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Endophytes constitute a remarkably multifarious group of microorganisms ubiquitous in plants and maintain
an imperceptible association with their hosts for at least a part of their life cycle. Their enormous biological
diversity coupled with their capability to biosynthesize bioactive secondary metabolites has provided the
impetus for a number of investigations on endophytes. Here, we highlight the possible current and future
strategies of understanding the chemical communication of endophytic fungi with other endophytes (fungi
and bacteria) and with their host plants, which might not only allow the discovery and sustainable production
of desirable natural products but also other mostly overlooked bioactive secondary metabolites.
INTRODUCTION

Endophytes are microorganisms that live within plants for at

least a part of their life cycle without causing any visible manifes-

tation of disease (Bacon and White, 2000). ‘‘Endophytism’’ is,

thus, a unique cost-benefit plant-microbe association defined

by ‘‘location’’ (not ‘‘function’’) that is transiently symptomless,

unobtrusive, and established entirely inside the living host plant

tissues (Kusari and Spiteller, 2012b). During this association,

none of the interacting partners is discernibly harmed, and the

individual benefits depend on both the interacting partners.

The subtleties of such a complex interaction can be represented

between extremely dedicated mutualism and ardent parasitism

or saprophytism or exploitation, which might bear the potential

to shift variably or progressively toward a more specialized

interaction (Millet et al., 2010; Zuccaro et al., 2011). Evidence

of plant-associated microorganisms found in the fossilized

tissues of stems and leaves has revealed that endophyte-plant

associations may have evolved from the time higher plants

first appeared on the earth (Redecker et al., 2000). The existence

of fungi inside the organs of asymptomatic plants has been

known since the end of the 19th century (Guerin, 1898), and the

term ‘‘endophyte’’ was first proposed in 1866 (de Bary, 1866).

Since endophytes were first described in the Darnel (Lolium

temulentum) (Freeman, 1904), they have been isolated from

various organs of different plant species, aboveground tissues

of liverworts, hornworts, mosses, lycophytes, equisetopsids,

ferns, and spermatophytes from the tropics to the arctic, and

from the wild to agricultural ecosystems (Arnold, 2007), and to

date, all plant species studied have been found to harbor at least

one endophyte. A milestone in the history of endophyte research

was the discovery of the endophytic fungus Neotyphodium

coenophialum as the causative organism of ‘‘fescue toxicosis,’’

a syndrome suffered by cattle fed in pastures of the grass

Festuca arundinacea (Bacon et al., 1977). It was later found

that these infected plants contained several toxic alkaloids and
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that Neotyphodium species could be beneficial to their plant

hosts, increasing their tolerance of biotic and abiotic stress

factors (Schardl et al., 2004). The most frequently encountered

endophytes are fungi (Staniek et al., 2008), and currently, to

our knowledge, all reported endophytes are fungi or bacteria

(including actinomycetes), but it is possible that future discov-

eries might also reveal the endophytic nature of other non-

endophytic microorganisms (Strobel et al., 2004). Endophytic

fungi are a very diverse polyphyletic group of microorganisms;

they can thrive asymptomatically in the tissues of plants

aboveground as well as belowground, including stems, leaves,

and/or roots.

