
Theoretical Computer Science 410 (2009) 4543–4553

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Approximating maximum edge 2-coloring in simple graphs via
local improvement
Zhi-Zhong Chen ∗, Ruka Tanahashi
Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

a r t i c l e i n f o

Keywords:
Approximation algorithms
Graph algorithms
Edge coloring
NP-hardness

a b s t r a c t

Wepresent a polynomial-time approximation algorithm for legally coloring asmany edges
of a given simple graph as possible using two colors. It achieves an approximation ratio of
24
29 ≈ 0.828.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G and a natural number t , the maximum edge t-coloring problem (called Max Edge t-Coloring for short)
is to find a maximum set F of edges in G such that F can be partitioned into at most t matchings of G. Motivated by call
admittance issues in satellite based telecommunication networks, Feige et al. [2] introduced the problem and proved its
APX-hardness. They also observed that Max Edge t-Coloring is obviously a special case of the well-known maximum
coverage problem (see [4]). Since the maximum coverage problem can be approximated by a greedy algorithm within a
ratio of 1− (1− 1

t)
t [4], so canMax Edge t-Coloring. In particular, the greedy algorithm achieves an approximation ratio of

3
4 forMax Edge 2-Coloringwhich is the special case ofMax Edge t-Coloringwhere the input number t is fixed to 2. Feige
et al. [2] has improved the trivial ratio 34 = 0.75 to

10
13 ≈ 0.769 by an LP approach.

The APX-hardness proof forMax Edge t-Coloring given by Feige et al. [2] indeed shows that the problem remains APX-
hard even if we restrict the input graph to a simple graph and fix the input integer t to 2. We call this restriction (special
case) of the problem Max Simple Edge 2-Coloring. Feige et al. [2] also pointed out that for Max Simple Edge 2-Coloring,
an approximation ratio of 45 can be achieved by the following simple algorithm: Given a simple graph G, first compute a
maximum subgraph H of G such that the degree of each vertex in H is at most 2 and there is no 3-cycle in H , and then
remove one arbitrary edge from each odd cycle of H .
In [1], the authors have improved the ratio to 468575 ≈ 0.814. Essentially, the algorithm in [1] differs from the simple

algorithm only in the handling of 5-cycles where instead of removing one arbitrary edge from each 5-cycle of H , we remove
a random edge from each 5-cycle of H . The intuition behind the algorithm is as follows: If we delete a random edge from
each 5-cycle of H , then for each edge {u, v} in the optimal solution such that u and v belong to different 5-cycles, both u
and v become of degree 1 in H (after handling the 5-cycles) with a probability of 425 and hence can be added into H without
losing the edge 2-colorability of H .
In this paper, we further improve the ratio to 2429 ≈ 0.828. The basic idea behind our algorithm is as follows: Instead of

removing a random edge from each 5-cycle of H and removing an arbitrary edge from each other odd cycle of H , we remove
one edge from each odd cycle of H with more care in the hope that after the removal, a lot of edges {u, v} (in the optimal
solution) with u and v belonging to different odd cycles of H can be added to H . The new algorithm is even more difficult to
analyze than the algorithm in [1].

∗ Corresponding author.
E-mail address: zzchen@mail.dendai.ac.jp (Z.-Z. Chen).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.07.008

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:zzchen@mail.dendai.ac.jp
http://dx.doi.org/10.1016/j.tcs.2009.07.008

4544 Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553

Kosowski et al. [8] also considered Max Simple Edge 2-Coloring. They presented an approximation algorithm that
achieves a ratio of 28∆−1235∆−21 , where∆ is themaximumdegree of a vertex in the input simple graph. This ratio can be arbitrarily
close to the trivial ratio 45 because∆ can be very large. In particular, this ratio is smaller than

24
29 when∆ ≥ 6.

Kosowski et al. [8] showed that approximation algorithms for Max Simple Edge 2-Coloring can be used to obtain
approximation algorithms for certain packing problems and fault-tolerant guarding problems. Combining their reductions
and our improved approximation algorithm for Max Simple Edge 2-Coloring, we can obtain improved approximation
algorithms for their packing problems and fault-tolerant guarding problems immediately.
The remainder of this paper is organized as follows. Section 2 gives some basic definitions and notations in graph theory

that will be used throughout this paper. Section 3 presents our algorithm and its analyses. The analysis in Section 3.1 is
simpler but proves a smaller ratio, while the analysis in Section 3.2 is more complicated but proves a larger ratio. Section 4
describes an application of our algorithm.

2. Basic definitions

Throughout the remainder of this paper, a graph means a simple undirected graph (i.e. it has neither parallel edges nor
self-loops).
Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by E(G). The neighborhood of a

vertex v in G, denoted by NG(v), is the set of all vertices adjacent to v in G. The degree of a vertex v in G, denoted by dG(v), is
|NG(v)|. A vertex v of Gwith dG(v) = 0 is called an isolated vertex. For a subset U of V (G), let G[U] denote the graph (U, EU)
where EU consists of all edges {u, v} of Gwith u ∈ U and v ∈ U . We call G[U] the subgraph of G induced by U . For a subset U
of V (G), we use G− U to denote G[V (G)− U].
A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A Hamiltonian cycle of G is a cycle C of G

with V (C) = V (G). A path in G is a connected subgraph of G in which exactly two vertices are of degree 1 and the others are
of degree 2. Each vertex of degree 1 in a path P is called an endpoint of P , while each vertex of degree 2 in P is called an inner
vertex of P . An edge {u, v} of a path P is called an inner edge of P if both u and v are inner vertices of P . The length of a cycle or
path C is the number of edges in C . A cycle of odd (respectively, even) length is called an odd (respectively, even) cycle. The
distance between two vertices u and v in G, denoted by distG(u, v), is the length of the shortest paths between u and v in G.
A k-cycle is a cycle of length k. Similarly, a k+-cycle is a cycle of length at least k. A path component (respectively, cycle

component) of G is a connected component of G that is a path (respectively, cycle). Note that an isolated vertex of G is not a
path component of G. A path-cycle cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for every v ∈ V (H).
Note that each connected component of a path-cycle cover of G is a single vertex, path, or cycle. A cycle cover of G is a path-
cycle cover of G in which each connected component is a cycle. A path-cycle cover C of G is triangle-free if C does not contain
a 3-cycle. A path-cycle cover C of G ismaximum if the number of edges in C is maximized over all path-cycle covers of G.
G is edge-2-colorable if each connected component of G is an isolated vertex, a path, or an even cycle. Note that Max

Simple Edge 2-Coloring is the problem of finding a maximum edge-2-colorable subgraph in a given graph.

3. The algorithm

Throughout this section, fix a graph G and a maximum edge-2-colorable subgraph Opt of G. For convenience, for each
path-cycle cover K of G, we define two numbers as follows:

• n0(K) is the number of isolated vertices in K .
• p(K) is the number of path components in K .

