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We show that, by using recently developed exact resummation techniques based on the extension of the

methods of Yennie, Frautschi and Suura to Feynman ’ s formulation of Einstein ’ s theory, we get quantum field

theoretic descriptions for the UV fixed-point behaviors of the dimensionless gravitational and cosmological

constants postulated by Weinberg. Connecting our work to the attendant phenomenological asymptotic

safety analysis of Planck scale cosmology by Bonanno and Reuter, we estimate the value of the cosmological

constant Λ. We find the encouraging estimate ρΛ ≡ Λ
8 πG N 

� (2 . 4 × 10 −3 eV ) 
4 
. While this numerical value is

close to recent experimental observations, we caution the reader that the estimate involves a number of model

parameters that still possess significant levels of uncertainty, such as the value of the transition time between

the Planck scale cosmology era and the Friedmann–Robertson–Walker radiation dominated era, where our

current understanding allows for at least two orders of magnitude in its uncertainty and this would change

our estimate of ρΛ by at least four orders of magnitude. We discuss such theoretical uncertainties as well.

We show why GUT and EW scale vacuum energies from spontaneous symmetry breaking are suppressed in

our approach to the estimation of ρΛ . As a bonus, we show how our estimate constrains susy GUTS. 
c © 2013 B.F.L. Ward. Published by Elsevier B.V. Open access under CC BY license.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In Ref. [ 1 ], Weinberg suggested that the general theory of relativ-

ity may have a non-trivial UV fixed point, with a finite dimensional

critical surface in the UV limit, so that it would be asymptotically safe

with an S-matrix that depends on only a finite number of observable

parameters. In Refs. [ 2 –7 ], strong evidence has been calculated us-

ing Wilsonian [ 8 ] field-space exact renormalization group methods

to support Weinberg ’ s asymptotic safety hypothesis for the Einstein-

Hilbert theory. As we review briefly below, in a parallel but indepen-

dent development [ 9 –18 ], we have shown [ 19 ] that the extension of

the amplitude-based, exact resummation theory of Refs. [ 20 , 21 ] to

the Einstein–Hilbert theory leads to UV-fixed-point behavior for the

dimensionless gravitational and cosmological constants, but with the

added bonus that the resummed theory is actually UV finite when

expanded in the resummed propagators and vertices to any finite or-

der in the respective improved loop expansion. We have called the

resummed theory resummed quantum gravity. More recently, more
� Work partly supported by NATO Grant PST.CLG. 980342 . 
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evidence for Weinberg ’ s asymptotic safety behavior has been cal-

culated using causal dynamical triangulated lattice methods in Ref.

[ 22 ]. 1 At this point, there is no known inconsistency between our

analysis and those of the Refs. [ 2 –7 , 22 ]. 

We need to stress that the results in Refs. [ 2 –7 ], while impressive,

involve cut-offs which remain in the results to varying degrees even

for products such as that for the UV limits of the dimensionless grav-

itational and cosmological constants. In addition, the results in Refs.

[ 2 –7 ] retain some mild dependence on gauge parameters, again even

for the product of the UV limits of the dimensionless gravitational and

cosmological constants. Accordingly, henceforward, we refer to the

approach in Refs. [ 2 –7 ] as the ‘phenomenological ’ asymptotic safety

approach. What can be said is that dependencies are mild enough

that the existence of the non-Gaussian UV fixed point found in these

references is probably a physical result. But, until a rigorously cut-

off independent and gauge invariant calculation corroborates these

results, we cannot consider them final. Our approach offers such a

calculation, as our results are both gauge invariant and cut-off inde-

pendent. The results from Ref. [ 22 ], involving, as they most certainly

do, lattice constant-type artifact issues, are also only an indication

of what the true continuum limit might realize – they too need to be

corroborated by a rigorous calculation without the issues of finite size

and other possible lattice artifacts to be considered final. Again, our
1 We also note that the model in Ref. [ 23 ] realizes many aspects of the effective field 

theory implied by the anomalous dimension of 2 at the UV-fixed point but it does so 

at the expense of violating Lorentz invariance. 
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pproach offers an answer to these issues. The stage is therefore pre- 

ared for us to try to make contact with experiment, as such contact 

s the ultimate purpose of theoretical physics. 

