is

change point analysis which tries to identify and statistically

test discrete points along the time series where a change in

mean (or some other parameter) occurred (Kirch 2007, 2008;

Huskova and Kirch, 2008). As common in change point analysis,

we based the location and test statistics for such points on

so-called CUSUM plots which simply give the cumulated sum

of differences to the mean along the time series. Thus, given

the neural time series Si as defined above, CUSUMðSiÞ=P
j%i

ðSj � hSiÞ is obtained where hSi is the mean of the whole

time series. By cumulating along the series of observed values,

rather than working on this series directly, this approach reduces

variance and hence allows a more reliable identification of

change points and their statistical properties. If values Si are first

consistently below the mean hSi up to some point c R i and

consistently above it for c < i, one would obtain a steadily

decreasing curve up to point c and a steady increase thereafter.

Figure 5A illustrates in black the CUSUM curves obtained from

the neural time series presented in Figure 4A. The one (left) or

two (right) change points, respectively, can be identified as

minima in these curves.

To test the statistical significance of such discrete points

associated with a change in mean, especially their departure

from what would be expected from drift or gradual changes,

phase-randomized bootstrap data were constructed (Kantz

and Schreiber, 2004). Such bootstraps preserve both the

distribution of the original time series values Si as well as their

autocorrelations (or, equivalently, the power spectrum), and
442 Neuron 66, 438–448, May 13, 2010 ª2010 Elsevier Inc.
hence—on average—contain the same amount of drift. Original

time series were furthermore detrended by linear regression prior

to these bootstrap comparisons (see Experimental Procedures).

The gray areas in Figure 5A demonstrate the range spanned by

about 1000 of such phase-randomized bootstrap time series.

Due to their construction (see Supplemental Information), these

bootstraps can be very similar to the original time series. Note,

however, that the original time series in black are still situated

at the lower extremes of the bootstrap range.

For quantitative comparison of original and bootstrap time

series, the maximum deflection of the CUSUM graphs from

zero (TCP) was used as a test statistic (i.e., the absolute values

of the curves’ extrema). As was the case for the two examples

shown, 9 out of the 13 time series significantly exceeded the

bootstrap range (nonparametric p < 0.05), and in addition on

average there was a highly significant difference (t(12) > 4.49; p

< 4 3 10�4) between the original and bootstrap statistic across

all 13 data sets (Figure 5B). Phase-randomized bootstraps in

addition allow to establish confidence limits for the change point

location (see Experimental Procedures): in 5/13 data sets the

95% confidence interval spanned no more than six trials, attest-

ing again the sudden nature of the jumps. (Further bootstrap

tests are reported in the Supplemental Information.)

Relation of Neural Change Points to Behavioral
Performance
Figure 3 confirmed a generally good agreement between behav-

ioral choices and the current state along the neural trajectory.

However, given that changes in the neural dynamics appear
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(A) Cumulative sum of differences to the mean

(CUSUM) plots for the same two data sets as in

Figure 4A are shown for the neural choice criterion

Si = Di
(visual)� Di

(spatial) (black curves). The range of

�1000 phase-randomized bootstrap time series is

indicated by the gray areas. These bootstraps

exhibit drift at the same temporal scales as the

original time series, yet could start both below

and above the time series mean, hence both

upwards and downwards curves are present.

However, the change point statistics used are

based on the maximum deflection of the curves from zero, and hence the direction of the change in mean is irrelevant: A curve mirrored at the x axis would

have exactly the same value as the original curve. The original time series in black are the same as in Figure 6A below (but look slightly different because

they were detrended prior to the bootstrap comparisons).

(B) Comparison of change point statistics TCP between the original and bootstrap time series averaged across all 13 data sets (error bars = SEM).