Like the simple algorithm described in Section 1, our algorithm starts by performing the following step:

1. Compute a maximum triangle-free path-cycle cover H of G.

Since |E(H)| ≥ |E(Opt)|, it suffices to modify H into an edge-2-colorable subgraph of Gwithout significantly decreasing
the number of edges inH . The simple algorithm achieves an approximation ratio of 45 because it simply removes an arbitrary
edge from each odd cycle in H . In order to improve this ratio, we have to treat 5-cycles (and other short odd cycles) in H
more carefully. In more details, when removing edges from odd cycles in H , we also want to add some edges of E(G)− E(H)
toH . For this purpose, whenwe decidewhich edge should be deleted from an odd cycle C inH , we cannot concentrate solely
on C; rather, we have to explore the neighborhood of C in the input graph G. So, we will define eleven types of operations
on H each of which breaks one or two odd cycles in H (by edge removal) and may also add to H one or two edges in the
neighborhood of the cycle(s) in Gwithout creating new odd cycles or vertices of degree larger than 2 in H . In a nutshell, all
the operations will aim to decrease the number of odd cycles in H at the possible risk of decreasing the number of edges
in H by 1. To tighten the analysis of the approximation ratio achieved by our algorithm, we set up a charging scheme that
charges the net loss of edges from H (due to the operations) to some edges still remaining in H . Whenever we do this, we
will always maintain the following invariants:

I1. Every edge of H is charged a real number smaller than or equal to 19 .
I2. The total charge on the edges of H equals the total number of operations performed on H that decrease the number of
edges in H .

Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553 4545

Fig. 1. A Type-2 operation, where bold edges are in H .

I3. No cycle component of H contains a charged edge.
I4. If a path component P of H contains a charged edge, then the length of P is at least 6.

Initially, every edge of H is charged nothing. However, as our algorithm modifies H by performing the operations, some
edges of H will be charged.
The rest of our algorithm can now be sketched as follows: It consists of only two stages. In the first stage, the algorithm

performs the operations (to be defined below) on H until none is applicable. In the second stage, it simply deletes one
arbitrary edge from each odd cycle still remaining in H .
Basically, the operations will be designed based on two intuitive ideas. The first idea is that if an odd-cycle component

C of H is long enough, then we can simply transform C into a path by deleting one of its edges; the loss of this edge can be
charged evenly to the leftover edges of C . The second idea is the following: IfK is a collection of two or three connected
components of H such that

• at least one component inK is an odd cycle and
• we can transform K into an edge-2-colorable subgraph K ′ of G such that V (K) = V (K ′), |E(K ′)| = |E(K)| in case
|E(K)| is not large enough, and |E(K ′)| ≥ |E(K)| − 1 in case |E(K)| is large enough,

then we can transform K into K ′; the loss of one edge, if any, can be charged evenly to some edges of K ′. We believe
that by exploring larger collections of components of H , our algorithm can achieve a better ratio. However, by doing so, our
algorithm will be more complicated and slower.
We next proceed to the definitions of the operations. We first define those operations on H that decrease the number of

odd cycles inH but do not decrease the number of edges inH . In order to do this, the following three concepts are necessary:
A quintuple (x, y, P, u, v) is a 5-opener for an odd cycle C of H if the following hold:

• dH(x) ≤ 1 and y ∈ V (C).
• P is a path component of H , both u and v are inner vertices of P , and x is not a vertex of P .
• Both {u, x} and {v, y} are contained in E(G)− E(H).

A sextuple (x, y,Q , P, u, v) is a 6-opener for an odd cycle C of H if the following hold:

• x ∈ V (C) and y ∈ V (C). Moreover, if x = y, then Q is a cycle cover of G[V (C)− {x}] in which each connected component
is an even cycle; otherwise, Q is a path-cycle cover of G[V (C)] in which one connected component is a path from x to y
and each other connected component is an even cycle.
• P is a path component of H and both u and v are inner vertices of P .
• Both {u, x} and {v, y} are contained in E(G)− E(H).

An operation (to be performed) on H is robust if the following holds:

• If G has no edge {u, v} before the operation such that u is an isolated vertex in H and either v is an isolated vertex in H
or v appears in a cycle component of H , then neither does it after the operation.

Based on the above concepts, we are now ready to define six robust operations on H that decrease the number of odd
cycles in H but do not decrease the number of edges in H .

Type 1: Suppose that {u, v} is an edge in E(G) − E(H) such that dH(u) ≤ 1 and v is a vertex of some cycle C of H . Then, a
Type-1 operation on H using {u, v}modifies H by deleting one (arbitrary) edge of C incident to v and adding edge
{u, v}. Obviously, this operation is robust and does not change |E(H)|.
(Comment: If dH(u) = 0 before a Type-1 operation, then n0(H) decreases by 1 and p(H) increases by 1 after

the operation. Similarly, if dH(u) = 1 before a Type-1 operation, then neither n0(H) nor p(H) changes after the
operation.)

Type 2: Suppose that some odd cycle C of H has a 5-opener (x, y, P, u, v) with {u, v} ∈ E(H) (see Fig. 1). Then, a Type-2
operation onH using (x, y, P, u, v)modifiesH by deleting edge {u, v}, deleting one (arbitrary) edge of C incident to
y, and adding edges {u, x} and {v, y}. Obviously, this operation is robust and does not change the number of edges
in H . However, edge {u, v}may have been charged before this operation. If that is the case, we move its charge to
{u, x}. Moreover, if the path component Q of H containing edge {u, x} after this operation is of length at most 5,
then we move the charges on the edges of Q to edge {v, y} and the edges of C still remaining in H .
(Comment: A Type-2 operation on H maintains Invariants I1 through I4. Moreover, if dH(x) = 0 before a Type-2

operation, then n0(H) decreases by 1 and p(H) increases by 1 after the operation. Similarly, if dH(x) = 1 before a
Type-2 operation, then neither n0(H) nor p(H) changes after the operation.)

4546 Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553

Fig. 2. A Type-3 operation, where bold edges are in H .

Fig. 3. A Type-4 operation, where bold edges are in H .

Fig. 4. A Type-5 operation, where bold edges are in H .

Type 3: Suppose that some odd cycle C ofH has a 5-opener (x, y, P, u, v) such that {u, v} 6∈ E(H) and E(G)−E(H) contains
the edge {w, s}, where w is the neighbor of v in the subpath of P between u and v and s is the endpoint of P with
distP(s, u) < distP(s, v) (see Fig. 2). Then, a Type-3 operation on H using (x, y, P, u, v)modifies H by deleting edge
{v,w}, deleting one (arbitrary) edge eu of P incident to u, deleting one (arbitrary) edge of C incident to y, and
adding edges {u, x}, {v, y}, and {s, w}. Obviously, this operation is robust and does not change the number of edges
in H . Note that {v,w} or eu may have been charged before this operation. If that is the case, we move their charges
to edges {u, x} and {s, w}, respectively. Moreover, if the path component Q of H containing edge {u, x} after this
operation is of length at most 5, then we move the charges on the edges of Q to edge {v, y} and the edges of C still
remaining in H .
(Comment: A Type-3 operation on H maintains Invariants I1 through I4. Moreover, if dH(x) = 0 before a Type-3

operation, then n0(H) decreases by 1 and p(H) increases by 1 after the operation. Similarly, if dH(x) = 1 before a
Type-3 operation, then neither n0(H) nor p(H) changes after the operation.)