Many endophytes have the potential to synthesize various

bioactive metabolites that may directly or indirectly be used as

therapeutic agents against numerous diseases (Strobel et al.,

2004; Staniek et al., 2008; Aly et al., 2010; Kharwar et al.,

2011; Kusari and Spiteller, 2012b). Occasionally, endophytes

that produce host plant secondary metabolites with therapeutic

value or potential have been discovered; some examples include

paclitaxel (also known as Taxol) (Stierle et al., 1993), podophyllo-

toxin (Eyberger et al., 2006; Puri et al., 2006), deoxypodophyllo-

toxin (Kusari et al., 2009a), camptothecin and structural analogs

(Puri et al., 2005; Kusari et al., 2009c, 2011b; Shweta et al.,

2010), hypericin and emodin (Kusari et al., 2008, 2009b), and

azadirachtin (Kusari et al., 2012). The production of bioactive

compounds by endophytes, especially those exclusive to

their host plants, is not only important from an ecological

perspective but also from a biochemical and molecular stand-

point. Exciting possibilities exist for exploiting endophytic fungi

for the production of a plethora of known and novel biologically

active secondary metabolites. For example, using controlled

fermentation conditions by altering the accessible culture and

process parameters (such as media type and composition,

aeration, pO2, pCO2, pH, temperature, agitation, sampling, and

harvest points), the compounds produced by fungal endophytes

might be optimized. This could lead to a cost-effective,
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Figure 1. Chemical-Ecological Schematic
Interpretation of Plant-Fungus Cost-Benefit
Interactions with Emphasis on Endophytic
Fungi
(A) Balanced antagonism hypothesis is shown.
(B) Plant disease caused by pathogenic fungi is
presented.
(C) Endophyte-pathogen reciprocity is demon-
strated. The question mark (?) indicates that this
phenomenon might not be universal, and further
research is necessary for verification.
(D) Endophyte survival strategy is illustrated.
(E) Balanced synergism is shown.
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environmentally friendly, continuous, and reproducible yield

compliant to commercial scale-up. In the case of endophytes

capable of producing host plant compounds, such production

(under optimized fermentation conditions) would then be inde-

pendent of the variable quantities produced by plants influenced

by environmental conditions (vide infra Future Considerations:

Resolving The Present Challenges). However, the practicality

of commercial production of compounds by endophytic fungi

still remains unproven. The reduction of secondary metabolite

production on repeated subculturing under axenic monoculture

conditions is one of the key challenges that needs to be

addressed in order to establish, restore, and sustain the in vitro

biosynthetic potential of endophytes (Kusari and Spiteller,

2011). This problem is intensified by the fact that almost all

efforts to obtain natural products from endophytes have so far

been made by the ‘‘classical’’ approach, under axenic monocul-

ture conditions (Winter et al., 2011). This has occasionally led to

the rediscovery of known secondary metabolites, mostly over-

looking the repertoire of ‘‘cryptic’’ natural products that are not

produced under standard in vitro conditions (Scherlach and

Hertweck, 2009; Walsh and Fischbach, 2010). To overcome

the aforementioned challenges, in this Perspective we highlight

the basic principles of chemical communication strategies of

endophytic fungi with their host plants and with other endo-

phytes (both fungi and bacteria) with emphasis on the future

directions and the virtually inexhaustible possibilities for

discovery and sustainable production of target and nontarget

secondary metabolites utilizing endophytes.

Plant-Endophyte Interactions
Any plant-fungal interaction is preceded by a physical encounter

between a plant and a fungus, followed by several physical and

chemical barriers that must be overcome to successfully estab-

lish an association. The ‘‘balanced antagonism’’ hypothesis

(Schulz et al., 1999; Schulz and Boyle, 2005) was initially
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proposed to address how an endophyte

avoids activating the host defenses,

ensures self-resistance before being

incapacitated by the toxic metabolites

of the host, and manages to grow within

its host without causing visiblemanifesta-

tions of infection or disease (Arnold,

2005, 2007, 2008; Schulz and Boyle,

2006) (Figure 1A). This hypothesis pro-

posed that asymptomatic colonization is

a balance of antagonisms between the
host and the endophyte. Endophytes and pathogens both

possess many virulence factors that are countered by plant

defense mechanisms. If fungal virulence and plant defense are

balanced, the association remains apparently asymptomatic

and avirulent. This phase is only a transitory period where envi-

ronmental factors play a major role to destabilize the delicate

balance of antagonisms. If the plant defense mechanisms

completely counteract the fungal virulence factors, the fungus

will perish. Conversely, if the plant succumbs to the virulence

of the fungus, a plant-pathogen relationship would lead to plant

disease (Figure 1B). Because many endophytes could possibly

be latent pathogens, they might be influenced by certain intrinsic

or environmental factors to express factors that lead to pathoge-

nicity (Arnold, 2008) (Figure 1C). For example, expression of the

stress- and mitogen-activated protein kinase gene (sakA) of

endophytic Epichlo€e festucae is shown to be vital for maintaining

its mutualistic association with host Lolium perenne (perennial

ryegrass) and preventing this association to become pathogenic

(Eaton et al., 2010, 2011).

