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a b s t r a c t

This paper considers non-parametric estimation of a multivariate failure time distribution
function when only doubly censored data are available, which occurs in many situations
such as epidemiological studies. In these situations, each of multivariate failure times of
interest is defined as the elapsed time between an initial event and a subsequent event and
the observations on both events can suffer censoring. As a consequence, the estimation
of multivariate distribution is much more complicated than that for multivariate right-
or interval-censored failure time data both theoretically and practically. For the problem,
although several procedures have been proposed, they are only ad-hoc approaches as the
asymptotic properties of the resulting estimates are basically unknown. We investigate
both the consistency and the convergence rate of a commonly used non-parametric
estimate and show that as the dimension of multivariate failure time increases or the
number of censoring intervals of multivariate failure time decreases, the convergence rate
for non-parametric estimate decreases, and is slower than that with multivariate singly
right-censored or interval-censored data.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Recently the analysis of multivariate, multilevel or clustered failure time data has been of interest because these failure
time data arise in various fields such as epidemiology, biomedicine, demography and reliability study. For instance, in the
biomedical studies, researchers often undertake lifetime analysis in matched-paired case control studies, studies of time
to occurrence of a disease to paired organs, and the examination of duration times of critical stages of multistage disease
process.
On the other hand the doubly interval-censored data come up inmany disease progression or epidemiological studies. By

doubly interval-censored data, it is usuallymeant that the variable of interest is the time between the infection and the onset
of certain disease, and both infection and onset cannot often be directly observed. Only can the information about whether
the occurrence of each event lies in the time interval of two consecutivemonitoring times be available. The typical example is
the time between the infection of HIV virus and the onset of AIDS.Many authors have studied the non-parametric estimation
of a failure time distribution for multivariate interval-censored data (see Kim and Xue [1], Goggins and Finkelstein [2], Jones
and Rocke [3], Wong and Yu [4] and Yu et al. [5]). Some researchers investigated the non-parametric estimation for the
right-censored and interval-censored data in which the occurrence time of the initial event can be exactly observed and
observations on the subsequent event are right-censored or interval-censored (see DeGruttola and Lagakos [6], Gómez and
Calle, [7], Gómez and Lagakos [8], Sun [9,10]). Further, the statistical inference to the doubly interval-censored data has been
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conducted. Fang and Sun [11] obtained the consistency of the non-parametric maximum likelihood estimation (NPMLE) of
a distribution function based on univariate doubly interval-censored failure time data. Moreover, the recent interest is the
analysis of multivariate doubly interval-censored data because these data have arisen in the health care field. For example,
a longitudinal prospective (1996–2000) oral health screening project was performed in Flanders, Belgium (see Komárek
and Lesallre, [12,13]). In this Signal Tandmobiel study, the children born in 1989 were examined on a yearly basis and the
primary interest is to investigate the influence of sound versus affected deciduous secondmolars on the caries susceptibility
of the adjacent permanent first molars (teeth 16, 26, 36, 46, respectively). The onset time Ui,l, l = 1, . . . , 4, is the age of the
ith child at which the lth permanent first molar emerged. The failure time, Vi,l, is the onset of caries of the lth permanent
first molar. The variable of interest is the time from tooth emergence to the onset of caries, Ti,l. Since both the time of tooth
emergence Ui,l and the onset of caries experience Vi,l are only known to lie in an interval of about one year, Ti,l, l = 1, . . . , 4
is doubly interval-censored and thus the vector Ti = (Ti,1, . . . , Ti,4) is multivariate doubly interval-censored. Komárek
and Lesallre [12] discussed the semi-parametric accelerated failure time model for paired doubly interval-censored data
obtained for teeth 16 and 46. Komárek et al. [14] proposed a Bayesian analysis of multivariate doubly interval-censored
dental data. Komárek and Lesallre [13] proposed a Bayesian accelerated failure time model with the multivariate doubly
interval-censored dental data observed for teeth 16, 26, 36 and 46. In despite of the development of the procedures described
above, there does not exist much research on the justification of asymptotic properties of the resulting estimates based on
multivariate doubly censored failure time data. Further, as we have known, Groeneboom [15] showed that the NPMLE of
a distribution function based on interval-censored failure time data has at least n1/3 convergence rate and Deng et al. [16]
recently proved that the NPMLE of a distribution function based on univariate doubly interval-censored failure time data
has the n3/10 convergence rate, which is slower than that of NPMLE based on univariate singly interval-censored data.
However, there is no literature for the inference on the joint distribution of multivariate failure times based on doubly
interval-censored data, and this motivated the developments presented in this paper.
The aim of the present paper is to study the non-parametric maximum likelihood estimation of a joint distribution

and its asymptotic properties for the multivariate doubly interval-censored data. Comparing with the univariate doubly
interval-censored data, the inference of asymptotics for multivariate doubly interval-censored data is much more difficult
because it involves many variables and different types of interval censoring mechanism. In fact even for bivariate doubly
interval-censored data, there are 8 interval censoring variables, 8 indicator variables and two types of interval censoring
mechanism. The problem is how to concisely represent the multivariate doubly interval censored data and the censoring
mechanism. To avoid the complication of multivariate doubly interval censoring, we first focus on the bivariate doubly
interval-censored data and make the efforts for the representation of bivariate doubly interval-censored data, then the
similar results for multivariate doubly interval-censored data will be given. By using the designed notation, the procedure
proposed by Greoneboom and Wellner [17] and the ε-covering number approach (see Van de Geer [18]), we derive the
self-consistency equations, the strong consistency and the convergence rate of NPMLE and then give the analogues for
multivariate doubly interval-censored data. The results show that the convergence rate of NPMLE depends on not only
the dimension of multivariate lifetime variables but also the types of doubly interval censoring mechanism.
The remaining of paper is organized as follows. The notation and assumptions that will be used throughout the paper

are introduced in Section 2. In Section 3, the NPMLEs and their strong consistency are discussed. Section 4 deals with the
convergence rate for the NPMLEs. The corresponding results for multivariate doubly interval-censored are presented in
Section 5 and the proofs are left in Section 6.