Toward this end, we note that, in Refs. [ 24 , 25 ], it has been argued 

hat the attendant phenomenological asymptotic safety approach in 

efs. [ 2 –7 ] to quantum gravity may indeed provide a realization 

2 of 

he successful inflationary model [ 27 , 28 ] of cosmology without the 

eed of the as yet unseen inflaton scalar field: the attendant UV fixed 

oint solution allows one to develop Planck scale cosmology that joins 

moothly onto the standard Friedmann–Walker–Robertson classical 

escriptions so that then one arrives at a quantum mechanical solu- 

ion to the horizon, flatness, entropy and scale free spectrum prob- 

ems. In Ref. [ 19 ], we have shown that, in the new resummed theory 

 9 –18 ] of quantum gravity, we recover the properties as used in Refs. 

 24 , 25 ] for the UV fixed point of quantum gravity with the added 

esults that we get “first principles” predictions for the fixed point 

alues of the respective dimensionless gravitational and cosmolog- 

cal constants in their analysis. In what follows here, we carry the 

nalysis one step further and arrive at an estimate for the observed 

osmological constant Λ in the context of the Planck scale cosmology 

f Refs. [ 24 , 25 ]. We comment on the reliability of the result as well, 

s it will be seen already to be relatively close to the observed value 

 29 , 30 ]. While we obviously do not want to overdo the closeness to 

he experimental value, we do want to argue that this again gives, at 

he least, some more credibility to the new resummed theory as well 

s to the methods in Refs. [ 2 –7 , 22 ]. More reflections on the attendant 

mplications of the latter credibility in the search for an experimen- 

ally testable union of the original ideas of Bohr and Einstein will be 

aken up elsewhere [ 31 ]. 

The discussion is organized as follows. We start by recapitulating 

he Planck scale cosmology presented phenomenologically in Refs. 

 24 , 25 ]. This is done in the next section. We then review our results 

n Ref. [ 19 ] for the dimensionless gravitational and cosmological con- 

tants at the UV fixed point. In the course of this latter review, which 

s done in Section 3 , we give a new proof of the UV finiteness of the 

esummed quantum gravity theory for the sake of completeness. In 

ection 4 , we then combine the Planck scale cosmology scenario in 

efs. [ 24 , 25 ] with our results to estimate the observed value of the 

osmological constant �. The appendices contain relevant technical 

etails. 

. Planck scale cosmology 

More precisely, we recall the Einstein–Hilbert theory 

 ( x ) = 

1 

2 κ2 

√ −g ( R − 2 Λ) , (1) 

here R is the curvature scalar, g is the determinant of the metric of 

pace-time g μν , Λ is the cosmological constant and κ = 

√ 

8 πG  N for 

ewton ’ s constant G N . Using the phenomenological exact renormal- 

zation group for the Wilsonian [ 8 ] coarse grained effective average 

ction in field space, the authors in Refs. [ 24 , 25 ] have argued that the 

ttendant running Newton constant G N ( k ) and running cosmological 

onstant Λ( k ) approach UV fixed points as k goes to infinity in the 

eep Euclidean regime in the sense that k 2 G N ( k ) → g * , Λ( k ) → λ* k 
2 

or k → ∞ in the Euclidean regime. 

The contact with cosmology then proceeds as follows. Using a 

henomenological connection between the momentum scale k char- 

cterizing the coarseness of the Wilsonian graininess of the aver- 

ge effective action and the cosmological time t , the authors in Refs. 

 24 , 25 ] show that the standard cosmological equations admit of the 
2 The attendant choice of the scale k ∼ 1 / t used in Refs. [ 24 , 25 ] was also proposed in 

ef. [ 26 ]. 
following extension: (
ȧ 

a 

)2 

+ 

K 

a 2 
= 

1 

3 
Λ + 

8 π

3 
G  N ρ

ρ̇ + 3 ( 1 + ω ) 
ȧ 

a 
ρ = 0 

Λ̇ + 8 πρ ˙G  N = 0 

G  N ( t ) = G  N ( k ( t ) ) 

Λ ( t ) = Λ ( k ( t ) ) 

(2) 

in a standard notation for the density ρ and scale factor a ( t ) with the 

Robertson–Walker metric representation as 

d s 2 = d t 2 − a ( t ) 
2 

( 
d r 2 

1 − K r 2 
+ r 2 

(
d θ2 + sin 

2 θd φ2 
)) 

(3) 

so that K = 0, 1, −1 correspond respectively to flat, spherical and 

pseudo-spherical 3-spaces for constant time t . Here, the equation of 

state is taken as 

p ( t ) = ωρ ( t ) , (4) 

where p is the pressure. In Refs. [ 24 , 25 ] the functional relationship 

between the respective momentum scale k and the cosmological time 

t is determined phenomenologically via 

k ( t ) = 

ξ

t 
(5) 

for some positive constant ξ determined from requirements on phys- 

ically observable predictions. 