PR = phase-randomized.
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rather abrupt, the question arises whether more specifically these

discrete points in the neural time series correspond to turning

points in the behavioral performance. To address this, we first

ran the same statistical procedures as used for the neural time

series on the behavioral performance curves, and then related

CUSUM-based change point indicators obtained from the

behavioral curves to the neural ones. Sigmoid function fits to

the behavioral performance curves revealed a 10%–90% rise

time (Trange) with a median of less than 2.8 trials (see Figure S1B

for examples). Moreover, significant differences to phase-

randomized bootstraps were obtained both overall (t(12) > 12.4;

p < 2 3 10�8) and in 8/13 cases individually according to the

CUSUM-based deviation statistic (TCP) applied to the de-trended

behavioral time series (see Experimental Procedures and

Supplemental Information). In 7/13 cases the behavioral change

point could furthermore be pinned down to a narrow range of just

six trials with 95% confidence. Thus, rather abrupt changes were

as common in the behavioral as in the neural time series.

Figure 6A illustrates the correspondence between neural and

behavioral CUSUM curves for the same two examples used in

Figures 4A and 5A. As these graphs demonstrate, the behavioral

CUSUM curves were in general quite well aligned with the neural

ones (average correlation of >0.79, SEM < 0.08, excluding two

cases as explained below), i.e., ups and downs in the behavioral
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series for all 13 data sets. Two outliers (indicated by asterisks) are apparent fro

One of these animals was also the one with the worst behavioral performance. E

neural and behavioral change points is revealed. Note that the straight line is a

change points) and not a regression line.

See also Figures S1B, S5, and S7.
performance were associated with corresponding ups and

downs in the neural dynamics (Figure S5 plots these graphs for

all 13 data sets from the present study). Importantly, the discrete

points of change identified from the neural time series closely

matched those extracted from the behavioral performance

curves. The relationship between neural and behavioral change

points is summarized for all 13 data sets in Figure 6B. As can

be appreciated from this figure, there were only two outlying

data sets (marked by stars) which did not exhibit any reasonable

association between neural and behavioral change points.

However, these two were the ones with the weakest (in fact

nonsignificant) evidence among all data sets for a change point

in the neural dynamics, and in general exhibited comparatively

little change (whether gradual or sudden) during the transition

trials (see Figure S5). Thus, the lack of correlation with behavioral

change points for these two cases may be caused by the

absence of strong and reliable neural change points, leading to

a more or less random relationship between neural and behav-

ioral time series. Eliminating these two cases therefore from

the analysis, a highly significant correlation between neural and

behavioral change point locations was revealed as shown.

Thus, the behavioral shift from a familiar to a novel rule is accom-

panied by a sudden transition in the neural dynamic which tightly

correlates with the behavioral decision process.
60 80 100
neural change point

 > 0.91 (p < 10- 4)

Figure 6. Correspondence of Change

Points in the Neural and Behavioral Time

Series

(A) The circles show the change points on the

neural (black) and behavioral (gray) CUSUM

curves as identified by a second derivative crite-

rion (see Experimental Procedures). Behavioral

CUSUM curves were scaled to have the same

minimum as the neural ones to expose their close

relationship.

(B) Relation between change points identified from

the neural and corresponding behavioral time

m the two data sets with the weakest evidence for a change point (see text).

xcluding these two data sets, a tight and highly significant correlation between

unity slope curve (corresponding to equivalence of the neural and behavioral
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Figure 7. Changes in Body Posture Associ-

ated with Changes in the Behavioral Rule

around the Change Point Trial

The graphs show the distribution of head orienta-

tions to the left and right front versus rear quadrant

of the Skinner box before (black bars) and after

(gray bars) the neural change point for three repre-

sentative examples with no shift (left), significant

right shift (center), and significant left shift (right).

