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1. INTRODUCTION

Sendov’s conjecture asserts that, if a polynomial (with complex coef-
ficients) has all its roots in the unit disk, then within one unit of each of
its roots lies a root of its derivative. First advanced in 1962, this conjecture
has given rise to over 30 papers (for references see [1, 3]), but has been
verified in general only for polynomials of degree less than 6. In this paper,
we verify Sendov’s conjecture for roots which are sufficiently close to the
unit circle.

Let n» be an integer greater than 1, and let § be a complex number of
modulus at most 1. Define S(n, ff) to be the set of complex polynomials of
degree n with all roots in the unit disk and at least one root at . For any
polynomial P of degree at least 2, let | P|; be the distance between f and
the closest root of P’. In this notation, Sendov’s conjecture becomes

Conjecture 1. 1f Pe S(n, f§), then |P|z< L.

To date, the only known examples of polynomials Pe S(n, ) with
| P|y=1 occur when |f|=1. As such, obvious values of f to check for
counterexamples to Sendov’s conjecture are those on or near the unit circle.

We will assume (by rotation) that 0 << 1. In [2], Rubinstein verified
Sendov’s conjecture for roots on the unit circle, by proving

THEOREM 2. [ PeS(n, 1), then |P|, <1, with equality only If
P(z)=c(z"—1).

In this paper, we verify Sendov’s conjecture for roots sufficiently close to
the unit circle, as a consequence of

THEOREM 3. There are constants K, >0 so that, if B is sufficiently close
to 1 and PeS(n+1,B), then |P|;<1—K, (1 —f). Furthermore, one can
choose the K, so that lim,, _ . K,=1/3.
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Note that, while the first statement of Theorem 3 is plausible if one
believes Sendov’s conjecture, the fact that the limit of the K, does not
approach 0 is quite startling. Indeed, Theorem 3 hints at the existence of a
result which is even stronger than Sendov’s conjecture.

For PeS(2, f), it can be easily seen that | P, < (1+ f)/2, and so we
may choose K, = 1/2. Thus, it will suffice to prove Theorem 3 for n> 2.

By choosing K, <1 we will take care of the case when | P|; < f, for then
[Plp<1—=(1-B)< 1=K, (1—f). Define T(n, f) to be the set of polyno-
mials P e S(n, B) such that P’ is monic and | P|,> f. It will thus suffice to
prove Theorem 3 for those polynomials Pe T(n + 1, ).

2. APPROXIMATING THE ROOTS OF P

We will prove Theorem 3 by showing that, if the roots of P are in the
unit disk, then the roots of P’ cannot be too far from f. To accomplish this,
we will approximate the roots of P in terms of the coefficients of P’,
making use of

LEMMA 4. If P'(wg)#0, then there is a root z of P so that |z —wy| <
n | P(wo)/P'(wo)l.
Proof. 1If P(wy) =0, then take z = w,. Otherwise, suppose that the roots
of Parez,,..,z, Then
P'(wo)| | ¢ 1
"i=lw0—zi

P(wy)

n 1

~ ’
i=1 IWO—-ZiI

so for some i, we have |wo—z;] <n | P(wg)/P'(wo)l. |

If b, is a complex number depending on &, we define b, = (™) to mean
that there is a constant C (which depends only on the integer n from
Theorem 3) such that for all sufficiently small ¢>0, we have |5, | < Ce™
We define b, =d. + ¢(¢”") to mean that b, —d, = O(e™).

Take any polynomial Pe T(n+ 1, ) and write

Piy=]] z=¢)= 3 axz*
j=1 k=0

If B is close to 1, then the roots of P’ must be close to 0. (This follows
from the observation that any sequence of polynomials P, e T(n+1, §,)
with f, tending to 1 has by compactness a subsequence which converges to
a polynomial Pe S(n+ 1, 1) with |P|, > 1. By Theorem 2 this polynomial
must be of the form P(z)=c(z" ! —1), so the roots of the P} tend to the
roots of P’, which are all 0.) Thus, given any ¢ > 0, we may choose f§
sufficiently close to 1 so that each [{,| <& Since each a, _,, is (plus or
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minus) the mth elementary symmetric function of {,,..,¢,, we have
la,_ ,|<(2)e” and so a, _,, = C(").

Our only requirement on f§ is that it be sufficiently close to 1, so
(taking f larger if necessary) we may assume without loss of generality
that B>1—¢> Then B=1+C(e?), and thus B*=[1+(f—-1)]"=
L+ 5UB—1)+ - =1+ (&%)

By choice of B, the roots of P are close to the roots of z"*' — 1. Using
Lemma 4, we provide an (!(¢?) approximation to the roots of P in terms of
the coefficients of P’ via

LEMMA 5. For every root zo of z"*' —1=0, there is a root z
that z,=zy+a,_{zo—1)/n+ C(e?).