Type 4: Suppose that there is a quadruple (x, P, u, v) satisfying the following conditions (see Fig. 3):
• x is a vertex of a cycle component C of H .
• P is a path component of H and {u, v} is an inner edge of P .
• E(G)− E(H) contains both {u, x} and {s, v}, where s is the endpoint of P with distP(s, u) < distP(s, v).
Then, a Type-4 operation on H using (x, P, u, v) modifies H by deleting edge {u, v}, deleting one (arbitrary) edge
of C incident to x, and adding edges {u, x} and {s, v}. Obviously, this operation is robust and does not change the
number of edges in H . However, {u, v}may have been charged before this operation. If that is the case, we move
its charge to {u, x}.
(Comment: A Type-4 operation on H maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)

Type 5: Suppose that there is a quintuple (x, P, u, v, w) satisfying the following conditions (see Fig. 4):
• x is a vertex of a cycle component C of H .
• P is a path component of H , u is an inner vertex of P , {v,w} is an inner edge of P , distP(u, v) < distP(u, w), and
u 6= v.

• E(G) − E(H) contains {u, x}, {s, w}, and {t, v}, where s is the endpoint of P with distP(s, u) < distP(s, v) and t
is the other endpoint of P .

Then, a Type-5 operation on H using (x, P, u, v, w) modifies H by deleting edge {v,w}, deleting one (arbitrary)
edge eu of P incident to u, deleting one (arbitrary) edge of C incident to x, and adding edges {s, w}, {t, v}, and
{u, x}. Obviously, this operation is robust and does not change the number of edges in H . However, edges {v,w}
and eu may have been charged before this operation. If that is the case, we move their charges to {u, x} and {s, w},
respectively.
(Comment: A Type-5 operation on H maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)

Type 6: Suppose that some odd cycle C of H with length at most 9 has a 6-opener (x, y,Q , P, u, v) such that {u, v} ∈ E(H)
(see Fig. 5). Then, a Type-6 operation on H using (x, y,Q , P, u, v) modifies H by deleting edge {u, v}, deleting all

Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553 4547

Fig. 5. A Type-6 operation, where bold edges are in H .

edges of C , adding edges {u, x} and {v, y}, and adding all edges of Q . Obviously, this operation does not change the
number of edges in H , and is robust because (1) it does not create a new isolated vertex in H and (2) if it creates
one or more new cycles in H then V (C ′) ⊆ V (C) for each new cycle C ′. However, {u, v} may have been charged
before this operation. If that is the case, we move its charge to {u, x}.
(Comment: A Type-6 operation on H maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)

Using the above operations, our algorithm then proceeds to modifying H by performing the following step:

2. Repeat performing a Type-i operation on H with 1 ≤ i ≤ 6, until none is applicable.

Obviously, H remains a triangle-free path-cycle cover of G. Moreover, the following fact holds:

Fact 3.1. After Step 2, G has no edge {u, v} such that u is an isolated vertex in H and either v is an isolated vertex in H or v appears
in a cycle component of H.

Unfortunately, H may still have odd cycles after Step 2. So, we need to perform new types of operations on H that always
decrease the number of odd cycles in H but may also decrease the number of edges in H . Before defining the new operations
on H , we define two concepts as follows. Two cycles C1 and C2 of H are pairable if at least one of them is odd and their total
length is at least 10. A quintuple (x, y, P, u, v) is an opener for two pairable cycles C1 and C2 of H if the following hold:

• x is a vertex of C1 and y is a vertex of C2.
• P is either a path component of H or a 4-cycle of H different from C1 and C2.
• u and v are distinct inner vertices of P .
• Both {u, x} and {v, y} are in E(G)− E(H).

Now, we are ready to define the new types of robust operations on H as follows:

Type 7: Suppose that C is an odd cycle of H with length at least 11. Then, a Type-7 operation on H using C modifies H by
deleting one (arbitrary) edge from C . Clearly, the net loss in the number of edges in H is 1. We charge this loss
evenly to the edges of C still remaining in H . In more details, if C was a k-cycle before the operation, then a charge
of 1
k−1 is charged to each edge of C still remaining in H after the operation. Since k ≥ 11, the charge assigned to

one edge here is at most 110 . Obviously, this operation is robust.
(Comment: A Type-7 operation on H maintains Invariants I1 through I4, does not change n0(H), and increases

p(H) by 1.)
Type 8: Suppose that C1 and C2 are two pairable cycles of H such that there is an edge {u, v} ∈ E(G) with u ∈ V (C1) and

v ∈ V (C2). Then, a Type-8 operation on H using {u, v}modifies H by deleting one (arbitrary) edge of C1 incident to
u, deleting one (arbitrary) edge of C2 incident to v, and adding edge {u, v}. Note that this operation decreases the
number of edges in H by 1. So, the net loss in the number of edges in H is 1. We charge this loss evenly to edge
{u, v} and the edges of C1 and C2 still remaining in H . In more details, if C1 was a k-cycle and C2 was an `-cycle in
H before the operation, then a charge of 1

k+`−1 is assigned to {u, v} and each edge of C1 and C2 still remaining in
H after the operation. Since k ≥ 5 and ` ≥ 5, the charge assigned to one edge here is at most 19 . Obviously, this
operation is robust.
(Comment: A Type-8 operation on H maintains Invariants I1 through I4, does not change n0(H), and increases

p(H) by 1.)
Type 9: Suppose that two odd cycles C1 and C2 of H have an opener (x, y, P, u, v) with {u, v} ∈ E(H) (see Fig. 6). Then, a

Type-9 operation on H using (x, y, P, u, v) modifies H by deleting edge {u, v}, deleting one (arbitrary) edge of C1
incident to x, deleting one (arbitrary) edge of C2 incident to y, and adding edges {u, x} and {v, y}. Note that edge
{u, v}may have been charged before this operation. If that is the case, wemove its charge to edge {u, x}. Moreover,
the operation decreases the number of edges in H by 1. So, the net loss in the number of edges in H is 1. We charge
this loss evenly to edge {v, y} and the edges of C1 and C2 still remaining inH . Obviously, the charge assigned to one
edge here is at most 19 . It is also clear that this operation is robust.
(Comment: A Type-9 operation on H maintains Invariants I1 through I4, does not change n0(H), and increases

p(H) by 1.)