LF = left front, RF = right front, LR = left rear,

RR = right rear. See also Figure S6.
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Finally, we examined the relation between neural change

points and a range of other behavioral indicators (see Experi-

mental Procedures). Given the recently reported importance of

body position as a means for encoding working memory and

controlling PFC activity (Cowen and McNaughton, 2007;

Euston and McNaughton, 2006), the distribution of head orienta-

tions of the rat toward each of the four quadrants of the operant

box (front left/ right, rear left/ right) was charted each second for

the ten trials just preceding and those just following the neural

change point. As shown in Figure 7, some animals exhibited

a shift in their distributions toward the quadrant associated

with the correct response under the spatial rule. Using the

Kolmogorov-Smirnov test statistic and permutation bootstraps,

this shift in distributions was significant for 5/11 animals for

which a neural change point could be reliably identified (see

above; see Figure S6 for all pre-/post-change point distribu-

tions). Thus, some of the animals may employ a body-based

strategy to encode the current rule (as in Cowen and McNaugh-

ton, 2007). However, there was no significant difference in the

CUSUM-based maximum deviation statistic between the five

animals which exhibited such a significant change in distribution,

and those that did not (t(9) < 0.2; p > 0.85). This indicates that the

presence of neural change points is not affected by a shift in

average head orientation around the change point trial.

DISCUSSION

The ability of animals and humans to infer and apply new rules

in order to maximize reward relies critically on the frontal lobes.

If PFC networks are compromised, individuals show clear

impairments when required either to switch between concepts

or to form new concepts or strategies (Milner, 1963; Rich and

Shapiro, 2007; Stuss et al., 2000). In the current study we exam-

ined how PFC neuronal ensembles switch from encoding a

familiar rule to a completely novel rule that could only be

deduced through trial and error. By closely tracking the state

of the neural network on a trial-to-trial basis while it passed

from one rule representation to the other, we noticed that in

most cases the transitions between neural states were quite

sudden rather than exhibiting a slow gradual change.

There were at least three pieces of statistical evidence sup-

porting this conclusion: First, we fit the posterior probabilities

p(zi = kjSi) of the neural system being in the spatial rule steady

state k given time series observation Si with a sigmoid function

allowed to vary in slope (see Figures 4B and S3). The best fit

was defined as the one yielding the smallest residual error

from a range of slopes reaching from completely flat (slope of
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zero) to completely steep (slope approaching infinity). From

a gradual transition one would expect a shallow slope to yield

the smallest residual error, yet in about half of the time series

the final state probability rose from 10% to 90% of its range in

less than just two trials. Moreover, the (change) points at which

the fits were centered were not arbitrary since placing them

randomly along the time series resulted in significantly wider

trial-spans (Figure 4C). Second, slow fluctuations and drift in

a time series should be well captured by a so-called autoregres-

sive moving-average (ARMA) process, i.e., a linear dynamical

process where the current value in a time series is given by a

weighted sum over previous values and Gaussian noise (see

Supplemental Information). In contrast, a sudden change in

mean constitutes a strong nonlinearity and nonstationarity which

a pure ARMA process cannot produce (but see Experimental

Procedures and Supplemental Information for details). Our

phase-randomized bootstraps embody the hypothesis that the

fluctuations which remain after detrending are consistent with

an ARMA process of any order plus a monotonic time-indepen-

dent transform (Kantz and Schreiber, 2004). However, this null

hypothesis was dismissed overall and in 9/13 cases individually

using the CUSUM-based maximum deviation statistic (see

Figure 5). Third, in about half of the (detrended) neural and

behavioral time series the change point could be located with

high (95%) confidence within a narrow interval (%6 trials), once

again attesting that the change must have occurred rather

rapidly within just a few trials (see also Figure S4). In all three

aspects, similar results were obtained for the behavioral time

series and, moreover, the points at which abrupt neural changes

happened agreed closely with the change points in behavioral

performance (cf. Figure 6B).