Using the UV fixed points as discussed above for k 2 G N ( k ) ≡ g * and 

Λ( k ) / k 2 ≡ λ* obtained from their phenomenological, exact renormal- 

ization group (asymptotic safety) analysis, the authors in Refs. [ 24 , 25 ] 

show that the system in ( 2 ) admits, for K = 0, a solution in the Planck 

regime where 0 ≤ t ≤ t class , with t class a “few” times the Planck time 

t Pl , which joins smoothly onto a solution in the classical regime, t > 

t class , which coincides with standard Friedmann–Robertson–Walker 

phenomenology but with the horizon, flatness, scale free Harrison–

Zeldovich spectrum, and entropy 3 problems all solved purely by 

Planck scale quantum physics. 

While the dependencies of the fixed-point results g * , λ* on the cut- 

offs used in the Wilsonian coarse-graining procedure, for example, 

make the phenomenological nature of the analyses in Refs. [ 24 , 25 ] 

manifest, we note that the key properties of g * , λ* used for these 

analyses are that the two UV limits are both positive and that the 

product g * λ* is only mildly cut-off / threshold function dependent. 

Here, we review the predictions in Ref. [ 19 ] for these UV limits as 

implied by resummed quantum gravity theory as presented in [ 9 –18 ] 

and show how to use them to predict the current value of Λ. In view 

of the lack of familiarity of the resummed quantum gravity theory, 

we start the next section with a review of its basic principles in the 

interest of making the discussion self-contained. 

3. g * and λ* in resummed quantum gravity 

We start with the prediction for g * , which we already presented 

in Refs. [ 9 –19 ]. Given that the theory we use is not very familiar, 

we recapitulate the main steps in the calculation in the interest of 

completeness. 

More specifically, as the graviton couples to a an elementary parti- 

cle in the infrared regime which we shall resum independently of the 

particle ’ s spin, we may use a scalar field to develop the required cal- 

culational framework. The extension to spinning particles will then 

be straightforward. Thus, we start with the Lagrangian density for the 
3 Here, we should note that, to solve the entropy problem, the authors in Ref. [ 25 ] 

retain the general form of the requirement from Bianchi ’ s identity so that the second 

and third relations in ( 2 ) are combined to ρ̇ + 3(1 + ω) ȧ 
a 
ρ = − Λ̇+ 8 πρ ˙G N 

8 πG N 
; we discuss this 

in more detail in Section 4 . 
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Fig. 1. Graviton loop contributions to the scalar propagator. q is the 4-momentum of 

the scalar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

basic scalar–graviton system which was considered by Feynman in

Refs. [ 32 , 33 ]: 

L ( x ) = − 1 

2 κ2 
R 

√ −g + 

1 

2 

(
g μν∂ μϕ ∂ νϕ − m 

2 
o ϕ 

2 
)√ −g 

= 

1 

2 

{ 
h μν,λh μν,λ − 2 ημμ′ 

ηλλ′ 
h μλ,λ′ ησσ ′ 

h μ′ σ ,σ ′ 
} 

+ 

1 

2 

{ 
ϕ ,μϕ ,μ − m 

2 
o ϕ 

2 
} 

− κh μν

[
ϕ ,μϕ ,ν + 

1 

2 
m 

2 
o ϕ 

2 ημν

]

− κ2 

[
1 

2 
h λρh 

ρλ
(
ϕ ,μϕ ,μ − m 

2 
o ϕ 

2 
)

− 2 ηρρ′ h μρh 
ρ′ ν

ϕ ,μϕ ,ν

]
+ · · · . 

(6

Here, ϕ( x ) can be identified as the physical Higgs field as our repre-

sentative scalar field for matter, ϕ( x ) , μ ≡ ∂ μ ϕ( x ), and g μν ( x ) = ημν

+ 2 κh μν ( x ) where we follow Feynman and expand about Minkowski

space so that ημν = diag { 1, −1, −1, −1 } . Following Feynman, we have

introduced the notation y μν ≡ 1 
2 ( y μν + y νμ − ημν y ρ

ρ) for any tensor

y μν . 4 The bare (renormalized) mass of our otherwise free Higgs field

is m o ( m ) and for the moment we set the small observed [ 29 , 30 ] value

of the cosmological constant to zero so that our quantum graviton,

h μν , has zero rest mass. We return to the latter point, however, when

we discuss phenomenology. Feynman [ 32 , 33 ] has essentially worked

out the Feynman rules for ( 6 ), including the rule for the famous

Feynman–Faddeev–Popov [ 32 , 34 , 35 ] ghost contribution needed for

unitarity with the fixing of the gauge (we use the gauge of Feynman

in Ref. [ 32 ], ∂ μh νμ = 0), so for this material we refer to Refs. [ 32 , 33 ].