4548 Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553

Fig. 6. A Type-9 operation, where bold edges are in H .

Fig. 7. A Type-10 operation, where bold edges are in H .

Type 10: Suppose that two odd cycles C1 and C2 of H have an opener (x, y, P, u, v) such that {u, v} 6∈ E(H) and E(G)−E(H)
contains the edge {w, s}, where w is the neighbor of v in the subpath of P between u and v and s is the endpoint
of P with distP(s, u) < distP(s, v) (see Fig. 7). Then, a Type-10 operation on H using (x, y, P, u, v) modifies H by
deleting edge {v,w}, deleting one (arbitrary) edge eu of P incident to u, deleting one (arbitrary) edge of C1 incident
to x, deleting one (arbitrary) edge of C2 incident to y, and adding edges {u, x}, {v, y}, and {s, w}. Note that {v,w} or
eumay have been charged before this operation. If that is the case, wemove their charges to edges {u, x} and {v, y},
respectively. Moreover, the operation decreases the number of edges in H by 1. So, the net loss in the number of
edges in H is 1. We charge this loss evenly to edge {s, w} and the edges of C1 and C2 still remaining in H . Obviously,
the charge assigned to one edge here is at most 19 . It is also clear that this operation is robust.
(Comment: A Type-10 operation on H maintains Invariants I1 through I4, does not change n0(H), and increases

p(H) by 1.)

After Step 2, no matter how many times we perform Type-i operations on H with 1 ≤ i ≤ 10, G cannot have an edge
{u, v} such that u is an isolated vertex inH and either v is an isolated vertex inH or v appears in a cycle component ofH . This
follows from Fact 3.1 and the fact that every Type-i operation on H with 1 ≤ i ≤ 10 is robust. However, after performing a
Type-i operation on H with 7 ≤ i ≤ 10, the following new type of robust operations on H may be applicable:

Type 11: Suppose that {u, v} is an edge in E(G) − E(H) such that dH(u) = 1, dH(v) ≤ 1, and no connected component of
H contains both u and v. Then, a Type-11 operation on H using {u, v}modifies H by adding edge {u, v}. Obviously,
this operation is robust and increases the number of edges in H by 1.
(Comment: If dH(v) = 0 before a Type-11 operation, then p(H) does not change and n0(H) decreases by 1 after

the operation. Similarly, if dH(v) = 1 before a Type-11 operation, then n0(H) does not change and p(H) decreases
by 1 after the operation.)

Using the above operations, our algorithm then proceeds to modifying H by performing the following steps:

3. Repeat using a Type-i operation to modify H with 1 ≤ i ≤ 11, until none is applicable.
4. For each odd cycle C of H , remove one (arbitrary) edge from C . (Comment: Each odd cycle modified in this
step is a 5-, 7-, or 9-cycle.)

5. Output H .

For 1 ≤ i ≤ 4, let Hi be the triangle-free path-cycle cover H of G immediately after Step i of our algorithm. In order to
analyze the approximation ratio achieved by our algorithm, we need to define several notations as follows:

• Let n, m, nis, and npc be the numbers of vertices, edges, isolated vertices, and path components in H2, respectively.
(Comment: m ≥ |E(Opt)|.)
• Letm− be the number of Type-i operations with 7 ≤ i ≤ 10 performed in Step 3.
• Let m+,−1 be the number of Type-11 operations performed in Step 3 that decrease the number of isolated vertices in H
by 1.
• Letm+,0 be the number of Type-11 operations performed Step 3 that do not change the number of isolated vertices in H .
• Let n0,−1 be the number of Type-i operations with 1 ≤ i ≤ 3 performed in Step 3 that decrease the number of isolated
vertices in H by 1.
• For each i ∈ {5, 7, 9}, let ci be the number of i-cycles in H3.
• Letmc andmuc be the numbers of charged edges and uncharged edges in H3, respectively.

Lemma 3.2. The following statements hold:

1. m− ≤ 1
10 (m+m+,0 +m+,−1 −muc).

Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553 4549

2. |E(H4)| = m−m− +m+,0 +m+,−1 − c5 − c7 − c9.
3. |E(H4)| ≥ 9

10 (m+m+,0 +m+,−1)− (
1
2 c5 +

3
10 c7 +

1
10 c9).

Proof. By the algorithm, |E(H3)| = m − m− + m+,0 + m+,−1. On the other hand, |E(H3)| = mc + muc by definition. So,
mc = m−m− +m+,0 +m+,−1 −muc . We also havem− ≤ 1

9mc by Invariant I2. Thus,m− ≤
1
10 (m+m+,0 +m+,−1 −muc).

This establishes Statement 1.
By Step 3, |E(H4)| = |E(H3)| − c5 − c7 − c9. So, by the first equality in the last paragraph, |E(H4)| = m− m− + m+,0 +

m+,−1 − c5 − c7 − c9. This establishes Statement 2.
By Statements 1 and 2, |E(H4)| ≥ 9

10 (m+m+,0 +m+,−1)+
1
10muc − c5 − c7 − c9. We also havemuc ≥ 5c5 + 7c7 + 9c9,

because each edge in a cycle component of H3 is uncharged according to Invariant I3. Combining these two inequalities, we
have Statement 3. �

Lemma 3.3. The following statements hold:

1. n− n0(H3)− 2p(H3) = m− npc − 2m− + 2m+,0 +m+,−1 − n0,−1.
2. p(H3) = npc +m− −m+,0 + n0,−1.

Proof. Immediately before Step 3, n−n0(H)−2p(H) = m−npc because p(H) = npc and the number of vertices on a path is
1 plus the number of edges on the path. Now, to prove the lemma, it suffices to see how the values of n−n0(H)−2p(H) and
p(H) change when performing an operation in Step 3. The comment on the definition of each type of operations helps. �

3.1. The first analysis

We start by giving several definitions:

• For i ∈ {0, 1}, let Ti be the set of all vertices v in H3 with dH3(v) = i.
• Let T2 be the set of all vertices v in H3 such that v appears in an odd cycle of H3.
• Let T = T0 ∪ T1 ∪ T2.
• For i ∈ {0, 1, 2}, let Ti be the set of vertices u ∈ V (G) − T such that the number of edges {u, v} ∈ E(Opt) with v ∈ T is
exactly i. (Comment: V (G)− T = T0 ∪ T1 ∪ T2.)
• Let ETopt be the set of all edges {u, v} in Opt such that both u and v are vertices of T .
• Let C−2 be the set of all odd cycles C in H3 such that Opt contains at most |V (C)| − 2 edges {u, v}with {u, v} ⊆ V (C).

The next lemma gives an upper bound on |ETopt |.