Hence, at both the neural and behavioral levels, at least half

of the studied time series exhibit significant evidence for

sudden transitions. There may be several reasons why tight

confidence limits or steep slopes could not be established in

the remaining cases: This could either be due to a too low signal

to noise ratio (insufficient statistical power), e.g., an unlucky

draw of the set of recorded neurons (a failure to sample from

those exhibiting step changes), or there may be some instances

where the transition is indeed more gradual. In general these

observations fit very well with a detailed statistical analysis of

learning behavior by Gallistel and colleagues (2004), who

quantitatively examined learning curves in different species

and from a variety of conditioning paradigms, arriving at the

same conclusions (see below). The present study may therefore

provide the first indication of the neural mechanisms underlying

this behavioral phenomenon.
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Role of the PFC in Rule Deduction and Representation
Inactivation or dysfunction of the mPFC selectively increases

perseverative responding, indicative of an inability to respond

according to a new rule (Block et al., 2007; Boulougouris

et al., 2007; Floresco et al., 2008; Ragozzino et al., 1999). The

set-shifting paradigm employed here was chosen because

previous work had established that mPFC inactivation specifi-

cally impairs performance during this type of rule switch (Flor-

esco et al., 2008), and because it has the distinct advantage

that the second egocentric rule is simple enough to be acquired

within one recording session, such that the activity of the same

neurons could be followed throughout the complete rule transi-

tion. Studies in both humans and animals have furthermore

shown that damage to the PFC impedes flexible responding

only on the first, but not on subsequent shifts between rules

(Rich and Shapiro, 2007; Stuss et al., 2000). Therefore, we

focused on the deduction of a completely novel rule rather

than the shifting between familiar rules or multiple reversals

as in most previous studies (Asaad et al., 1998; Everling and

DeSouza, 2005; Genovesio et al., 2005; Pasupathy and Miller,

2005; Wallis et al., 2001).

The current findings demonstrate that different rules are

represented by distinct patterns of network activity in the PFC

which are much more prominent than the distinction between

patterns associated with the two visual cues (Figures 1B and 2).

Furthermore, these rule representations persisted throughout

the analyzed time windows far beyond the actual trial periods

(Figures 1A and S2), and were predictive of behavioral choices

even before a trial had started (Figure 3B). Surprisingly, the rule

representations appeared fairly stable even for some time after

a rule had been acquired, despite the fact the PFC is not

critical for the maintenance of performance under a familiar

rule (Rich and Shapiro, 2007; Floresco et al., 2008). Thus, these

observations suggest that the PFC continues to maintain an

online representation of the current behavioral strategy even if

this information is currently not relevant for responding. The

reason for this may be that in order to detect violations of a

rule, either due to performance errors or to external alterations

in reward contingencies, the PFC would need to maintain a

rule-specific state as a point of reference. Thus, although the

distinct rule representations may not be critical per se for accu-

rate responding according to well-learned rules, they may well

be critical for detecting rule violations and efficient updating of

behavioral strategies in the event of a rule shift. This interpreta-

tion is consistent with the idea that PFC networks generally

monitor behavior in order to resolve response conflicts and

detect errors (Ito et al., 2003; Lapish et al., 2008; Narayanan

and Laubach, 2008; Shima and Tanji, 1998).

Neural and Behavioral Transition Dynamics
during Rule Search
As argued by Gallistel et al. (2004), the appearance of gradual

learning curves may simply result from averaging across

sessions or animals. In contrast, the learning curves for individual

animals on a variety of tasks often seem abrupt and more consis-

tent with an evidence-based decision process where the animal

suddenly alters its choice criterion in line with the accumulated

evidence that speaks for or against one ‘‘hypothesis’’ (Gallistel
et al., 2004; Papachristos and Gallistel 2006; cf. Figure S1B).