2. Notation and assumptions

Consider an epidemiological study that consists of a pair of subjects and in which each subject experiences two related
events. Let X = (X1, X2) and Y = (Y1, Y2) be the vectors of the times of the occurrences of initial and subsequent events,
respectively, and the random variable T = Y − X the vector of survival times of interest. Our goal is to estimate the
distribution function F(t) of T . It is assumed that all ofX, Y and T are continuous variables and thatX and T are independent
(See Gómez and Logakos [7] and Fang and Sun [11]).
Suppose that for both X and Y , only interval-censored data are observed. There are different ways to represent interval-

censored data. Fang and Sun [11] have given the mechanism which describes the univariate doubly interval-censored
data. Following the notations of Fang and Sun [11] in the univariate case, we assume that there exist four vectors of
random variables L,R,U and V that define the observed intervals for X and Y . Actually we will observe vectors of random
variables L,R,U ,V ,∆,Γ ,Λ,Π where L = (L1, L2),R = (R1, R2),U = (U1,U2),V = (V1, V2),∆ = (∆1,∆2) =
(I{X1≤L1}, I{L1<X1≤R1}),Γ = (Γ1,Γ2) = (I{X2≤L2}, I{L2<X2≤R2}),Λ = (Λ1,Λ2) = (I{Y1≤U1}, I{U1<Y1≤V1}),Π = (Π1,Π2) =
(I{Y2≤U2}, I{U2<Y2≤V2}). Note that L1, R1,∆ define the observed interval for X1; L2, R2,Γ define the observed interval for X2;
U1, V1,Λ define the observed interval for Y1; and U2, V2,Π define the observed interval for Y2.
From the representation of bivariate doubly interval-censored data, for p = 1, 2, Xp and Yp have their own censoring

intervals, which are different from each other. We call this censoring as the different censoring mechanism. However, in
some situations, two components of X and Y may share common censoring intervals, respectively. For example, in the
paired doubly interval-censored data, X1, X2, Y1 and Y2 are often measured from the same individual in studies of time to
occurrence of a disease to paired organs or inmatched-paired case control studies. Therefore, two occurrence times of initial
events and two occurrence times of the subsequent events share two common censoring intervals, respectively. That is, X1
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and X2 share the censoring interval (L, R) and Y1 and Y2 share the censoring interval (U, V ). In this case, we may assume
that L1 = L2, R1 = R2,U1 = U2 and V1 = V2. We call this type of censoring as the common censoring mechanism.
Our goal is to draw the statistical inference about the distribution function F(t) of T = Y −X from the observed random

variables Li,Ri,Ui,Vi,∆i,Γ i,Λi and Πi (i = 1, . . . , n) for the bivariate doubly interval-censored data. Actually we will
derive the non-parametric likelihood function for F and obtain the NPMLE of F by maximizing this likelihood function.
Further we give the self-consistency equation for NPMLE and prove the strong consistency for NPMLE of the distribution
function F(t). To attain this purpose, we need to introduce some notation and assumptions.
Let Rm

+
= [0,+∞)m for any integer m. For any distribution function Q in Rm

+
, let µQ denote the measure induced by Q .

Then for a set A in Rm
+
,

µQ (A) =
∫
A
dµQ (z) =

∫
· · ·

∫
A
dQ (z1, . . . zm) ≡

∫
A
dQ (z).

Set Z = (X, Y ),W = (L,R,U ,V ),Ξ = (∆,Γ ,Λ,Π) and consequently, z = (x, y),w = (l, r, u, v), ξ = (δ, γ,λ,π).
Now for any a, b, c ∈ R+ with a < b, define Aq(a, b) and Acq(a, b)(q = 1, 2, 3) as

A1(a, b) = [0, a), A2(a, b) = [a, b), A3(a, b) = [b,∞)

and

Ac1(a, b) = [0, a ∧ c), A
c
2(a, b) = [a ∧ c, b ∧ c), A

c
3(a, b) = [b ∧ c, c).

Then forw = (l, r, u, v) ∈ R8
+
, z = (x, y) ∈ R4

+
with l < r < u < v and x < y, and for q, r, s, t = 1, 2, 3, define the sets

Bqr(l, r), Bxqr(l, r), Cst(u, v) and C
y
st(u, v) in R2

+
, Dqrst(w) and C zqrst(w) in R4

+
as

Bqr(l, r) = Aq(l1, r1)× Ar(l2, r2), Cst(u, v) = As(u1, v1)× At(u2, v2),
Bxqr(l, r) = A

x1
q (l1, r1)× A

x2
r (l2, r2), Cyst(u, v) = A

y1
s (u1, v1)× A

y2
t (u2, v2),

Dqrst(w) = Bqr(l, r)× Cst(u, v), Dz
qrst(w) = B

x
qr(l, r)× C

y
st(u, v)

where a∧b = min{a, b} andu < vmeans that ur < vr for r = 1, 2. From the definitions of above sets, for any l, r, u, v ∈ R2
+

with l < r < u < v,
3⋃

q,r=1

Bqr(l, r) = R2
+
,

3⋃
q,r=1

Bxqr(l, r) = [0, x],

3⋃
q,r,s,t=1

Dqrst(w) = R4
+
,

3⋃
q,r,s,t=1

Dz
qrst(w) = [0, z].

Further throughout this paper, we assume:
(A1) X , Y and T = Y−X are vectors of non-negative absolutely continuous random variables, and T and X are independent.
Let H , F and Φ denote the true cumulative distribution functions of Z = (X, Y ), T = Y − X and X , respectively.
Further assume that Φ and F are contained in the class FM := {Ψ |support(Ψ) ⊂ [0,M];Ψ � ν2} and H is contained
in the class HM := {Θ|support(Θ) ⊂ AM;Θ � ν4} where M = (M,M) ∈ R2

+
with a given positive constant M ,

AM = {(x, y) : 0 ≤ x ≤ M, x ≤ y ≤ 2M} and νm is Lebesgue measure in Rm
+
for any positive integerm. In this case

H(x, y) =
∫
[0,x]
F(y − z)dµΦ(z), Φ(x) = H(x, 2M), F(t) =

∫
y−x<t

dµH(x, y).