Lemma 3.4. |ETopt | ≤ p(H3)+ 4c5 + 6c7 + 8c9 − |C−2| ≤ npc +m− −m+,0 + n0,−1 + 4c5 + 6c7 + 8c9 − |C−2|.

Proof. First, we claim that each vertex u ∈ T0 is an isolated vertex in G[T]. To see this, consider an arbitrary u ∈ T0. Because
of Fact 3.1 and the fact that all Type-i operationswith 1 ≤ i ≤ 11 are robust, there is no vertex v ∈ T0∪T2with {u, v} ∈ E(G).
Moreover, since no Type-11 operation can be applied to H3, there is no vertex v ∈ T1 with {u, v} ∈ E(G). So, the claim holds.
Next, we claim that there is no edge {u, v} ∈ E(G) such that u ∈ T1 and v ∈ T2. This follows from the fact that no Type-1

operation can be applied to H3.
By the above two claims, each edge in ETopt is either in G[T1] or in G[T2]. Since no Type-11 operation can be applied to

H3, there is no edge {u, v} ∈ E(G) with {u, v} ⊆ T1 such that u and v belong to different connected components of H3. So,
there are at most p(H3) edges in G[T1]. Consequently, to show the first inequality in the lemma, it remains to show that ETopt
contains at most 4c5 + 6c7 + 8c9 − |C−2| edges {u, v}with {u, v} ⊆ T2.
Suppose that {u, v} is an edge in ETopt with {u, v} ⊆ T2. Since no Type-8 operation can be applied to H3, u and v belong to

the same cycle component of H3[T2]. On the other hand, since each cycle C in H3[T2] is an odd cycle, ETopt can contain at most
|E(C)| − 1 edges {u, v} with {u, v} ⊆ V (C). In particular, for each cycle C ∈ C−2, ETopt can contain at most |E(C)| − 2 edges
{u, v}with {u, v} ⊆ V (C). Hence, ETopt contains at most 4c5+6c7+8c9−|C−2| edges {u, v}with {u, v} ⊆ T2. This completes
the proof of the first inequality in the lemma. The second inequality follows from the first and Statement 2 in Lemma 3.3
immediately. �

The next lemma gives a lower bound on |ETopt |.

Lemma 3.5. |ETopt | ≥ |E(Opt)| − 2m+ 2npc + 4m− − 4m+,0 − 2m+,−1 + 2n0,−1 + 10c5 + 14c7 + 18c9 + |T0| +
1
2 |T1|.

Proof. The idea behind the proof is to obtain an upper bound on |E(Opt)− ETopt |. A trivial upper bound is 2(n−|T |), because
each edge in E(Opt)− ETopt must be incident to a vertex in V (G)− T and each vertex in V (G)− T can be adjacent to at most
two edges in Opt . This bound is not good enough because each edge {u, v} ∈ E(Opt) with {u, v} ⊆ V (G) − T is counted
twice.
To get a better bound, we set up a savings account for each vertex in V (G) − T . Initially, we deposit two credits to

the account of each vertex. The total credits amount to 2(n − |T |) (namely, the trivial upper bound). Next, for each edge
{u, v} ∈ E(Opt)with {u, v} ⊆ V (G)− T , we pay a half credit from the account of u and another half credit from the account

4550 Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553

of v. After this, for each edge {u, v} ∈ E(Opt)withu ∈ V (G)−T and v ∈ T , we pay one credit from the account ofu. Obviously,
we paid a total of |E(Opt)− ETopt | credits. We want to estimate the number of credits that are still left in the accounts of the
vertices in V (G)− T . First, for each vertex u ∈ T0, we paid at most one credit, because u is incident to at most two edges in
E(Opt)− ETopt and each of them has both of its endpoints in V (G)− T . So, the total number of credits still left in the accounts
of the vertices in T0 is at least |T0|. Second, for each vertex u ∈ T1, we paid atmost one and a half credits, because u is incident
to at most two edges in E(Opt)− ETopt and one of them has an endpoint in T . Thus, the total number of credits still left in the
accounts of the vertices in T1 is at least 12 |T1|. In summary, we have shown that |E(Opt)− E

T
opt | ≤ 2(n− |T |)− |T0| −

1
2 |T1|.

Obviously, |T | = n0(H3) + 2p(H3) + 5c5 + 7c7 + 9c9. So, by Statement 1 in Lemma 3.3, |T | = n − (m − npc − 2m− +
2m+,0+m+,−1−n0,−1)+5c5+7c7+9c9. In otherwords, n−|T | = m−npc−2m−+2m+,0+m+,−1−n0,−1−5c5−7c7−9c9.
Hence, by the last inequality in the last paragraph, |E(Opt)−ETopt | ≤ 2m−2npc−4m−+4m+,0+2m+,−1−2n0,−1−10c5−
14c7 − 18c9 − |T0| − 1

2 |T1|. So, the lemma holds. �

The following lemma shows that the approximation ratio achieved by our algorithm is at least 3745 .

Lemma 3.6. |E(H4)| ≥ 37
45 |E(Opt)|.

Proof. Combining Lemmas 3.4 and 3.5, we have
|E(Opt)| ≤ 2m− npc − 3m− + 3m+,0 + 2m+,−1 − n0,−1 − 6c5 − 8c7 − 10c9.

So, by Statement 2 in Lemma 3.2,
3|E(H4)| − |E(Opt)| ≥ m+m+,−1 + npc + n0,−1 + 3c5 + 5c7 + 7c9.

Thus, 3c5+5c7+7c9 ≤ 3|E(H4)|−|E(Opt)|−m. Hence, 12 c5+
3
10 c7+

1
10 c9 ≤

1
6 (3c5+5c7+7c9) ≤

1
2 |E(H4)|−

1
6 |E(Opt)|−

1
6m.

Therefore, by Statement 3 in Lemma 3.2, we have |E(H4)| ≥ 9
10m−(

1
2 |E(H4)|−

1
6 |E(Opt)|−

1
6m). Rearranging this inequality

and using the fact thatm ≥ |E(Opt)|, we finally obtain |E(H4)| ≥ 37
45 |E(Opt)|. �

In the next subsection, we will refine the analysis to obtain a better ratio.

3.2. The second analysis

To obtain a better approximation ratio, our idea is to show that |C−2| + |T0| + 1
2 |T1| is large.