Recently, it was revealed that the plant-endophyte interaction

might not be just equilibrium between virulence and defense, but

a much more complex and precisely controlled interaction

(Figure 1D). For instance the plant Camptotheca acuminata

(happy tree) produces the anticancer compound camptothecin

that inhibits topoisomerase I by binding and stabilizing the cova-

lent complex of topoisomerase I-DNA (Kusari and Spiteller,

2012a). A camptothecin-producing endophyte (Fusarium solani)

isolated from the inner bark tissues of C. acuminata ensures

protection from its own and plant camptothecin by specific

amino acid residue alterations in the camptothecin-binding and

catalytic domains of its topoisomerase I (Kusari et al., 2011a).

Similarly, the topoisomerase I encoded by another endophyte

isolated from the same tissue but that does not produce camp-

tothecin also contains the same changes to make it resistant to

the action of camptothecin. On the one hand this points toward
ª2012 Elsevier Ltd All rights reserved 793
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similar evolutionary preadaptation of endophytes infecting the

same plant, regardless of their biosynthetic capability. It is

known that plants utilize camptothecin as a mode of chemical

defense against insect and pathogen attack (Sirikantaramas

et al., 2009). Any fungus trying to infect a camptothecin-

producing plant will immediately come in contact with the plant

camptothecin. The invading fungus will, therefore, be killed by

camptothecin that will target its topoisomerase I-DNA complex,

unless it intrinsically possesses the ability to resist the attack of

the host camptothecin after its infection. In this case the infecting

endophytic fungus, F. solani, had to be pre-equipped to resist

the camptothecin toxicity conferred by the host C. acuminata

plant, before evolving toward biosynthesizing camptothecin

itself as dictated by the in planta selection pressures. Some

plants have also demonstrated resistance to camptothecin

vested by specific amino acid residues in the camptothecin-

binding and catalytic domains of their topoisomerase I enzymes.

For example Ophiorrhiza japonica exhibits partial resistance to

camptothecin in vivo, although it does not produce this

compound itself (Sirikantaramas et al., 2009). This suggests

the contribution of yet unknown specific amino acid residues,

which are responsible for topoisomerase I preadaptation in

O. japonica. On the other hand the concept of time-dependent

target-based resistance features (coevolutionary adaptation) in

various species when differentiating the resistance-mediating

topoisomerase I alterations in camptothecin-producing plants

and human camptothecin-resistant cancer cells (CEM/C2) has

been well elaborated by Sirikantaramas et al. (2009). It is

conceivable that some specific mutations are only found in

plants (Sirikantaramas et al., 2008) because of the much longer

evolutionary period of exposure to camptothecin in plants than

in endophytic fungi. Furthermore, because endophytic F. solani

is capable of producing camptothecin, it might develop addi-

tional target-based camptothecin-resistance features in driving

the course of evolution. In either case it would seem that these

types of endophyte-plant interactions should, therefore, be

very specific and strongly selected toward steady coexistence.