Accordingly, we turn now directly to the quantum loop corrections in

the theory in ( 6 ). 
Referring to Fig. 1 , we have shown in Refs. [ 9 –18 ] that the large

virtual IR effects in the respective loop integrals for the scalar prop-

agator in quantum general relativity can be resummed to the exact

result 

i �′ 
F ( k ) = 

i 

k 2 − m 

2 − �s ( k ) + iε
= 

ie B 
′′ 
g ( k ) 

k 2 − m 

2 − �′ 
s + iε

≡ i �′ 
F ( k ) 

∣∣
resummed 

(7)

for ( � = k 2 − m 

2 ) 

B 

′′ 
g ( k ) = −2 iκ2 k 4 

∫ 
d 4 � 

16 π4 

1 

� 2 − λ2 + iε
1 (

� 2 + 2 �k + � + iε
)2 

= 

κ2 
∣∣∣k 2 ∣∣∣

8 π2 
ln 

( 
m 

2 

m 

2 + 

∣∣k 2 ∣∣
) 

, 

(8)

where the latter form holds for the UV (deep Euclidean) regime, so

that (7) falls faster than any power of | k 2 | – by Wick rotation, the

identification − | k 2 | ≡ k 2 in the deep Euclidean regime gives imme-

diate analytic continuation to the result in the last line of ( 8 ) when

the usual −i ε, ε↓ 0, is appended to m 

2 . An analogous result [ 9 ] holds

for m = 0; we show this in our Appendix 1 for completeness. Here,

−i �s ( k ) is the 1PI scalar self-energy function so that i �′ 
F ( k) is the

exact scalar propagator. As �′ 
s starts in O( κ2 ) , we may drop it in cal-

culating one-loop effects. It follows that, when the respective analogs

of ( 7 ) are used for the elementary particles, one-loop corrections are

finite. It can be shown actually that the use of our resummed prop-

agators renders all quantum gravity loops UV finite [ 9 –18 ]. We have

called this representation of the quantum theory of general relativity

resummed quantum gravity (RQG). 

We stress that ( 7 ) is not limited to the regime where k 2 ∼= 

m 

2 but

is an identity that holds for all k 2 . This is readily shown as follows. If

we invert both sides of ( 7 ) we get 

�−1 
F ( k ) − �s ( k ) = 

(
�−1 

F ( k ) − �′ 
s ( k ) 

)
e −B g ( k ) , (9)
4 Our conventions for raising and lowering indices in the second line of ( 6 ) are the 

same as those in Ref. [ 33 ]. 

 

 

 

 

where the free inverse propagator is �−1 
F ( k) = �( k) + iε . We intro-

duce here the loop expansions 

�s ( k ) = 

∞ ∑ 

n = 1 
�s,n ( k ) , (10)

�′ 
s ( k ) = 

∞ ∑ 

n = 1 
�′ 

s,n ( k ) (11)

and we get, from elementary algebra, the exact relation 

−�s,n ( k ) = −
n ∑ 

j= 0 
�′ 

s, j ( k ) 
(
−B 

′′ 
g ( k ) 

)n − j 
/ ( n − j ) ! (12)

where we define for convenience −�s, 0 ( k) = −�′ 
s, 0 ( k) = �−1 

F ( k) and

A s,n is the n -loop contribution to A s . This proves that every Feynman

diagram contribution to �s ( k ) corresponds to a unique contribution

to �′ 
s ( k) to all orders in κ 2 / (4 π) for all values of k 2 . QED. 

The key question is whether the terms which we have extracted

from the Feynman series in ( 12 ) were actually in that series. When

we take the limit that k 2 → m 

2 , the result is known to be valid from

the discussion in Ref. [ 36 ] where the same result for the respective

exponentiating virtual infrared divergence in ( 8 ) is obtained. Indeed,

one generally has to introduce a regulator for the IR divergence and

one shows that the terms which diverge as the regulator vanishes

exponentiate in the factor B 

′′ 
g ( k) . When k 2 �= m 

2 , the IR divergence

is regulated by �( k ), so that we can use �( k ) as our IR regulator.