This formulation of learning fits well with the present observa-

tions. Two further observations in our task are consistent with

the idea of sudden neural transitions as a reflection of

evidence-based decision making: First, we observed that the

most rule-selective neurons from all data sets appeared to

switch their activity state between rather than within trials

(Figure S4), i.e., after the animal received a new bit of evidence

in the form of reward feedback. Second, sudden neural switches

were also found in other task contexts related to learning

(Figure S7): behavioral performance shifts as rats apparently

explored different strategies were observed as well on the

visual-rule only training sessions or on a subsequent day of

spatial rule training, and were also correlated with abrupt shifts

in the network dynamics (Figure S7; although they tended to

be less frequent and extreme than those observed on the first

shift day in Figures 4–6). In contrast, sessions for which the

behavioral performance was comparatively more stable ex-

hibited much less evidence for the occurrence of neural change

points (Figures S7B and S7C).

From a dynamical systems perspective, one potential expla-

nation for the observed transition dynamics is that, during the

set shift, the inconsistency of the reward feedback with the

previously relevant but now incorrect rule leads to the destabili-

zation of one ‘‘quasiattracting’’ state (cf. Durstewitz and Deco,

2008) and the emergence of another corresponding to the new

rule set. Such ‘‘phase transitions’’ (bifurcations) are indeed

often accompanied by a sudden change in the system’s state.

Potential neural mechanisms driving this destabilization of

previous attractor states and leading to the emergence of new

ones include a change in PFC dopamine tone or D2 receptor

activation (Durstewitz and Seamans, 2008; Floresco et al.,

2006), the accumulation of evidence by climbing activity

observed in brain regions that may feed this signal into the

PFC (Kim and Shadlen, 1999; Schall, 2001; Durstewitz, 2003)

or synaptic changes driven by reward feedback (Schultz, 2006).

In conclusion, in accordance with the interpretation of Gallistel

et al. (2004) of abrupt transitions in the learning curves as reflec-

tions of altered decision processes, neural transition points may

mark shifts between behavioral strategies, i.e., apparent

changes in the choice criterion of an animal. In the present

problem solving context where the animal had to infer a new

rule by accumulating evidence through trial and error, such

sudden neural and behavioral transitions may perhaps corre-

spond to moments of ‘‘sudden insight’’ (Epstein et al., 1984).
EXPERIMENTAL PROCEDURES

Animals and Behavior

Twenty-one male Long Evans rats (Charles River) were trained for two

sessions (30–40 min/day) on a visual discrimination task, in which they were

required to press one of the two levers that had a stimulus cue light illuminated

above it to receive reward. The following day, after completing 20 trials on the

same visual cue discrimination problem, rats were required to shift to an

egocentric spatial strategy in order to receive reward (Figure S1A). In this

case, only responses on one of the levers provided reward, regardless of

which cue light was illuminated (120 trials, 20 s intertrial interval). The side

on which the rewarded lever appeared was assigned as the opposite of a given

rat’s side bias determined from a prior 20-trial free-choice session.
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Surgery and Electrophysiological Recordings

After initial habituation to the task elements, animals underwent stereotaxic

surgery for unilateral implantation of the recording electrodes into the PFC.

The center of the 32-wire array was placed at coordinates +3.0 AP, 0.8 ML,

�3.0 DV in mm from Bregma, with an angle of 4 degrees toward midline and

the array was lowered slowly into place and cemented with dental acrylic

(Jet dry, Henry-Schein-Asch-Arcona, Melville, NY). All procedures were

performed in accordance with the animal care and ethics guidelines of the

Canadian Council on Animal Care as well as the UBC Committee on Animal

Care.

Electrophysiological recordings were made with a 32-channel Digital Lynx

system and Cheetah data collection software in a custom operant chamber

(MedAssociates, St. Albans, VT). Video (online frame-capture COHU camera)

and behavioral event markers (MedPC) were collected with synchronized

timestamps. Individual cells were discriminated using SpikeSort (Neuralynx;

Figure S1D), and timestamps were imported into Matlab for analysis. One-third

of animals were excluded from analysis for one of two reasons: (1) recordings

were of a very poor quality due to poor grounding or (2) histology revealed poor

placement of the majority of electrodes. The current data were collected using

arrays of single wires, but similar sudden shifts in neural dynamics were

observed in two control data sets with tetrode recordings obtained after

this study had been finished (see also Supplemental Information for further

discussion of this issue).