Further, for set C = A× B in R4
+
,

µH(C) =
∫
A
µF (B− z)dµΦ(z)

where B− z = {x− z : x ∈ B}.
(A2) Instead, we observe the random vectorWi = (Li,Ri,Ui,Vi)with the joint distribution Gwhich satisfies µG � ν8.
(A3) The random vectorW is independent of Z and P(L ≤ R ≤ U ≤ V ) = 1.
(A4) There exist two positive constants η1 and η2 such that P(R − L ≥ η1) = 1 and P(V − U ≥ η2) = 1.
(A5) The joint density function g(w) ofW , and the marginal density functions gLR(l, r) of (L,R), gUV (u, v) of (U ,V ) have
partial derivatives bounded away from both zero and infinity.
(A6) The distribution functions F and Φ have bounded partial derivatives ∂

2F(t1,t2)
∂t1∂t2

and ∂2Φ(x1,x2)
∂x1∂x2

that are continuous and

satisfies φ(x) = ∂2Φ(x)
∂x1∂x2

≥ c, f (t) = ∂2F(t)
∂t1∂t2

≥ c for a constant c > 0 independent of x and t .
(A7) F and H satisfy that for any 1 ≤ q, r, s, t ≤ 3, µF [Cst(u, v)] > 0 and µH [(Dqrst(w))] > 0 if 0 < l < r < u < v < 2M .
The above assumptions are necessary for strong consistency of maximum likelihood estimators of a failure time

distribution based on doubly interval-censored data and similar to those required for the consistency of the NPMLE of
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a failure time distribution based on interval-censored data (Groeneboom [15], Yu et al. [5], and Deng and Fang [19]).
The condition (A4) means that there are positive time intervals between examination times L and R for the occurrence
of the initial events and between examination times U and V for the occurrence of the subsequent events. The
assumptions (A4), (A5), (A6) and (A7) are required to ensure the non-singularity of the integral equation appearing in the
information calculation. The detailed discussion about these assumptions can be found in Groeneboom and Wellner [17],
Groeneboom [15] and Geskus and Groeneboom [20,21].

3. Non-parametric likelihood estimation

Now suppose that T1, T2, . . ., are independent identically distributed random variables with distribution function F(t),
Z1, Z2, . . ., are independent identically distributed random variables with distribution function H(z), and {(Wi,Ξi); i =
1, . . . , n} are the observed sample from the random variables (W ,Ξ).
Now, we first discuss the non-parametricmaximum likelihood estimation and the strong consistency for the distribution

function H(z) of random vector Z based on the bivariate doubly interval-censored data.
Note that based on H(z) the observed random vector (W ,Ξ) has the density

qH(w, ξ) = g(w)
3∏

q,r,s,t=1

{
µH [Dqrst(w)]

}δqγrλsπt (3.1)

where δ3 = 1− δ1 − δ2, γ3 = 1− γ1 − γ2, λ3 = 1− λ1 − λ2 and π3 = 1− π1 − π2. Therefore the conditional likelihood
function C(H) for H(z) is

C(H) =
n∏
i=1

3∏
q,r,s,t=1

{
µH [Dqrst(wi)]

}δiqγirλisπit
and the marginal log likelihood function L(H) for Z is

L(H) =
n∑
i=1

3∑
q,r,s,t=1

δiqγirλisπit logµH [Dqrst(wi)]

=

3∑
q,r,s,t=1

∫
R8×{0,1}8

δqγrλsπt logµH [Dqrst(w)]dPn(w, ξ) (3.2)

where Pn(w, ξ) is the empirical probability function obtained from the observations {(Wi,Ξi); i = 1, . . . , n.}
Now the NPMLE Ĥn of H(z)maximizes the function (3.2):

Ĥn = arg max
Θ∈HM

L(Θ).

According to the idea of Geskus and Groeneboom [20,21], for a(z) ∈ L2(H), we have that

E{a(Z)|(W ,Ξ) = (w, ξ)} =
3∑

q,r,s,t=1

δqγrλsπt

∫
Dqrst (w)

a(z)dµH
µH [Dqrst(w)]

. (3.3)

By letting a(z ′) = I{z ′≤z} for z ′ ∈ R4
+
and taking expectation to both sides of (3.3) with respect to the probability distribution

P(w, ξ), we have that

H(z) =
3∑

q,r,s,t=1

∫
R8×{0,1}8

δqγrλsπt
µH [Dz

qrst(w)]
µH [Cqrst(w)]

dP(w, ξ).

Therefore the self-consistency equation for the non-parametric maximum likelihood estimator Ĥn(z) is:

Ĥn(z) =
3∑

q,r,s,t=1

∫
R8×{0,1}8

δqγrλsπt
µĤn [D

z
qrst(w)]

µĤn [Dqrst(w)]
dPn(w, ξ) (3.4)

where Pn(w, ξ) is the empirical probability function obtained from the observations {(Wi,Ξi), i = 1, . . . , n.} The strong
consistency of NPMLE Ĥn(z) follows from the above self-consistency equation:

Theorem 3.1. Under the regularity conditions (A1)–(A7),

P

{
lim
n→∞

sup
z∈R4
+

|Ĥn(z)− H(z)| = 0

}
= 1.



1806 D. Deng, H.-B. Fang / Journal of Multivariate Analysis 100 (2009) 1802–1815

Further for the determination of Ĥn(z), by using the Eq. (3.4) and following the similar procedures given in Betensky and
Finkelstein [22], Gentleman and Vandal [23,24] and Bogaerts and Lesaffre [25], one can develop an iterative algorithm to
obtain the estimate Ĥn.
Next, we consider the non-parametric maximum likelihood estimation and the strong consistency for the distribution

function F(t) of random variable T = Y − X . Note that the density (3.1) of random vector (W ,Ξ) can be rewritten into the
form

qF ,Φ(w, ξ) = g(w)
3∏

q,r,s,t=1

{∫
Bqr (l,r)

µF [Cst(u, v)− x]dµΦ(x)

}δqγrλsπt
and thus the marginal log likelihood function L(F ,Φ) for F andΦ can be obtained as follows

L(F ,Φ) =
3∑

q,r,s,t=1

∫
R8×{0,1}8

δqγrλsπt log

{∫
Bqr (l,r)

µF [Cst(u, v)− x]dµΦ(x)

}
dPn(w, ξ).

However, the NPMLE Φ̂n can first obtained from the multivariate interval-censored data {(Li,Ri,∆i,Γ i), i = 1, 2, . . . , n}
(see Deng and Fang [19]). Therefore the NPMLE F̂n of F(t)maximizes the function L(F , Φ̂n):

F̂n = arg max
Ψ∈FM

L(Ψ , Φ̂n).