For convenience, we say that a path component of H3 is short if its length is at most 5. The point is that each short path
component of H3 does not contain a charged edge. This follows from Invariant I4.
Let C be an odd cycle component of H3. We call an edge {u, v} ∈ E(Opt) an antenna of C if exactly one of u and v is a

vertex of C . The tip of an antenna {u, v} of C is the vertex in {u, v} − V (C). Note that the tip of each antenna of C must be
either an inner vertex of a path component ofH3 or a vertex of a 4-cycle inH3, because neither Type-1 nor Type-8 operations
can be applied to H3. An antenna of C is short if its tip appears either in a short path component of H3 or in a 4-cycle of H3;
otherwise, it is long. Note that the tip of a long antenna of C must be an inner vertex of a long path component of H3 because
no Type-i operation with i ∈ {1, 8} can be applied to H3. C is antenna-sensitive if it has at least one antenna. On the contrary,
C is antenna-free if it has no antenna. Similarly, C is short-antenna-free if it has no short antenna.
For each antenna-sensitive odd cycle component C of H3, we define the representative antenna of C as follows: If C is

short-antenna-free, then we choose an arbitrary antenna of C to be its representative antenna; otherwise, we choose an
arbitrary short antenna of C to be its representative antenna. We denote the representative antenna of C by A(C). For each
i ∈ {5, 7, 9}, we define three sets as follows:

• Let Fi be the set of all antenna-free i-cycles in H3.
• Let Si be the set of all antenna-sensitive i-cycles C in H3 such that A(C) is short.
• LetLi be the set of all antenna-sensitive i-cycles C in H3 such that A(C) is long.

Lemma 3.7. m ≥ |E(Opt)| + |F5| + |F7| + |F9|.
Proof. For convenience, let F = F5 ∪ F7 ∪ F9. Let U be the set of all vertices in G that appear in cycles in F . Consider
an arbitrary cycle C ∈ F . Since C is antenna-free, there is no edge {u, v} in Opt with |{u, v} ∩ V (C)| = 1. So, E(Opt)
can be partitioned into two sets E1 and E2, where E1 consists of those edges {u, v} ∈ E(Opt) with {u, v} ⊆ V (G) − V (C)
and E2 consists of those edges {u, v} ∈ E(Opt)with {u, v} ⊆ V (C). Hence, (V (C), E2)must be a maximum edge-2-colorable
subgraph of C or elseOpt would not be amaximumedge-2-colorable subgraph ofG. Obviously, amaximumedge-2-colorable
subgraph of C must contain exactly |V (C)| − 1 edges. Therefore, |E2| = |V (C)| − 1. Consequently, Opt − U is an edge-2-
colorable subgraph of G− U and contains exactly |E(Opt)| −

∑
C∈F (|V (C)| − 1) edges.

Since no Type-i operation with 1 ≤ i ≤ 11 creates an odd cycle, every cycle in F is also a cycle in H2. So, H2 − U
is a maximum triangle-free cycle-path cover of G − U because H2 is a maximum triangle-free cycle-path cover of G. This
together with the fact that Opt − U is an edge-2-colorable subgraph of G − U implies that the number of edges in H2 − U
is larger than or equal to the number of edges in Opt − U . Now, because H2 − U has exactly m −

∑
C∈F |V (C)| edges and

Opt−U has exactly |E(Opt)|−
∑
C∈F (|V (C)|−1) edges, we havem−

∑
C∈F |V (C)| ≥ |E(Opt)|−

∑
C∈F (|V (C)|−1). Thus,

m ≥ |E(Opt)| + |F5| + |F7| + |F9|. �

Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553 4551

Lemma 3.8. muc ≥
∑
i∈{5,7,9}(i|Fi| + (i+ 1)|Si| + i|Li|).

Proof. By Invariant I3, every edge in an odd cycle of H3 is not charged. Note that the total number of edges in odd cycles of
H3 is

∑
i∈{5,7,9}(i|Fi| + i|Si| + i|Li|). Further note that each edge in a 4-cycle of H3 or a short path component of H3 is not

charged because of Invariant (I4). Thus, it remains to show the following claim:

Claim. The total number of edges in 4-cycles or short path components of H3 is at least
∑
i∈{5,7,9} |Si|.

For each short path component or 4-cycle P in H3, let SP be the set of all cycles C ∈ S5 ∪ S7 ∪ S9 such that the tip of A(C)
is a vertex of P . To show the claim, it suffices to show that for each short path component or 4-cycle P in H3, |E(P)| ≥ |SP |.
First, consider an arbitrary 4-cycle P in H3. Recall that the degree of each vertex in Opt is at most 2. So, for each vertex v

of P , there are at most two cycles C ∈ SP such that v is the tip of A(C). Moreover, since no Type-9 operation can be applied
to H3, there do not exist two cycles C1 and C2 in SP such that the tips of A(C1) and A(C2) are adjacent in P . Therefore, there
are at most 4 odd cycles C in H3 such that A(C) is a vertex of P , or equivalently |SP | ≤ 4. Hence, |E(P)| = 4 ≥ |SP |.
Next, consider an arbitrary short path component P in H3. Since no Type-1 operation can be applied to H3, there is no

cycle C ∈ SP such that the tip of A(C) is an endpoint of P . Moreover, since no Type-9 operation can be applied toH3, there do
not exist two cycles C1 and C2 in SP such that the tips of A(C1) and A(C2) are adjacent in P . Hence, there are at most d

|V (P)|−2
2 e

vertices v ∈ V (P) such that v = A(C) for some C ∈ SP . Consequently, there are at most 2 · d
|V (P)|−2
2 e odd cycles C ∈ SP such

that the tip of A(C) is a vertex of P , because the degree of each vertex inOpt is at most 2. Or equivalently, |SP | ≤ 2 ·d
|V (P)|−2
2 e.

Therefore, |E(P)| = |V (P)| − 1 ≥ 2 · d |V (P)|−22 e ≥ |SP |. �

Lemma 3.9. Suppose that C is a cycle in (L5 ∪ L7 ∪ L9) − C−2 and has two antennas {u, x} and {v, y} whose tips u and v
appear in the same path component P of H3. Then, (x, y,Q , P, u, v) is a 6-opener for C, where Q is the subgraph of Opt induced
by V (C).

Proof. Since {u, x} ∈ E(Opt) and dOpt(x) ≤ 2, we have dQ (x) ≤ 1. Similarly, we have dQ (y) ≤ 1. On the other hand, since C
is odd and is not contained in C−2, Q has exactly |V (C)| − 1 edges. So, dQ (z) = 2 for every vertex z ∈ V (C)− {x, y}. Hence,
if x = y, then Q is a cycle cover of G[V (C) − {x}] in which each connected component is an even cycle; otherwise, Q is a
path-cycle cover of G[V (C)] in which one connected component is a path from x to y and each other connected component
is an even cycle. �

Lemma 3.10. |C−2| + |T0| + 1
2 |T1| ≥

1
3 (|L5| + |L7| + |L9|).

Proof. For each i ∈ {0, 1}, let Ti,` be the set of all vertices v ∈ Ti such that v appears in a long path component of H3. For
convenience, letL = L5 ∪L7 ∪L9. Obviously, the following claim is stronger than the lemma:

Claim 1. |T0,`| + 1
2 |T1,`| ≥

1
3 |L− C−2|.