Data Analysis

To obtain statistically reliable estimates of local spike densities from single

trials (e.g., Hastie et al., 2009) for each isolated cell i as a function of time

bin t, ri(t), all spike trains were convolved with Gaussian kernels and binned

at 500 ms (a bit shorter than the inverse of the average neural firing rates,

<2 Hz), where binning was locked to the appearance of the response levers

on each trial. All major results were confirmed for different binnings

(200, 500, 1000 ms), different widths of the smoothing kernel (s = 0.01, 0.25,

0.6 3 bin width), different kernel functions (Gaussian, gamma function),

max-normalization of firing rates, and using sqrt-transforms to stabilize the

variance. Neurons with average firing rates below 0.1 Hz were excluded

from further analysis. Testing single neurons for significant ‘‘responsiveness’’

is described in the Supplemental Information.

For population (state space) analysis, population vectors r(t) = [r1(t) . rN(t)]

were formed, with N the number of single units isolated from a given recording

session. For notational convenience, let Lk, k = 1..4, be the sets of time bins

(across steady-state trials as defined in the main text) associated with the

four conditions ‘‘left-cue/visual-rule’’ (k = 1), ‘‘right-cue/visual-rule’’ (k = 2),

‘‘left-cue/spatial-rule’’ (k = 3), ‘‘right-cue/spatial-rule’’ (k = 4). A selectivity index

for each unit i with respect to the type of cue or type of rule was obtained by

grouping the firing rates into two classes corresponding to the two types of

cues or rules, respectively, and computing

d0i =
jhfriðtÞjt˛Agi � hfriðtÞjt˛Bgijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i;t˛A + s2

i;t˛B

q

where h$i denotes the mean, A = L1 W L3 and B = L2 W L4 for comparison

among cues, A = L1 W L2 and B = L3 W L4 for comparison among rules, and

the set of indices Lk were collected from the 3 s periods between cue onset

and appearance of the levers on all correctly performed ‘‘steady-state trials’’

for both cues and rules.

Fisher’s discriminant criterion (Krzanowski, 2000, Hastie et al., 2009) was

used to derive a two-dimensional population representation that best visual-

ized the differences between the steady-state rule and cue activity patterns.

The discriminant coordinate representation was obtained from all correctly

performed steady state trials and the same 3 s periods as used for sensitivity

index calculation, i.e., with data points grouped according to the four sets

Lk, k = 1..4, as defined above. To obtain one-dimensional network level selec-

tivity indices for cues and rules (comparable on same footage to the single-unit

indices), discriminant analysis was performed with just the two cues (i.e., sets

L1 W L3 versus L2 W L4) or the two rules (i.e., sets L1 W L2 versus L3 W L4) as

grouping variables, and d0network was computed from the variation on the first

discriminant axis.
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To check for the statistical significance of group separation, Mahalanobis

distances (D) between groups were calculated. Although Euclidean distances

often gave similar results, Mahalanobis distances are preferable since they

take the spatial spread of the data into account (Figure S2A). To ensure that

group comparisons were not affected by the number of data points that

went into the Mahalanobis distance estimates, the same number m of time

bins were drawn from each of the four sets Lk defined above (where m =

mink jLkj). Drawings were repeated 1000 times and distance estimates aver-

aged to nevertheless make full use of all time bins recorded. Mahalanobis

distances were computed along trajectories, i.e., time bin by time bin within

the 3 s periods described above, and the maximum distance (Dmax) within

these periods was chosen as the statistic for comparing conditions (cf. Mazor

and Laurent, 2005). The four numbers Dmax
1�2 , Dmax

3�4 , Dmax
1�3 , and Dmax

2�4 were calcu-

lated with covariance matrices pooled across the two conditions compared,

where the indices refer to the four sets Lk, and the final estimates were ob-

tained as Dmax
ðcueÞ = ðDmax

1�2 + Dmax
3�4Þ=2 and Dmax

ðruleÞ = ðDmax
1�3 + Dmax

2�4Þ=2. Covariance

matrix estimates were regularized (see Hastie et al., 2009) as further explained

in the Supplemental Information. For each of the 13 original data sets, 1000

permutation bootstraps were drawn and averaged where the assignment of

correct steady state trials to cue conditions was randomized, i.e., where

time bins were randomly shuffled between L1 and L2 and between L3 and L4,

respectively, and Dmax
ðcueÞ was then recalculated based on these shuffled sets.