Further by defining the conditional expectation LF (a(T )) = E{a(T )|(W ,Ξ) = (w, ξ)} for a(T ) ∈ L2(F), using LF operator
to the function a(z) = I{z≤t} and taking expectation with respect to the probability distribution P(w, ξ), the following
self-consistency equation for the non-parametric maximum likelihood estimator F̂n(t) of the distribution function F(t) for
T = Y − X is obtained.

F̂n(t) =
3∑

q,r,s,t=1

∫
R8×{0,1}8

δqγrλsπt

∫
Bqr (l,r)

µF̂n [C
y
st(u, v)− x]dΦ̂n(x)∫

Bqr (l,r)
µF̂n [Cst(u, v)− x]dΦ̂n(x)

dPn(w, ξ) (3.5)

where Pn(w, ξ) is the empirical probability function obtained from the observations {(Wi,Ξi), i = 1, . . . , n.}
Now, the strong consistency of the estimator F̂n(t) follows from the self-consistency equation (3.5).

Theorem 3.2. Under the conditions (A1)–(A7),

P

{
lim
n→∞

sup
t∈R2
+

|F̂n(t)− F(t)| = 0

}
= 1.

Also an iterative algorithm can be developed using this self-consistency equation (3.5) to obtain the estimate F̂n.

4. Convergence rates

Now it is of interest to derive the rate of convergence for both Ĥn and F̂n. Before discussing the rate of convergence, we
first give the measure for assessing the distance of two distribution functions. The Hellinger distance between two density
functions f1 and f2 with respect to µ is defined by

h(f1, f2) =
(
1
2

∫
(
√
f1 −

√
f2)2dµ

)1/2
where µ is a σ -finite dominating measure.
Now the density function φH of (W ,Ξ)with respect to the dominating measure µ = µ1 × µ0 has the form

φH(w, ξ) =
3∑

q,r,s,t=1

δqγrλsπtµH [Dqrst(w)],

where µ1 is the measure induced by the distribution ofW = (L,R,U ,V ) and µ0 is the counting measure on {0, 1}8.
Now we first give the convergence rate for φĤn .

Theorem 4.1. Suppose that the conditions (A1)–(A7) hold.
(i) For the different censoring mechanism, as n→∞,

h(φĤn , φH) = Op
(
n−

5
18 (log n)

8
9

)
.
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(ii) For the common censoring mechanism, as n→∞

h(φĤn , φH) = Op
(
n−

15
62 (log n)

2
9

)
.

Next we estimate the convergence rate for φF̂n . We define φF as the density of (W ,Ξ):

φF (w, ξ) =
3∑

q,r,s,t=1

δqγrλsπt

∫
Bqr (l,r)

µF [Cst(u, v)− x]dµΦ̂n(x).

From Theorem 4.1, the convergence rate for φF̂n can be obtained.

Theorem 4.2. Under the same conditions as those in Theorem 4.1, we have that as n→∞,
(i) for the different censoring mechanism,

h(φF̂n , φF ) = Op
(
n−

5
18 (log n)

8
9

)
;

(ii) for the common censoring mechanism,

h(φF̂n , φF ) = Op
(
n−

15
62 (log n)

2
9

)
.

Now we further specify the convergence rates for NPMLEs Ĥn and F̂n by using the L2-distances with respect to the
marginals of G(w). We first define L2-distance between two distribution functions H1(z) and H2(z) in R4

+
with respect

to the distribution function GLU (l, u) of (L,U) as

dLU (H1,H2) =

[∫
R4
+

{H1(l, u)− H2(l, u)}2dGLU (l, u)

]1/2
.

Similarly, dLV (H1,H1), dRU (H1,H2) and dRV (H1,H2) can be defined. Now, the analogue of Corollary 2 in Geskus and
Groeneboom [20] is given as what follows.

Theorem 4.3. Under the same conditions as those in Theorem 4.1, we have that as n→∞,
(i) for the different censoring mechanism,

d(Ĥn,H) = Op
(
n−

5
18 (log n)

8
9

)
;

(ii) for the common censoring mechanism,

d(Ĥn,H) = Op
(
n−

15
62 (log n)

2
9

)
where d(Ĥn,H) represents anyone of four L2-distances given above.

Also we have the convergence rate for the NPMLE F̂n.

Theorem 4.4. Under the same conditions as those in Theorem 4.1, we have that as n→∞,
(i) for the different censoring mechanism,

di(F̂n, F) = Op
(
n−

5
18 (log n)

8
9

)
;

(ii) for the common censoring mechanism,

di(F̂n, F) = Op
(
n−

15
62 (log n)

2
9

)
where

d1(F̂n, F) =

∫
R2
+

(∫
R2
+

[F̂n(u− x)− F(u− x)]dµΦ̂n(x)

)2
dGU (u)

1/2

and

d2(F̂n, F) =

∫
R2
+

(∫
R2
+

[F̂n(v − x)− F(v − x)]dµΦ̂n(x)

)2
dGV (v)

 .
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5. Convergence rates for multivariate doubly interval-censored data

Sections 3 and 4 gave the self-consistency equation, strong consistency and convergence rate of NPMLE’s Ĥn and F̂n for
two types of bivariate interval censoring mechanism. Now we briefly discuss the analogues for the multivariate doubly
interval-censored data. We consider the general censoring mechanism in which, the vectors of interest X = (X1, . . . , Xd)
and Y = (Y1, . . . , Yd) are divided into several groups and each group has a common censoring interval. In fact, vectors
X and Y are partitioned into p groups X = (X1, . . . ,Xp) and Y = (Y1, . . . , Yp) with X1 = (X1, . . . , Xd1), . . . ,Xp =
(Xd1+···+dp−1+1, . . . , Xd1+···+dp−1+dp), Y1 = (Y1, . . . , Yd1), . . . , Yp = (Yd1+···+dp−1+1, . . . , Yd1+···+dp−1+dp) with d1 + d2 +
· · · + dp = d and thus T = (T1, . . . , Tp) = (Y1 − X1, . . . , Yp − Xp). The censoring intervals of each Xs and each
Ys are (Ls, Rs) and (Us, Vs), respectively (s = 1, . . . , p). In this case, the random variables L,R,U ,V ,∆,Γ ,Λ,Π are
observed, where L = (L1, . . . , Lp),R = (R1, . . . , Rp),U = (U1, . . . ,Up),V = (V1, . . . , Vp),∆ = (∆1, . . . ,∆d),Γ =
(Γ1, . . . ,Γd),Λ = (Λ1, . . . , λd) andΠ = (Π1, . . . ,Πd) with∆s = I{Xs<Lt },Γs = I{Lt≤Xs<Rt },Λs = I{Ys<Ut },Πs = I{Ut≤Ys<Vt }
for s = d1 + · · · + dt−1 + 1, . . . , d1 + · · · + dt; t = 1, . . . , p. Note that 1 ≤ p ≤ d. If p = 1, all Xr ’s have the common
censoring interval (L, R) and all Yr ’s have the common censoring interval (U, V ). If p = d, each Xr has its own censoring
interval (Lr , Rr) and each Yr has its own interval (Ur , Vr) for r = 1, . . . , d.
Further under the similar conditions the self-consistency equation, strong consistency of NPMLE’s Ĥn and F̂n can be