To prove Claim1,we set up a savings account for each inner vertex in a long path component ofH3. Initially, every account
is empty. Then, we deposit a total of |T0,`| + 1

2 |T1,`| credits in the accounts as follows:

• For each vertex v ∈ T0,`, deposit one credit in the account of v.
• For each vertex v ∈ T1,`, deposit a half credit in the account of v.

For convenience, for each long path component P of H3, let LP be the set of all cycles C ∈ L − C−2 such that the tip of
A(C) is a vertex of P . Recall that for each C ∈ L, the tip of A(C) is an inner vertex of a long path component of H3 because of
the choice of A(C) and the fact that no Type-i operation with i ∈ {1, 8} can be applied to H3. So, to show Claim 1, it suffices
to show the following claim:

Claim 2. For each long path component P of H3, the credits in the accounts of inner vertices of P sum up to at least 13 |LP |.

To prove Claim 2, consider an arbitrary long path component P of H3 withLP 6= ∅. Let s and t be the endpoints of P , and
let Q be the path P − {s, t}. Since P is long, the length of Q is at least 4. For convenience, we call s the left endpoint of P and
call t the right endpoint of P . Moreover, for each inner vertex v of P , we define its left neighbor in P to be the vertex u ∈ NP(v)
with distP(s, u) < distP(s, v), and define its right neighbor in P to be the vertex w ∈ NP(v) with distP(t, w) < distP(t, v).
Furthermore, we color each vertex v of Q white or black as follows: If there is a cycle C ∈ LP such that v is the tip of A(C),
then color v white; otherwise, color v black. Then, to prove Claim 2 for P , it suffices to show the following claim:

Claim 3. LetW be the set of all white vertices v of Q . Then, the credits in the accounts of inner vertices of P sum up to at
least 23 |W |.

Claim 3 implies Claim 2, because for each vertex v ∈ W , there are at most two cycles C ∈ LP such that v is the tip of
A(C). To prove Claim 3, we first observe the following useful property:

Property 1. Suppose that u ∈ W and v is a neighbor of u in Q . Then, v ∈ T0 ∪ T1. Moreover, if v ∈ T1 and v is the left
(respectively, right) neighbor of u in P , then the vertex in NOpt(v) ∩ T is the left (respectively, right) endpoint of P .

4552 Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553

To see Property 1, let C be a cycle inLP such that u is the tip ofA(C). SinceC 6∈ C−2, v cannot be the tip of an antenna of C or
else a Type-6 operation could be applied toH3 (cf. Lemma 3.9). Moreover, there is no edge {v, x} ∈ E(Opt)with x ∈ T2−V (C)
because no Type-9 operation can be applied to H3. Similarly, there is no edge {v, x} ∈ E(Opt)with x ∈ (T0 ∪ T1)− {s, t} be-
cause no Type-2 operation can be applied toH3. Furthermore, v cannot be adjacent to both s and t inG because no Type-4 op-
eration can be applied toH3. More specifically, if v is the left (respectively, right) neighbor of u in P , then v cannot be adjacent
to the right (respectively, left) endpoint of P in G because no Type-4 operation can be applied to H3. Thus, Property 1 holds.
We next use Property 1 to prove Claim 3. For clarity, we distinguish two cases as follows:
Case 1: |W | = 1. In this case, we want to show that the credits in the accounts of inner vertices of P sum up to at least 1.

Toward this goal, consider the vertex u inW . If u is not an endpoint of Q , then Property 1 guarantees that both neighbors of
u in Q belong to T0 ∪ T1, implying that the accounts of the neighbors of u in Q have at least one credit in total. So, suppose
that u is an endpoint of Q . Without loss of generality, we may assume that u is the right endpoint of Q . Then, since P is long,
the left neighbor v of u in Q exists and so does the left neighbor w of v in Q . By Property 1, either v ∈ T0, or v ∈ T1 and
the vertex in NOpt(v) ∩ T is s. Hence, if {s, v} 6∈ E(G) − E(H), then v ∈ T0, implying that the account of v has one credit.
Therefore, it remains to consider the case where {s, v} ∈ E(G)− E(H). In this case, since no Type-iwith i ∈ {3, 4, 5} can be
applied to H3,w belongs to T0 ∪ T1 (in particular,w cannot be adjacent to t or a vertex of C in G). Thus, the accounts of v and
w have at least one credit in total.
Case 2: |W | ≥ 2. For convenience, we define the leftmost (respectively, rightmost) white vertex in Q to be the white

vertex that is closest to s (respectively, t) in P . Moreover, we say that two white vertices u and v are consecutive if no inner
vertex of the subpath of Q between u and v is white. Note that if u and v are two consecutive white vertices, then Property 1
guarantees that the subpath of Q between u and v contains at least one inner vertex. Again, for convenience, we call a vertex
w ∈ V (Q) −W a delimiter, if either (1) its left neighbor in Q is white but is not the rightmost white vertex, or (2) its right
neighbor in Q is white but is not the leftmost white vertex. The crucial point is that each delimiter belongs to T0. This follows
from Property 1 and the fact that no Type-10 operation can be applied toH3. We further distinguish two subcases as follows:
Case 2.1: There do not exist two consecutive white vertices u and v in Q with distQ (u, v) > 2. In this case, there are

exactly |W | − 1 delimiters in Q and hence we are done if |W | ≥ 3 (because |W | − 1 ≥ 2
3 |W | when |W | ≥ 3). So, assume

that |W | = 2. Let u and v be the vertices inW . We may assume that distP(s, u) < distP(s, v). Since |E(P)| ≥ 6, u has a left
neighbor in Q or v has a right neighbor in Q . We assume that u has a left neighbor in Q ; the other case is similar. Let w be
the left neighbor of u in Q . Then, by Property 1, w belongs to T0 ∪ T1 and hence its account has at least a half credit. Also
recall that the (unique) delimiter in Q has one credit in its account. Therefore, the total credits in the accounts ofw and the
delimiter is at least 1.5, which is not smaller than 23 · |W |.
Case 2.2: There exist two consecutive white vertices u and v in Q with distQ (u, v) > 2. Without loss of generality, we

may assume that distP(s, u) < distP(s, v). Then, for each white vertex w on the subpath of P between s and u, the right
neighbor of w in Q is a delimiter. Similarly, for each white vertex w on the subpath of P between t and v, the left neighbor
of w in Q is a delimiter. Moreover, the right neighbor of u in Q and the left neighbor of v in Q are different delimiters for
distQ (u, v) > 2. Hence, there are at least as many delimiters as white vertices. Therefore, the total credits in the accounts of
the delimiters is at least |W | because each delimiter belongs to T0 and so its account has one credit. �

Lemma 3.11. |E(H4)| ≥ 24
29 |E(Opt)|.