According to the plant-endophyte coevolution hypothesis (Ji

et al., 2009), it might be possible for endophytes to assist the

plant in chemical defense in planta by producing bioactive

secondary metabolites. Two parallel intriguing propositions

have beenmade. According to the ‘‘mosaic effect’’ theory, endo-

phytes might protect host plants by creating a heterogeneous

chemical composition within and among plant organs that are

otherwise genetically uniform (Carroll, 1991). Consequently,

these organs would vary arbitrarily in lusciousness or worth for

herbivores, and in terms of infectivity for pathogens. The other

theory holds that endophytes might assist their corresponding

host plants as ‘‘acquired immune systems’’ (Arnold et al.,

2003). The recently proposed ‘‘xenohormesis’’ hypothesis by

Howitz and Sinclair (2008) states that signaling and stress-

induced molecules from plants can be sensed by heterotrophs

(animals and microbes), which have developed such ability

under evolutionary selective pressures. The heterotrophs might

have retained the capacity to sense chemical cues in plants to

start producing similar secondary metabolites again, though

they have gradually lost the capacity to biosynthesize these

compounds. Hence, it is possible that certain gene clusters

have remained homologous over evolutionary time across
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plants, microbes, and animals, and these might be activated

by suitable plant-endophyte and/or endophyte-endophyte asso-

ciations. Recently, for example, it was revealed that mammals

can also synthesize morphine, which was originally considered

exclusive only to Papaver somniferum (poppy plant) (Grobe

et al., 2010). Thus, it is compelling that compounds formerly

believed to be synthesized only by plants can also be produced

by endophytes.

The production of natural products by endophytic fungi, once

considered exclusive to plants, also raises intriguing questions

regarding the original source organism. Actually, it is possible

that various so-called ‘‘plant metabolites’’ could in fact be the

biosynthetic products of their endophytes. An important

example is production of the very potent antitumor maytansinoid

ansamitocin, originally isolated from higher plants, by the Actino-

mycete Actinosynnema pretiosum ssp. auranticum (Yu et al.,

2002). This study substantiated the possibility that the true

biosynthetic source of the maytansinoid backbone could be

a bacterial endophyte. Although horizontal gene transfer may

explain the production of maytansinoids by plants, a more likely

scenario is the production of maytansinoids by symbionts

(Cassady et al., 2004).

Plant-Endophyte Interspecies Crosstalk
Considering the fact that endophytes reside within plants and

are continuously interacting with their hosts, it is conceivable

that plants would have a substantial influence on the in planta

metabolic processes of the endophytes. For example plant

homoserine and asparagine act as host signals to activate

expression of a lethal gene in virulent strains of Nectria hemato-

cocca that is only expressed in planta (Yang et al., 2005).

Furthermore, expression of the gene cluster for lolitrem biogen-

esis in endophytic Neotyphodium lolii resident in perennial

ryegrass is high in planta, but low to undetectable in fungal

cultures grown in vitro, lending support to the notion that plant

signaling is required to induce expression (Young et al., 2006).

Another convincing example is that of the symbiotic association

between dicotyledonous plants (Convolvulaceae) and clavicipi-

taceous fungi leading to synthesis of ergoline alkaloids by the

fungus, and question the origin of these compounds in plants

(Kucht et al., 2004; Steiner et al., 2006; Leistner and Steiner,

2009). Recently, it was found that a camptothecin-producing

endophyte, F. solani isolated from C. acuminata (Kusari et al.,

2009c), could indigenously produce the precursors of campto-

thecin. However, a host plant enzyme absent in the fungus,

strictosidine synthase, was employed in planta for the key step

in producing camptothecin (Kusari et al., 2011b). This was the

main reason for substantial reduction of camptothecin produc-

tion on subculturing under axenic conditions. Such plant-fungus

interactions compel reconsidering whether horizontal gene

transfer (plant to endophyte genome or vice versa) is the only

mechanism by virtue of which endophytes produce associated

plant compounds (Kusari and Spiteller, 2011).