obtained for the general doubly interval censoring mechanism. Also the densities φH and φF of (L,R,U ,V ,∆,Γ ,Λ,Π)
can be defined as given above and the convergence rates for φĤn and φF̂n are

h(φĤn , φH) =


Op

(
n−

(1+α)(1+2d)
2(1+α+2d+6αd) (log n)

d(2β−1)
(1+4d)

)
if α > 1

Op

(
n−

(1+2d)
2(1+4d) (log n)

2d2
(1+4d)

)
if α = 1;

and

h(φF̂n , φF ) =


Op

(
n−

(1+α)(1+2d)
2(1+α+2d+6αd) (log n)

d(2β−1)
(1+4d)

)
if α > 1

Op

(
n−

(1+2d)
2(1+4d) (log n)

2d2
(1+4d)

)
if α = 1,

where α = max{di, 1 ≤ i ≤ p} and β = card{i : di = α} is the cardinal number of the set {i : di = α}.
From Theorem 4.1, the convergence rates are different for two types of bivariate interval censoring mechanism. Nowwe

illustrate the effects of different doubly interval censoring mechanism to the convergence rates of NPMLEs.
We consider the case where X = (X1, X2, X3, X4) and Y = (Y1, Y2, Y3, Y4) (d = 4). The following table gives the

convergence rates for different types of doubly interval censoring mechanism.
From the table we see that a1n � a2n � a3n � a4n � a5n where an � bn means that an = o(bn). We find that for

d = 4 the convergence rate a1n with different censoring intervals for each marginal of (X, Y ) is fastest and a5n is slowest
with common censoring intervals for all marginals of (X, Y ). Also, n−

5
18 (log n)

8
9 � a1n and n−

15
62 (log n)

2
9 � a5n, which

mean that for same type of interval censoring mechanism, the convergence rate for lower dimension is faster than that
for higher dimension. Further, we give some comments about the convergence rates for the general multivariate doubly
interval-censored data.

Partition of X, Y Censoring intervals α β Conv. rate an
Xi = Xi, i = 1, 2, 3, 4 (Li, Ri), i = 1, 2, 3, 4 1 4
Yi = Yi, i = 1, 2, 3, 4 (Ui, Vi), i = 1, 2, 3, 4 a1n = n−

9
34 (log n)

32
17

X1 = (X1, X2), (L1, R1), 2 1
X2 = X3,X3 = X4 (L2, R2), (L3, R3) a2n = n−

27
118 (log n)

4
17

Y1 = (Y1, Y2), (L1, R1),
Y2 = Y3, Y3 = Y4 (U2, V2), (U3, V3)

X1 = (X1, X2),X2 = (X3, X4) (L1, R1), (L2, R2) 2 2
Y1 = (Y1, Y2), Y2 = (Y3, Y4) (U1, V1), (U2, V2) a3n = n−

27
118 (log n)

12
17

X1 = (X1, X2, X3),X2 = X4 (L1, R1), (L2, R2) 3 1
Y1 = (Y1, Y2, Y3), Y2 = Y4 (U1, V1), (U2, V2) a4n = n−

3
14 (log n)

4
17

X1 = (X1, X2, X3, X4) (L, R) 4 1
Y1 = (Y1, Y2, Y3, Y4) (U, V ) a5n = n−

45
218 (log n)

4
17
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Remark. (i) Note that if α = 1, then p = d and each Xr and each Yr have their own censoring intervals (Lr , Rr) and (Ur , Vr),
respectively (r = 1, . . . , d). If α = d, then p = 1 and all Xr ’s and Yr ’s have the common censoring intervals (L, R) and (U, V ),
respectively (r = 1, 2, . . . , d).

Remark. (ii) In the common doubly censoring interval case, we have that α = d, β = 1 and thus,

h(φF̂n , φF ) = Op

(
n
−
(1+3d+2d2)
2(1+3d+6d2) (log n)

d
(1+4d)

)
.

If d = 1, we have that α = 1 and

h(φF̂n , φF ) = Op
(
n−

3
10 (log n)

2
5

)
,

which coincides with the result in Deng et al. [16].

Remark. (iii) Since (1+3d+2d2)
2(1+3d+6d2)

and 1+2d
2(1+4d) are the monotone decreasing functions of d, the convergence rate decreases as

the dimension d of multivariate lifetimes X and Y increases. Moreover, the upper limit of convergence rates is n−3/10. The
lower limits are n−1/4 in the situation where each (Xr , Yr) has its own censoring interval (α = 1) and n−1/6 if all (Xr , Yr)’s
have a common censoring interval (α = d). Further, note that the convergence rate with singly interval-censored data is

Op(n
−

(1+α)(1+d)
2(1+α+d+3αd) (log n)

d(β−1)
2(1+2d) ) for α > 1 and Op(n

−
(1+d)
2(1+2d) (log n)

d2
2(1+2d) ) for α = 1 (see Deng and Fang [19]). Therefore

the convergence rate with multivariate doubly interval-censored data is slower than that with multivariate singly interval-
censored data.

Remark. (iv) Also, for the fixed d, (1+α)(1+2d)
2(1+α+2d+6αd) is the monotone decreasing function of α. Hence, the bigger the number of

censoring intervals is, the faster the convergence rate is, which is reasonable because the data withmore censoring intervals
involve much more information than the data with less common censoring intervals about the multivariate lifetime (X, Y ).

6. Proofs of main results

In this section we give the proofs for the theorems. At first we prove Theorem 3.1. The proof of Theorem 3.2 is same as
that of Theorem 3.1 and thus omitted.