Proof. Recall that ¥ =14 @(¢?), that a,, , = @(¢"), and that for m> 1
we have a, _,, = 0(s?). Let wo=z4+a,_,(zo— 1)/n, and note that by the
binomial theorem, we have

of P so

€

wh=zK+ kzkta, (zo—1)/n+ C(2).

Then
P(wy) = J. " P'(w)dw
B

n ak(wg+l__ﬁk+l)

o k+1
L At A Ll ol ST
n+1 n
2(28“+(n+l)zganq(ze—l)/n)*l
n+1
an~l(z(’;—1)+(ﬂ(82)
=an—»123(20_l)+anfl(zg_l)+cﬁ(82)
n n
= ().

Further, P'(wo)=Y0_,awe=wl+C(e')=z2+0(c'). Thus for suf-
ficiently small ¢ (depending only on n), we have P'(w,)#0 and
P(wy)/P'(wy) = 0(£?), so by Lemma 4, there is a root z, of P such that
z,=wo+0(e%). |

If b, is a real number depending on ¢, we define b, < @(¢™) to mean that
there is a constant C (which may be either positive or negative, and which
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depends only on the integer n from Theorem 3) such that for all sufficiently
small ¢ >0, we have b, < Ce™. Define b, > ('(¢™) similarly.
We now estimate the coefficients of P’ with

ProposITION 6. (1) a,_ ,=0(g%).
(2) R(a,_2)=(1/2) X7 1§17+ 0.

Proof. Since PeT(n+1,B) we know that |P|;>f, so each
|B—{,1>B. This implies that p°—28R({,)+1{,|>>p% and hence that
R(()< |Cj12/(2ﬂ). Since by choice of B each |{,{<e, we have that
R((;) < C(&?). Since a, = —Y7_, {,, it follows that R(a, ) > O(¢).

Let z,, .., 2, ., be the roots of z"*' — 1 =0. We know by Lemma 5 that
for each z; there is a root z, of P so that

= i+an—l(zi— 1)/n+(0(82}

by

Since z,/z, is in the unit disk, we have R(z,/z,) <1 and so
Rl +a,_,(1=F)/n]<1+0().

Solving this inequality for R(Z,a, _,), we get R(Z,a,_,)>R(a, )+ O(?).
We have shown that R(a, ,)> (e?), so R(Z,a,_,)> C(e*). This implies
that there is a constant C >0 so that R(Z,a,_,)> —Ce*fori=1, .., n+1.
Thus, a,_, is located in a regular (n+ 1)-gon, each of whose sides is at a
distance of Ce? from the origin, and so a, _, = €(¢*), which verifies the first
statement of Proposition 6.

A simple computation provides that (a, _,)*=2a, ,+ Y., {;. We have
just proved that a, ,=C(&?), and so a, ,=—(1/2) T, {7+ O(e*).
We have shown that each R({;,)< ¢{c?), and we know that
R+ - +L,)=—R(a, ,)>0(), so each R({;)>0(¢’) and hence
each R({,) = €(¢*). This implies that R((?) = — |{;|° + O(&*), so R(a,_,) =
(1/2) X7_, 1,17 + O(¢*). This completes the proof of Proposition 6. ||

Having proved that a, , = ((e*), we are now able to provide an (/(¢*)
approximation to the roots of P via

LemMa 7. For every root z, of z"*' —1=0, there is a root z, of P so
that
a,_(zo—1) a,_,(zo—Z,
zom oo+ Zmtom D) an 2o 20) sy
n n—1

Proof. Let

a,_(zo—1) a,_,(zo—7%;

w, = 1(Zo )+ 2(Z0— Zo)

n n—1
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and let wy=pfzo+w,. Recall that p*=14+0(s?), and note that
a,_,=0() for m>=1, so w, = ((¢?). Now for any positive integer k, we
have

“"’(;_,Bk=(ﬂzo+w1)k’ﬁk
=BEzE + kp* 2 Tw, — BE+ O(eY)
=pMzE— 1)+ kzf'w + O(e*),
so witl—B"*l=(n+1)z2w, + O(c*), and for k<n we have wi—p*=

zk — 14 @(&?). Then

P(w,) = j ™ P(w) dw

:iak(”'g+l ﬂk+l)
K=o k+1
wpt ' =B a, (wg— )
= +
n+1 n
am—1_ pn—1
+an72(‘40 ﬁ )+@(83)
n—1
a, ((2f—=1) a, ,(zp"1—1
=zow; + (2 )+ e )+Cf»‘(s3)
n n—1

= (&%) (by choice of w,).