Endophyte-Endophyte Interspecies Crosstalk
It is rather uncommon that a plant is colonized by only a single

type of endophyte. In fact usually the presence of diverse micro-

organisms is observed in plant tissues, and it is obvious that

a given endophyte directly or indirectly interacts with other
ts reserved



Figure 2. Schematic Representation of
Endophyte-Endophyte Interspecies
Crosstalk
(A) Fungus-fungus crosstalk is illustrated.
(B) Fungus-bacterial endosymbiont crosstalk is
demonstrated.
(C) Fungus-bacteria crosstalk is presented.
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associated endophytes within plants (fungus-fungus, fungus-

bacteria, and/or bacteria-bacteria). Many recent studies provide

compelling evidence that microbial interactions can play a

major role in the onset of metabolite production in bacteria

and fungi (Figure 2). These encounters may involve small, diffus-

ible signaling molecules, such as quorum-sensing signals or

other elicitors, which may trigger otherwise silent biosynthetic

pathways (Keller and Surette, 2006; Hughes and Sperandio,

2008; Scherlach and Hertweck, 2009). However, intimate phys-

ical interactions between fungi (Aspergillus nidulans) and

bacteria (Streptomyces rapamycinicus) have also been observed

(Schroeckh et al., 2009), which result in an epigenetic regulation

involving Saga/Ada-mediated histone acetylation of fungal

secondary metabolism (Nützmann et al., 2011). This unexpected

interaction led to the production of orsellinic acid-derived poly-

phenols such as cathepsin K inhibitors and lecanoric acid. The

observation of the latter is intriguing because it is an archetype

lichen metabolite (Schroeckh et al., 2009).

In light of these recent observations, it is remarkable that

almost all efforts to obtain natural products from endophytes

have so far been made only under axenic monoculture condi-

tions. Thus, it would be intriguing to evaluate the endophyte-

endophyte interactions and to study inmore detail the secondary

metabolite function in complex environments as found for endo-

phytes. In these microbial communities, potentially every natural

product could have an impact on the metabolic profiles of the

microorganisms sharing the same habitat. Very likely, the inter-

play between endophyteswithin the plant results in a significantly

higher natural product diversity than what is observed in indi-

vidual, axenic cultures under laboratory conditions. From the

point of view of the host, one should also consider synergistic

effects of the ‘‘antibiotics’’ released, which could play a role in

plant protection.

Apart from the potential cooperative role of microorganisms

resulting in metabolite production, there is potentially another
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level of complexity, which has been

neglected until recently. A recent study

revealed that rhizoxin, the causative

agent of rice seedling blight, is not bio-

synthesized by the pathogenic fungus

Rhizopus microsporus as previously

thought but by an endosymbiotic bacte-

rium of the genus Burkholderia residing

within the fungal cytosol (Partida-Marti-

nez and Hertweck, 2005). Interestingly,

the endosymbiont not only produces the

phytotoxin but also evades fungal-resis-

tance mechanisms (Leone et al., 2010),

and controls the differentiation and spor-

ulation of the fungal host (Partida-Marti-
nez et al., 2007; Lackner et al., 2011). Similar scenarios are

also conceivable for endophytic fungi (Hoffman and Arnold,

2010) (Figure 2B), and indeed, related symbioses involving

arbuscular mycorrhizal (AM) fungi have been reported (Bian-

ciotto and Bonfante, 2002; Tarkka et al., 2009).

Current Challenges of Exploiting Endophytic Fungi
Bioprospecting endophytes capable of producing desired

bioactive secondary metabolites traditionally involves screening

of a plethora of different endophytes isolated from a single host

plant for identifying the ‘‘competent’’ endophyte with the desired

trait (Scherlach and Hertweck, 2009). When employing the

classical approach, often, only a few or even none of the endo-

phytes is capable of possessing the desired potential (Kusari

and Spiteller, 2011). The rest so-called ‘‘incompetent’’ endo-

phytes are discarded without further investigation leading to

the loss of the entire suite of natural products that they might

produce under suitable conditions mimicking their natural

habitat. However, recent whole-genome sequencing strategies

have revealed that the number of genes encoding the biosyn-

thetic enzymes in various fungi and bacteria undoubtedly is

greater than the known secondary metabolites of these microor-

ganisms (Scherlach and Hertweck, 2009; Winter et al., 2011).