Proof of Theorem 3.1. At first note that L(H) is maximized at Ĥn. We have that

lim
ε↓0
ε−1{L[(1− ε)Ĥn + εH] − L(Ĥn)} ≤ 0.

Thus it follows from the marginal log likelihood function that∫
R8×{0,1}8

3∑
q,r,s,t=1

δqγrλsπt
µH(Dqrst(w))
µĤn(Dqrst(w))

dPn(w, ξ) ≤ 1.

Now by using the strong law of large number it can be shown that Pn converges to P almost surely. For a fixed ω ∈ Ω,
the sequence of functions Ĥn(·, ω), by the Helly Compactness Theorem, contains a subsequence Ĥnk(·, ω) which converges
vaguely to a subdistribution function H ′. Then the proof is completed if H ′ = H .
In fact, similar to the proof of Lemma 4.3 in Groeneboom and Wellner [17], under (A1)–(A7) it follows that∫

R8
+
×{0,1}8

3∑
q,r,s,t=1

δqγrλsπt
µH [Dqrst(w)]
µH ′ [Dqrst(w)]

dP(w, ξ) =
∫

R8
+

3∑
q,r,s,t=1

[µH [Dqrst(w)]]2

µH ′ [Dqrst(w)]
dG(w) ≤ 1.

On the other hand, from the following facts that for real numbers 0 < ai < 1, 0 < bi < 1; i = 1, 2, . . . , k with conditions∑k
i=1 ai = 1 and

∑k
i=1 bi = 1,

k∑
i=1

a2i
bi

{
= 1 if ai = bi for all i
> 1 otherwise

and that
3∑

q,r,s,t=1

µH [Dqrst(w)] =
3∑

q,r,s,t=1

µ′H [Dqrst(w)] = 1,
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we have that∫
R8
+
×{0,1}8

3∑
q,r,s,t=1

δqγrλsπt
µH(Dqrst(w))
µH ′(Dqrst(w))

dP(w, ξ) > 1

unless H ′ = H . From the above result, for all z , H ′(z) = H(z). The proof is complete. �

Next we are in the position to prove Theorem 4.1. To this end, we need the following results. We first give the definition
of covering number.

Definition 6.1 (See Van de Geer [18]). LetQ be ameasure on (X,A), andG ⊂ L2(Q ). For each ε > 0, the ε-covering number
N(ε,G,Q ) is defined as the number of balls with radius ε, necessary to cover G. Formally,

N(ε,G,Q ) = min
{
J : there exist {gj}

J
j=1such that for all g ∈ G, min

j∈{1,...,J}

∫
(g − gj)2dQ ≤ ε2

}
.

Consider a probability space (Ω,B, P) and independent identically distributed random vectors Z1, Z2, . . . , Zn, with
distributionΦ0. Suppose that

φ0 =
dΦ0
dµ
∈ P

where µ is a σ -finite dominating measure, andP is a class of densities with respect to µ. A maximum likelihood estimator
φ̂n of φ0 satisfies

φ̂n ∈ argmax
φ∈P

n∑
i=1

logφ(Zi).

Let Pn be the measure induced by the empirical distribution of the sample {Zi, i = 1, . . . n}. Define the convex hull conv(K)
of a classK as the set of all finite convex combinations of elements in (K) and conv(K) as the closure of conv(K). From
Theorem 1.1 and Theorem 2.2 in Van de Geer [18], we have the following proposition.

Proposition 6.1. Suppose K = {k(·, z) : z ∈ R4
+
} and P = conv(K). Assume that for some sequences 1 ≤ ρn ↑ ∞ and

0 ≤ σn ↓ 0,∫
φ0>σn

K 2

φ0
dµ ≤ ρ2n , n = 1, 2, . . . ,

where K = supk∈Kk and for K̃ =
{(

k(·,z)
φ0

)
I{φ0 > σn}, z ∈ R4

+

}
, we have that

lim
A→∞

limsup
n→∞

P
(
sup
δ>0

(
δ

ρn

)w
N(δ, K̃, Pn) > A

)
= 0,

for some 0 < w <∞. Then for τn ≥ 0 satisfying

τ 2n ≥

∫
φ0≤σn

φ0dµ, n = 1, 2, . . . ,

τn ≥ n−(2+w)/(4+4w)ρw/(2+2w)n , n = 1, 2, . . . ,

we have that

lim
L→∞

limsup
n→∞

P(h(φ̂n, φ0) ≥ Lτn) = 0.

Proof of Theorem 4.1. We only prove the theorem for the different censoring mechanism. Note that the density φF of
(W ,Ξ), with respect to the dominating measure µ = µ1 × µ0 is then in the class

P =

{
φν(w, ξ) =

3∑
q,r,s,t=1

δqγrλsπtµν[Cqrst(w)] : ν ∈ F

}
where F is the class of all distributions on R4

+
and µν is the measure induced by the distribution function ν in R4

+
. Clearly,

P = conv(K), with

K =

{
κz(w, ξ) =

3∑
q,r,s,t=1

δqγrλsπt IBqr (x)(l, r)ICst (y)(u, v) : (x, y) ∈ R4
+

}
where Bqr(x) = {(l, r) : x ∈ Bqr(l, r)} and Cst(y) = {(u, v) : y ∈ Cst(u, v)}. Under the condition (A5), one can verify that
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for any z1 = (x1, y1) and z2 = (x2, y2) in R4
+
,∫

R8×{0,1}8
[κz1(w, ξ)− κz2(w, ξ)]

2dµ

=

∫
R8×{0,1}8

(
3∑

q,r,s,t=1

δqγrλsπt [IBqr (x1)(l, r)ICst (y1)(u, v)− IBqr (x2)(l, r)ICst (y2)(u, v)]

)2
dµ

≤

3∑
q,r=1

∫
R4
+

|IBqr (x1)(l, r)− IBqr (x2)(l, r)|gLR(l, r)dldr +
3∑

s,t=1

∫
R4
+

|ICst (y1)(u, v)− ICst (y2)(u, v)|gUV (u, v)dudv

≤ C0(|x11 − x21| + |x12 − x22| + |y11 − y21| + |y12 − y22|),

where C0 is the constant which varies from line to line.
Therefore there exists a constant A0 such that for any probability measure Q on R8

+
× {0, 1}8,

N(ε,K,Q ) ≤ A0ε−8, for all ε > 0 (6.1)

whereN(ε,K,Q ) is the ε-covering number of (K,Q ). Application of (6.1), with dQ = (1/φ2F )I{φF > σn}dPn/(A2ρ2n ), gives