Now P'(wo)=3i_parws=wi+0()=2z0+ O(e*). Thus for sufficiently
small ¢ (depending only on n), we have P'(wy)#0 and P(wy)/P'(wy)=
¢(g*), so by Lemma 4, there is a root z, of P such that z, = wy+ C(e’). |

3. PROOF OF THEOREM 3
We now provide a bound for | P|; via

PROPOSITION 8. Suppose that z, .., z,, are roots of z"*' — 1 =0, not all
1, such that 7, z; and Y7, z7 are real, and such that Y7 22 <Y | z,.

Choose any C with (37, z;,)/m < C < 1. Then for every B sufficiently close
to 1, we have |Ply <1 —(1-8)C/HC—1).

Proof. Note first that for each j we have

|PIZ<IE—B1P =151 = 2BR() + B2,
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and average these inequalities over all j to obtain

| 2
LA 512+ L e, )+ s (+)

To estimate | P|z, we will produce an ¢(¢*) bound for R(a, _,).
We know by Lemma 7 that for every z, there is a root z, of P so that

@iz l) | 4,2z 27)

+ O(&*).
n n—1

z,=fz,+

Since z,/z, is in the unit disk, we have R(z,/z;) < 1, and so

—7. —z7?
ﬁ+%[ﬁt¢%__§i2]+ﬂi[ff—il——3—)-]<l+(9(63)-

n—1

Averaging these inequalities over z, ..., z,,, and recalling that by hypothesis
Sm  z,and 3™, zZ are real, we obtain

R(a,_1) I & R(a,_») 1 &
1oL | 1L o]crea

n n—1 i
Solving for R(a,_,), and recalling that by Proposition6 we have
R(a,_,)=(1/2) T7_, 1§12+ 0(e*), we get

n(1—B)
L= (X7, zi)fm

n (X7, 2ym][1 ¢
’(n—l)[u(z(_ll ,)/m][ 2 ‘“2]“0“3)

j=1

‘J{(an~l)<

Let D=(Y7_, z;)/m. By hypothesis 37, z2<¥™ | z,, so

n(l B) n “ 2
—D 2(11—-1);';1 |le ol

9‘(n 1)

Substituting this bound for R(a,_,) into inequality (*), we obtain

c 1 g 26(1 )
2 < N2 = 2 o 3 .
PSS I8 () e (o)
Our only requirement on f is that it be sufficiently close to 1, so (taking
P larger if necessary) we may assume without loss of generality that

l/n<fB/(n—1).
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The result (=) is true for all polynomials Pe T(n + 1, ), as long as ¢ is
sufficiently small (depending only on n) and f is sufficiently close to 1
(requiring only that each [(;| <¢ and that $>1—¢°). Thus for any par-
ticular polynomial Pe T(n + 1, §), by taking ¢ smaller still, we may assume
without loss of generality that either some |{;| =¢ or that f=1—¢>

If some {{;| =¢, then

i|gv(1——£~)+@wﬂ<(%——£~)2+6@ﬂ

o n n—1 n—1

<0 for sufficiently small .

If instead we have that f=1—¢% then

% iop G‘ﬁ%) +O() < OE)= 01 = B>,

In either case, inequality (*#) implies that

pp<p+ 2 o g,

and so (using the inequality /% + 2x < 8+ x/B) we have

l'ﬂ N1 _ Ay32
|Plp<Bti—p+ O =pP>

By hypothesis C > D, so for § sufficiently close to 1 we have

-8 (1 By32 -5
e 0= )<
50
- C
lPlp<ﬂ+1°:‘g=1—(1—ﬂ)E:*l- |

We now prove the first conclusion of Theorem 3. Let z,, .., z, be the
roots of z”*' — 1 =0 which are not 1. Since n>2 it follows that 3_7_, z7 =
¥r_,z;= —1,s0 we may choose m=nand C= —1/(n + 1) in Proposition 8,
and hence K, = C/(C—1)=1/(n+2) in the first conclusion of Theorem 3.

To prove the second conclusion of Theorem 3, we first choose any C
such that —1/2 < C < 0. For sufficiently large n, there will always be a root
zo of z"* '~ 1=0 with —1/2 <R(z,) < C. For such a root, R(z2) < —1/2,
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$0 224+ Z5° < —1 <zo+ Z5. Since C>(zy+ T5)/2, we may by Proposition 8
with m =2 choose K,=C/(C—1). Let C tend to —1/2 to finish the proof
of Theorem 3. |
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