Therefore, it is compelling that the discarded endophytes might

actually express only a subset of their biosynthetic genes under

in vitro standard laboratory conditions such that only a minor

portion of their actual biosynthetic potential is harnessed. The

large reservoir of ‘‘cryptic’’ natural metabolites is, thus, yet to

be exploited. It is even possible that they produce the desired

target compounds in quantities below the limit of detection,

sometimes coupled with a large ‘‘metabolic background’’ and

discrete culture conditions. Hence, it is necessary to understand

and unravel the chemical ecological interaction of endophytes to

fully exploit their inexhaustible potential of natural product

biosynthesis.
ª2012 Elsevier Ltd All rights reserved 795
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Future Considerations: Resolving the Present
Challenges
Owing to the fact that the interaction between endophytic fungi

with the host plant and other endophytes remains versatile,

even slight variations in the in vitro cultivation conditions can

impact the kind and range of secondary metabolites they

produce. It is well established that the metabolic processes of

microorganisms are critically dependent on the culture parame-

ters (Scherlach and Hertweck, 2009). This is especially exempli-

fied by endophytes because their range of interactions is so

broad. For example the plant-associated Paraphaeosphaeria

quadriseptata starts producing six new secondary metabolites

when only the water used to make the media is changed from

tap water to distilled water (Paranagama et al., 2007). Changing

the medium from solid to liquid resulted in the production of

radicicol instead of chaetochromin A by Chaetomium chiversii

(Paranagama et al., 2007). Recently, the term ‘‘OSMAC’’ (one

strain many compounds) was suggested to describe the long-

known effects of varying the fermentation parameters on the

biosynthesis of secondary metabolites by any given microor-

ganism, ranging from increasing the number of compounds

produced to the accumulation of hitherto unknown natural

products (Grond et al., 2002; Bode et al., 2000, 2002; Rateb

et al., 2011). It was shown that varying the culture conditions

like media composition, aeration, temperature, or shape of

culturing flask led to discovery of novel natural products by

various fungi and actinomycetes. Therefore, it is highly desirable

to devise suitable coculture systems and challenge the

complex endophyte interactions within the system by different

accessible fermentation parameters, taking note of the secreted

substances (such as inducers), the synergistic (or antagonistic)

biotransformations, and the optimal growth and production

conditions. Elucidating the optimal set of parameters will then

enable the exploitation of the interspecies (or multispecies)

biosynthetic pathway of endophytes in cocultures to achieve

sustained production of a desired secondary metabolite (Bader

et al., 2010).

The coculture systems can further be complemented by

the emerging innovative biotechnological platforms encom-

passing evolutionary, comparative, and community genomics,

proteomics, metabolomics, secretomics, transcriptomics, high-

throughput and next-generation sequencing (NGS) technolo-

gies, and bioinformatics (Greenbaum et al., 2001). These will

provide the comprehensive understanding of the endophytic

molecular interactions and signal transduction, cross-species

gene expression, and switch-on/off of the required gene

cascades leading to the sustained production of a desired

compound. The endophyte-endophyte differential gene expres-

sion can be enumerated using the conventional suppression

subtractive hybridization (SSH) technique to generate sub-

tracted cDNA or genomic DNA libraries (Diatchenko et al.,

1996). Additionally, high-throughput tag-based methods such

as serial analysis of gene expression (SAGE) (Velculescu et al.,

1995), cap analysis of gene expression (CAGE) (Kodzius et al.,

2006), and massive parallel signature sequencing (MPSS)

(Brenner et al., 2000) that overcome the limitations of the

conventional Sanger sequencing can be employed to quantify

the precise digital gene expression levels of endophytes that

ensue upon suitable association. Hybridization-based and inex-
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pensive cDNA microarrays can also be used to monitor the

endophyte gene expression patterns (Schena et al., 1995).