N(ε, K̃, Pn) ≤ A8A0
(ρn
ε

)8
, for all ε > 0,

on the set
{∫

φF>σn
1
φ2F
dPn ≤ A2ρ2n

}
. So, for

∫
φF>σn

1/φFdµ ≤ ρ2n , we have that

limsup
n→∞

P

((
ε

ρn

)4
N(ε, K̃, Pn) > A4A0

)
≤ limsup

n→∞
P
(∫

φF>σn

1
φ2F
dPn > A2ρ2n

)
≤ limsup

n→∞
P
(∫

φF>σn

1
φF
dµn > A2ρ2n

)
→ 0, as A→∞,

where dµn = dPn/φF → dµ as n→∞.
Next we derive the expressions for {ρn} and {τn}. Note that under the condition (A1), we have that

µH(Dqrst(w)) =
∫
Dqrst (w)

dµH(z)

≤ C0

∫
Dqrst (w)

dν4(z)

≤ C0

∫
Bqr (l,r)

dν2(x)
∫
Cst (u,v)

dν2(y)

≤ C0|Aq(l1, r1)||Ar(l2, r2)||As(u1, v1)||At(u2, v2)|,

where for r = 1, 2, 3, |Ar(a, b)| denotes the length of interval Ar(a, b). Therefore,

φH(w, ξ) =
3∑

q,r,s,t=1

δqγrλsπtµH [Dqrst(w)]

≤ C0
3∑

q,r,s,t=1

IΩqrst (ξ)|Aq(l1, r1)||Ar(l2, r2)||As(u1, v1)||At(u2, v2)|

whereΩqrst = {(δ, γ,λ,π) : δq = γr = λs = πt = 1}. Similarly, we have

φH(w, ξ) ≥ C0
3∑

q,r,s,t=1

IΩqrst (ξ)|Aq(l1, r1)||Ar(l2, r2)||As(u1, v1)||At(u2, v2)|.

Note that for 0 ≤ σn ↓ 0, regardless of the order of variables l1, l2, r1, r2, u1, u2, v1, v2, φ−1H (w, ξ) is dominated by

[l1(r2 − l2)u1(v2 − u2)]−1

on the set {φH > σn} and φH(w, ξ) is dominated by
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[l1(r2 − l2)u1(v2 − u2)]

on the set {φH ≤ σn}. Now set

f (w) = [l1(r2 − l2)u1(v2 − u2)].

Then it follows that for 0 ≤ σn ↓ 0,∫
φH>σn

1
φH
dµ ≤ C0

∫
f (w)>C0σn

f −1(w)g(w)dw

≤ C0

∫
l1(r2−l2)u1(v2−u2)>C0σn

[l1(r2 − l2)u1(v2 − u2)]−1dl1dr1dl2dr2du1du2dv1dv2

≤ C0

∫
l1r ′2u1v

′
2>C0σn

(l1r ′2u1v
′

2)
−1dl1dr ′2du1dv

′

2 ≤ C0

(
log
1
σn

)4
and similarly, one can prove that∫

φH≤σn

φHdµ ≤ C0σ 2n

(
log
1
σn

)3
.

Now using Proposition 6.1 withw = 8, we have that

h(φn, φH) = Op(n−
5
18 (log n)

8
9 )

where φn = argmaxφ∈P
∑n
i=1 log{φ(wi, ξi)}. Since

max
φ∈P

n∑
i=1

log{φ(wi, ξi)} = max
ν∈HM

n∑
i=1

log{φν(wi, ξi)}

= max
ν∈HM

n∑
i=1

3∑
q,r,s,t=1

δiqγirλisπit log{µν[Dqrst(wi)]} = max
Θ∈HM

L(Θ),

we have φn = φĤn . The proof is complete. �

Proof of Theorem 4.2. Similar to the proof of Theorem 4.1, we only prove Theorem 4.2 for the different censoring
mechanism. Note that by triangle inequality for Hellinger distance,

h(φF̂n , φF ) ≤ h(φF̂n , φĤn)+ h(φĤn , φH).

Therefore we need to prove that

h(φF̂n , φĤn) = Op(n
−
5
18 (log n)

8
9 ).

Towards this end, from the definitions of φH and φF , it is sufficient to prove that for any 1 ≤ q, r, s, t ≤ 3,∫
R8
+
×{0,1}8

(√∫
Bqr
µF̂n(Cst − x)dµΦ(x)−

√∫
Bqr
µF̂n(Cst − x)dµΦ̂n(x)

)2
dµ

1/2 = Op(n− 518 (log n) 89 )
where for convenience we drop the arguments (l, r), (u, v) and (l, r, u, v) for Bqr(l, r), Cst(u, v) and Dqrst(l, r, u, v) etc.
Now we note that for B11 and C11,∫

B11
µF (C11 − x)dµΦ(x) =

∫
[0,l]
F(u− x)Φ ′′x1x2(x)dx

= Φ(l1, l2)F(u1 − l1, u2 − l2)−
∫ l1

0
Φ(x1, l2)F ′x1(u1 − x1, u2 − l2)dx1

−

∫ l2

0
Φ(l1, x2)F ′x2(u1 − l1, u2 − x2)dx2 +

∫ l2

0

∫ l1

0
Φ(x1, x2)F ′′x1x2(u1 − x1, u2 − x2)dx1dx2

= µΦ(El1 l2)F(u1 − l1, u2 − l2)−
∫ l1

0
µΦ(Ex1 l2)F

′

x1(u1 − x1, u2 − l2)dx1

−

∫ l2

0
µΦ(El1x2)F

′

x2(u1 − l1, u2 − x2)dx2 +
∫ l2

0

∫ l1

0
µΦ(Ex1x2)F

′′

x1x2(u1 − x1, u2 − x2)dx1dx2
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where Eab = [0, a] × [0, b]. Now by Cauchy–Schwartz inequality∫
R8
+
×{0,1}8

(√∫
B11
µF̂n(C11 − x)dµΦ(x)−

√∫
B11
µF̂n(C11 − x)dµΦ̂n(x)

)2
dµ

1/2

=

∫
R8
+
×{0,1}8

(√∫
[0,l]

µF̂n([0, u− x))dµΦ(x)−

√∫
[0,l)

µF̂n([0, u− x))dµΦ̂n(x)

)2
dµ

1/2

≤

[∫
R2
+

(
µ
1
2
Φ(El1 l2)− µ

1
2
Φ̂n
(El1 l2)

)2
gL(l)dl

]1/2
+

[∫
R2
+

(
µ
1
2
Φ(El1 l2)− µ

1
2
Φ̂n
(El1 l2)

)2
gL2(l2)dl1dl2

]1/2

+

[∫
R2
+

(
µ
1
2
Φ(El1 l2)− µ

1
2
Φ̂n
(El1 l2)

)2
gL1(l1)dl1dl2

]1/2
+

[∫
R2
+

(
µ
1
2
Φ(El1 l2)− µ

1
2
Φ̂n
(El1 l2)

)2
dl1dl2

]1/2
.