Proof. The proof is similar to that of Lemma 3.6. Combining Lemmas 3.4 and 3.5, we have |E(Opt)| ≤ 2m − npc −
3m− + 3m+,0 + 2m+,−1 − n0,−1 − 6c5 − 8c7 − 10c9 − (|C−2| + |T0| + 1

2 |T1|). So, by Statement 2 in Lemma 3.2,
3|E(H4)| − |E(Opt)| ≥ m + npc + m+,−1 + n0,−1 + 3c5 + 5c7 + 7c9 + |C−2| + |T0| + 1

2 |T1|. Thus, by Lemma 3.10,
3|E(H4)| − |E(Opt)| ≥ m + 3c5 + 5c7 + 7c9 + 1

3 (|L5| + |L7| + |L9|). Consequently, 3|E(H4)| − |E(Opt)| ≥ m + 3|S5| +
5|S7| + 7|S9| + 10

3 |L5| +
16
3 |L7| +

19
3 |L9| because ci = |Si| + |Fi| + |Li| for each i ∈ {5, 7, 9}.

On the other hand, by Statements 1 and 2 in Lemma 3.2, |E(H4)| ≥ 9
10 (m+ m+,0 + m+,−1)+

1
10muc − c5 − c7 − c9. So,

by Lemma 3.8, |E(H4)| ≥ 9
10m −

2
5 |S5| −

1
5 |S7| −

1
2 |F5| −

3
10 |F7| −

1
10 |F9| −

1
2 |L5| −

3
10 |L7| −

1
10 |L9|. Consequently, by

Lemma 3.7, |E(H4)| ≥ 9
10 |E(Opt)| −

2
5 |S5| −

1
5 |S7| −

1
2 |L5| −

3
10 |L7| −

1
10 |L9|. This together with the last inequality in the

last paragraph implies that 320 (3|E(H4)| − |E(Opt)|) + |E(H4)| ≥
9
10 |E(Opt)| +

3
20m. Rearranging this inequality and using

the fact thatm ≥ |E(Opt)|, we finally obtain |E(H4)| ≥ 24
29 |E(Opt)|. �

Theorem 3.12. There is an O(n2m2)-time approximation algorithm for Max Simple Edge 2-Coloring achieving a ratio of 2429 ,
where n (respectively, m) is the number of vertices (respectively, edges) in the input graph.

Proof. We estimate the running time of the algorithm as follows. Step 1 can be done in O(n2m2) time [3]. Obviously, Steps 2
through 4 can be done in O(n(n + m)) time, because each operation can be performed in O(n + m) time and each step
performs a total of O(n) operations. �

4. An application

Let G be a graph. An edge cover of G is a set F of edges of G such that each vertex of G is incident to at least one edge of F .
For a natural number k, a [1,∆]-factor k-packing of G is a collection of k disjoint edge covers of G. The size of a [1,∆]-factor

Z.-Z. Chen, R. Tanahashi / Theoretical Computer Science 410 (2009) 4543–4553 4553

k-packing {F1, . . . , Fk} of G is |F1| + · · · + |Fk|. The problem of deciding whether a given graph has a [1,∆]-factor k-packing
was considered in [5,6]. In [8], Kosowski et al. defined the minimum [1,∆]-factor k-packing problem (Min-k-FP) as follows:
Given a graph G, find a [1,∆]-factor k-packing of G of minimum size or decide that G has no [1,∆]-factor k-packing at all.
According to [8], Min-2-FP is of special interest because it can be used to solve a fault tolerant variant of the guards

problem in grids (which is one of the art gallery problems [9,10]). Indeed, they proved the NP-hardness ofMin-2-FP and the
following lemma:

Lemma 4.1. IfMax Simple Edge 2-Coloring admits an approximation algorithm A achieving a ratio ofα, thenMin-2-FP admits
an approximation algorithm B achieving a ratio of 2− α. Moreover, if the time complexity of A is T (n), then the time complexity
of B is O(T (n)).

So, by Theorem 3.12, we have the following immediately:

Theorem 4.2. There is an O(n2m2)-time approximation algorithm for Min-2-FP achieving a ratio of 3429 , where n (respectively,
m) is the number of vertices (respectively, edges) in the input graph.

Previously, the best ratio achieved by a polynomial-time approximation algorithm for Min-2-FP was 682575 [1], although
Min-2-FP admits a polynomial-time approximation algorithm achieving a ratio of 42∆−3035∆−21 , where∆ is the maximum degree
of a vertex in the input graph [8].

Note added in proof. One referee pointed out a recent paper by Kosowski [7] to us, in which a new approximation algorithm
forMax Simple Edge 2-Coloring is given. His algorithm has the same time complexity as ours but achieves a slightly better
ratio (namely, 56 ≈ 0.833). It also seems that his algorithm was made public slightly earlier than ours. However, his work
and ours are completely independent. Indeed, his algorithm and ours are based on completely different approaches. We
believe that, by combining the two approaches, we can improve both his result and ours.

Acknowledgment

First authorwas supported in part by the Grant-in-Aid for Scientific Research of theMinistry of Education, Science, Sports
and Culture of Japan, under Grant No. 20500021.

References

[1] Z.-Z. Chen, R. Tanahashi, L. Wang, An improved approximation algorithm for maximum edge 2-coloring in simple graphs, Journal of Discrete
Algorithms 6 (2) (2008) 205–215. A preliminary version appeared in Proceedings of 3rd International Conference on Algorithmic Aspects in
Information and Management, Lecture Notes in Computer Science, vol. 4508, 2007, pp. 27–36.

[2] U. Feige, E. Ofek, U. Wieder, Approximating maximum edge coloring in multigraphs, in: Proceedings of the 10th International Conference on Integer
Programming and Combinatorial Optimization, IPCO, in: Lecture Notes in Computer Science, vol. 2462, 2002, pp. 108–121.

[3] D. Hartvigsen, Extensions of matching theory, Ph.D. Thesis, Carnegie-Mellon University, 1984.
[4] D. Hochbaum, Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, Boston, 1997.
[5] D.P. Jacobs, R.E. Jamison, Complexity of recognizing equal unions in families of sets, Journal of Algorithms 37 (2000) 495–504.
[6] K. Kawarabayashi, H. Matsuda, Y. Oda, K. Ota, Path factors in cubic graphs, Journal of Graph Theory 39 (2002) 188–193.
[7] A. Kosowski, Approximating the maximum 2- and 3-edge-colorable subgraph problems. Discrete Applied Mathematics (in press).
[8] A. Kosowski, M. Malafiejski, P. Zylinski, Packing [1,∆]-factors in graphs of small degree, Journal of Combinatorial Optimization 14 (2007) 63–86.
[9] J. O’Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, 1987.
[10] J. Urrutia, Art Gallery and Illumination Problems, in: Handbook on Computational Geometry, Elsevier Science, Amsterdam, 2000.

	Approximating maximum edge 2-coloring in simple graphs via local improvement
	Introduction
	Basic definitions
	The algorithm
	The first analysis
	The second analysis

	An application
	Acknowledgment
	References