Recently, several NGS technologies have been developed that

have many advantages over the aforementioned approaches

(Metzker, 2010). For example the high-throughput mRNA deep

sequencing (RNA-Seq) is a unique approach in mapping and

quantifying transcriptomes (Wang et al., 2009). RNA-Seq over-

comes the limitations of hybridization-based approaches in

that it not only detects transcripts corresponding to existing

(known) genomic sequences but also nonmodel organisms

with undetermined genomic sequences. This makes it suitable

for evaluating the endophyte-endophyte and endophyte-plant

interactions and gene expressions, evenwhen dealingwith novel

endophytes (genome not sequenced). Thus, the signaling of an

endophyte with the plant and with other coexisting endophytes

can be traced and quantified for a comprehensive characteriza-

tion of their mutualistic association. Finally, it is even possible to

sequence RNA isolated from just one endophytic hypha or its

adjacent host plant cells by coupling such high-throughput

methods to laser microdissection. For instance a TOM2microar-

ray coupled to laser microdissection systematically revealed the

transcriptional changes triggered in Solanum lycopersicum

(tomato plant) shoots and roots as a result of infection and colo-

nization by the AM fungus, Glomus mosseae (Fiorilli et al., 2009).

Thus, future studies to procure fundamental insights into endo-

phyte-endophyte and plant-endophyte communication using

the available and emerging tools would not only allow the

discovery and sustainable production of desirable natural prod-

ucts but also other mostly overlooked secondary metabolites

thereby unraveling the comprehensive potential of endophytes.
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independent metabolomics of endophytic Thielavia subthermophila provides
insight into microbial hypericin biosynthesis. J. Nat. Prod. 72, 1825–1835.
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F., Gacek, A., Schümann, J., Hertweck, C., Strauss, J., and Brakhage, A.A.
(2011). Bacteria-induced natural product formation in the fungus Aspergillus
nidulans requires Saga/Ada-mediated histone acetylation. Proc. Natl. Acad.
Sci. USA 108, 14282–14287.

Paranagama, P.A., Wijeratne, E.M.K., and Gunatilaka, A.A.L. (2007).
Uncovering biosynthetic potential of plant-associated fungi: effect of culture
conditions on metabolite production by Paraphaeosphaeria quadriseptata
and Chaetomium chiversii. J. Nat. Prod. 70, 1939–1945.

Partida-Martinez, L.P., and Hertweck, C. (2005). Pathogenic fungus harbours
endosymbiotic bacteria for toxin production. Nature 437, 884–888.

Partida-Martinez, L.P., Monajembashi, S., Greulich, K.O., and Hertweck, C.
(2007). Endosymbiont-dependent host reproduction maintains bacterial-
fungal mutualism. Curr. Biol. 17, 773–777.

Puri, S.C., Verma, V., Amna, T., Qazi, G.N., and Spiteller, M. (2005). An endo-
phytic fungus from Nothapodytes foetida that produces camptothecin. J. Nat.
Prod. 68, 1717–1719.

Puri, S.C., Nazir, A., Chawla, R., Arora, R., Riyaz-Ul-Hasan, S., Amna, T.,
Ahmed, B., Verma, V., Singh, S., Sagar, R., et al. (2006). The endophytic fungus
Trametes hirsuta as a novel alternative source of podophyllotoxin and related
aryl tetralin lignans. J. Biotechnol. 122, 494–510.

Rateb, M.E., Houssen, W.E., Harrison, W.T., Deng, H., Okoro, C.K., Asenjo,
J.A., Andrews, B.A., Bull, A.T., Goodfellow, M., Ebel, R., and Jaspars, M.
(2011). Diverse metabolic profiles of a Streptomyces strain isolated from
a hyper-arid environment. J. Nat. Prod. 74, 1965–1971.

Redecker, D., Kodner, R., and Graham, L.E. (2000). Glomalean fungi from the
Ordovician. Science 289, 1920–1921.

Schardl, C.L., Leuchtmann, A., and Spiering, M.J. (2004). Symbioses of
grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55,
315–340.

Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative
monitoring of gene expression patterns with a complementary DNA microar-
ray. Science 270, 467–470.

Scherlach, K., and Hertweck, C. (2009). Triggering cryptic natural product
biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760.
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