To derive statistically robust distance estimates for single trials during the

transition phase, all time bins from a 7 s period starting 4 s before cue onset

were combined (instead of calculating D time bin by time bin as above). For

calculating distances to the two rule steady states this is reasonable given

that cells often exhibited rule-selective activity throughout the whole 7 s

window (cf. Figures 1A, 3B, and S2). Distances were then computed to the

two different rule sets with corresponding cue lights, i.e., to either L1 and L3,

or to L2 and L4, respectively, but covariance matrices were pooled across

both cue lights for each rule (i.e., L1 W L2 or L3 W L4) and the set of time

bins corresponding to the trial. This was done to reduce error variance in

comparing the means yet to achieve robust estimates of the covariance

matrices. (Similar results were obtained when pooling across all four sets Lk,

yielding a linear instead of a quadratic decision boundary between rule steady

states or when the covariance matrix was just estimated from the steady

states, i.e., not pooled with the single trials, and held fixed for all single-trial

comparisons.)

To evaluate the predictive power of the neural state along the trajectory

for behavioral choices, we focused on the conflict trials on which the visual

rule and the spatial rule would demand different behavioral responses.

Let us denote by {ai} the binary time series of behavioral responses on these

conflict trials (with ai = 1 if the response was correct on trial i, and ai = 0

otherwise), and by Si the corresponding neural time series as defined in the

main text. The neural predictor was now defined as Pi = signðSi � hSii=sSÞ,
and the level of agreement between behavioral and neural choices was

taken to be j ijPi = 2ai � 1 j=j i jgfgf where {i} denotes the set of all conflict trials

and j.j denotes the cardinality of a set. (Text book definitions of linear and

quadratic discriminant functions [e.g., Hastie et al., 2009], however, gave

similar results.)

Different approaches were used to detect and quantify transitions in the

neural and behavioral states during the transition trials. First, a hidden Markov

model (HMM) was fitted to the neural time series Si (including all transition

trials) using the MVN-HMM toolbox (Kirshner, S., MVNHMM Toolbox, http://

www.stat.purdue.edu/�skirshne/MVNHMM). Fits with both two or three

hidden states were attempted based simply on the visual appearance of the

data. Since the probability curves p(zi = kjSi) (see main text for definition)

had quite high variance, logistic functions of the form gðpÞ= a + b�a
1 + expðs½p�q Þ�

were a natural choice to model the transitions in these probabilities

without smoothing out the transition point itself. Parameters a and b were

set equal to hp(zi = kjSi)i for the first and the last 10–15 trials, respectively, q

was fixed to the switch point location, and hence only the slope s was subject

to least-squared-error curve fitting (starting from different initial conditions

including s = 0). The test statistic was now defined as Trange =

g�1ða + 0:9½b� a Þ � g�1ða + 0:1½b� a Þ�
�

. Bootstraps were constructed for

each time series {Si} by repositioning the last transition point corresponding

to the spatial rule transition randomly within a range anchored by the end

http://www.stat.purdue.edu/~skirshne/MVNHMM
http://www.stat.purdue.edu/~skirshne/MVNHMM
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points of the sequence minus 9 trials, or the neighboring transition points, if

present. The probabilities p(zi = kjSi) were then recomputed based on the

resulting new sequence. For behavioral time series, sigmoids were fitted

directly to behavioral performance curves without prior state identification

(see Supplemental Information for additional information).