From the assumptions (A6) and Theorem 4.3 in Deng and Fang [19],∫
R8
+
×{0,1}8

(√∫
B11
µF̂n(C11 − x)dµΦ(x)−

√∫
B11
µF̂n(C11 − x)dµΦ̂n(x)

)2
dµ

1/2

= O(n−
3
10 (log n)

2
5 ) = Op(n−

5
18 (log n)

8
9 ). (6.2)

Further for any a, b ∈ R2
+
with a < b, we have that

µF ([a, b]) = µF ([0, b])− µF ([0, a1] × [0, b2])− µF ([0, a2] × [0, b1])+ µF ([0, a]).

Similarly, the same results can be obtained for µΦ([a, b]). Note that Bqr and Cst (q, r, s, t = 1, 2, 3) can be expressed into
the form of the rectangles [a, b] and [c, d]. Therefore, we have that for any Bqr and Cst ,∫

Bqr (l,r)
µF (Cst(u, v)− x)dµΦ(x) =

∫
[a,b]

µF ([c, d] − x)dµΦ(x)

=

∫
[0,b]
−

∫
[0,a1]×[0,b2]

−

∫
[0,a2]×[0,b1]

+

∫
[0,a]
[µF ([0, d − x])− µF ([0, c1 − x1] × [0, d2 − x2])

− µF ([0, c2 − x1] × [0, d1 − x2])+ µF ([0, c − x])] dµΦ(x). (6.3)

Therefore, from (6.2), (6.3) and Cauchy–Schwartz inequality, one can prove that for any Bqr and Cst ,∫
R8
+
×{0,1}8

(√∫
Bqr
µF̂n(Cst − x)dµΦ(x)−

√∫
Bqr
µF̂n(Cst − x)dµΦ̂n(x)

)2
dµ

1/2

= Op(n−
5
18 (log n)

8
9 ).

The corollary follows. �

Proof of Theorem 4.3. We only prove the theorem for distance dRU under the different censoring mechanism. The proofs
for other distances are similar and omitted. From the definition of φF , for any q, r, s, t = 1, 2, 3, we have that∫

R8
+

(
µĤn [Dqrst(w)] − µH [Dqrst(w)]

)2 dG(w)
≤ 4

∫
R8
+

(√
µĤn [Dqrst(w)] −

√
µH [Dqrst(w)]

)2
dG(w)

= 4
∫

R8
+
×{0,1}8

(√
δqγrλsπtµĤn [Dqrst(w)] −

√
δqγrλsπtµH [Dqrst(w)]

)2
dµ

≤ 4h2(φĤn , φH). (6.4)
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Now for distribution function H in R4
+
, we have that

H(r, u) = µH([0, r] × [0, u]) = µH([0, r1] × [0, r2] × [0, u1] × [0, u2])
= µH [D1111(w) ∪ D1211(w) ∪ D2111(w) ∪ D2211(w)]
= µH [D1111(w)] + µH [D1211(w)] + µH [D2111(w)] + µH [D2211(w)]. (6.5)

Therefore by (6.4), (6.5) and triangle inequality,

dRU (Ĥn,H) =

[∫
R4
+

{
Ĥn(r, u)− H(r, u)

}2
dGRU (r, u)

]1/2

=

[∫
R8
+

{
µĤn([0, r] × [0, u])− µH([0, r] × [0, u])

}2 dG(w)]1/2

≤

[∫
R8
+

{
µĤn [D1111(w)] − µH [D1111(w)]

}2 dG(w)]1/2

+

[∫
R8
+

{
µĤn [D1211(w)] − µH [D1211(w)]

}2 dG(w)]1/2

+

[∫
R8
+

{
µĤn [D2111(w)] − µH [D2111(w)]

}2 dG(w)]1/2

+

[∫
R8
+

{
µĤn [D2211(w)] − µH [D2211(w)]

}2 dG(w)]1/2
≤ 16h2(φĤn , φH). (6.6)

Now, from (6.6) and Theorem 4.1, Theorem 4.3 is obtained. �

Proof of Theorem 4.4. Similar to the proof of Theorem 4.3, from Theorem 4.2 and triangle inequality, we have that∫
R2
+

(∫
R2
+

[F̂n(u− x)− F(u− x)]dµΦ̂n(x)

)2
dGU (u)

1/2

=

∫
R8
+

(
3∑

q,r=1

∫
Bqr
[µF̂n([0, u− x])− µF ([0, u− x])]dµΦ̂n(x)

)2
dG(w)

1/2

=

∫
R8
+

(
3∑

q,r=1

∫
Bqr

(
µF̂n [C11 − x] − µF [C11 − x]

)
dµΦ̂n(x)

)2
dG(w)

1/2

≤

3∑
q,r=1

∫
R8
+

(∫
Bqr

(
µF̂n [C11 − x] − µF [C11 − x]

)
dµΦ̂n(x)

)2
dG(w)

1/2

≤ 2
3∑

q,r=1

∫
R8
+
×{0,1}8

(√
δqγrλ1π1

∫
Bqr
µF̂n [C11 − x]dµΦ̂n(x)−

√
δqγrλ1π1

∫
Bqr
µF [C11 − x]dµΦ̂n(x)

)2
dµ

1/2

≤ 18h(φF̂n , φF ) = Op(n
−
5
18 (log n)

8
9 ).

Similarly, we can prove that∫
R2
+

(∫
R2
+

[F̂n(ṽ − x)− F(ṽ − x)]dµΦ̂n(x)

)2
dGV (v)

1/2 = Op(n− 518 (log n) 89 ). �
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