For change point (CP) analysis, the following CUSUM-based (as defined

in the main text) change point location and test statistics were used (see Kirch,

2007, 2008; Huskova and Kirch, 2008): CPs were identified as the points c for

which c : = argmax
i

��� M
iðM�iÞ

�g P
j%i

ðSj � hSiÞ
��, while TCP = max

i

��P
j%i

ðSj � hSiÞ=M
��

was used as the test statistic, with hSi the mean of the time series, M the total

number of trials, and g = 1/2 (however, other test statistics including the CP

locator above itself, and Tn
(3)(q) with q1 and q2 as defined in Kirch (2007),

were checked as well, yielding similar results). For all bootstrap comparisons

sequences were always constrained to have the same length for original and

matched bootstrap time series (although formally TCP is independent of

sequence length). The first part of the series containing the first CP was

removed (up to five trials after the first CP) in those cases where there were

two CPs. All time series were z transformed prior to computing test statistics.

For comparison with phase-randomized bootstrap data and for all nonpaired

comparisons, time series were first detrended by linear regression left and

right from the identified change point to remove this type of nonstationarity.

That is, a linear model was fitted by least-squares separately to the series Si,

i = 1..c, and Si, i = c+1..M, and the series corrected to remove the slope. For

neural CP analysis, steady state trials were removed as these constituted

the reference sets for Si calculation (hence potentially ‘‘breaks’’ may occur in

the curves when moving into or out of these sets). For the comparison between

neural and behavioral CPs, we also used another CP locator based on maxima

in the second derivative of the CUSUM(Si) curve and the consistency of

a subsequent upwards trend, as explained in the Supplemental Information.

Overall, however, the CPs identified by this criterion and the one defined

further above were in tight agreement (r > 0.91, p < 1.3 3 10�5) and hence

gave very similar results.

For phase randomization, put briefly, time series are first transferred into the

frequency domain where the amplitudes are kept and the phases are scram-

bled, and then transferred back into the time domain. For each data set, 999

phase-randomized bootstraps were created using the ‘‘surrogates’’ routine

from the TISEAN-3.0.1 package (Hegger et al., 1999; Schreiber and Schmitz,

2000; www.mpipks-dresden.mpg.de/�tisean/). For obtaining bootstrap

confidence limits, phase randomization was performed on the residuals (cf.

Huskova and Kirch, 2008), i.e., the means right and left from the change point

were subtracted off, 999 bootstraps were obtained, means were added on

again after phase scrambling, and change point location was determined for

each of these bootstraps giving estimated quantiles of the distribution under

the H1. Since for all statistical comparisons except for the behavioral distribu-

tions described next we had directed hypotheses, one-tailed tests were

employed most of the time.

For comparing distributions of head orientations before and after the (second)

change point, the Kolmogorov-Smirnov test statisticTKS = maxjFpre�Fpostjwas

used, where Fpre and Fpost are the empirical cumulative distribution functions

prior to and after the change point, respectively. Since these distributions

are defined over categorical (or ordinal) variables (head orientation), permuta-

tion bootstraps were used to check for significance. For the 1000 permutation

bootstraps, samples of sizes N1 and N2 were randomly drawn (without replace-

ment) from the combined set of pre-CP and post-CP values (i.e., the union of

Fpre and Fpost), where N1 and N2 refer to the cardinalities of the pre-CP and

post-CP sets, respectively. Three types of other behavioral events, ‘‘grooming,’’

‘‘rearing,’’ and ‘‘exploration,’’ were scored as well during each second of the

experiment, but they occurred so frequently (almost every trial [grooming and

rearing] or about every third trial [exploration]) that any apparent relationship

with the change point location could just be due to chance.

SUPPLEMENTAL INFORMATION

Supplemental Information include Supplemental Experimental Procedures,

supplemental text, and seven figures and can be found with this article online

at doi:10.1016/j.neuron.2010.03.029.
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