We can then isolate that part of the amplitude which diverges when

�( k ) → 0 when the UV divergences are themselves regulated, by n -

dimensional methods [ 37 ] for example, so that they remain finite in

this limit. At this point we stress the following: when we impose a

gauge invariant regulator for the UV regime, to any finite order in

the loop expansion, all UV divergences are regulated to finite results.

If we then resum the IR dominant terms in this the UV-regulated

theory, that resummation is valid independent of whether or not the

theory is UV renormalizable, as the theory is finite order by order

in the loop expansion in the UV when the UV regulator is imposed

independent of whether or not it is renormalizable. The latter issue

arises only if we remove the UV regulator. What we show now is that,

after the IR resummation, the UV regulator can be removed and the

UV regime remains finite order by order in the loop expansion after

the IR resummation. 

We call attention as well to the close analogy between our use of IR

resummation in the presence of n -dimensional UV regularization to

study the UV limit of quantum gravity with the use of exact Wilsonian

coarse graining in Refs. [ 2 –7 ] to arrive at an effective average action

for any given scale k which has both an IR cut-off for momentum

scales much smaller than k and a UV cut-off for momentum scales

much larger than k so that the resulting field-space renormalization

group equation is well-defined even for a non-renormalizable theory

like quantum gravity. In both cases the UV limit can be studied by

taking the UV limit of the resulting non-perturbative solution and in
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t 5 We stress that it may contain in general other IR singular contributions. 
oth cases the same result obtains: a non-Gaussian UV fixed point is 

ound, as we present below. 

To show that ( 7 ) holds with B 

′′ 
g ( k) given by the expression in ( 8 ), we

roceed as follows. We represent the respective m -loop contribution 

s defined above to the proper self-energy contribution to the inverse 

ropagator as 

 �s,m 

( p ) = 

1 

m ! 

∫ 
· · ·
∫ m ∏ 

i= 1 

d n k i 

k 2 i − λ2 + iε
ρm 

( k 1 , . . . , k m 

) , (13) 

here n is the analytically continued dimension of space-time to 

egulate UV divergences and the function ρm 

is symmetric under the 

nterchange of any two of the m virtual graviton n -momenta that 

re exchanged in ( 13 ), by the Bose symmetry obeyed by the spin 2 

ravitons and the symmetry of the respective multiple integration 

olume. Here is the point in the discussion where the power of exact 

earrangement techniques such as those in Refs. [ 20 , 21 ] enters. For 

he case m = 1, let S ′′ g ( k) ρ0 represent the leading contribution in the 

he limit k → 0 to ρ1 . We have 

1 ( k ) = S ′′ g ( k ) ρ0 + β1 ( k ) , (14) 

here this equation is exact and serves to define β1 if we specify 

 

′′ 
g ( k) , the soft graviton emission factor, and recall that 

0 = i �s, 0 ( p ) = −i �F ( p ) 
−1 

. (15) 

his can be determined from the Feynman rules for the Feynman 

 32 , 33 , 9 ] formulation of the scalar–graviton system in ( 6 ) or one can
lso use the off-shell extension of the formulas in Ref. [ 36 ]. We get [ 9 ]

S ′′ g ( p , p , k ) = 1 

( 2 π) 4 

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

) (−iκ p μ
)

( 2 ip μ) ( −iκ p ′ ν ) ( 2 i p ′ ν ) (
k 2 − 2 kp + � + iε) (k 2 − 2 kp ′ + �′ + iε) | p = p ′ 

= 2 iκ2 p 4 

16 π4 

1 (
k 2 − 2 kp + � + iε)2 , 

(16

here �′ = p ′ 2 − m 

2 . To see this, from Fig. 1 , note that the Feynman 

ules [ 32 , 33 , 9 ] give us the following result 

i �s, 1 ( p ) = 

{ 
−
∫ 

d n k 

( 2 π) 
4 

iv 3 ( p, p − k ) μμ

i 

( p − k ) 
2 − m 

2 + iε
iv 3 ( p − k, p ′ ) νν

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

)
k 2 − λ2 + iε

−
∫ 

d n k 

2 ( 2 π) 
4 

iv 4 ( p , p 
′ ) μμ; νν

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

)
k 2 − λ2 + i ε

} 
| p = p ′ , 

(17) 

here we have defined from the Feynman rules the respective 3- 

oint( h ϕ ϕ ) and 4-point( hh ϕ ϕ ) vertices 

iv 3 ( p , p 
′ ) νν = −iκ

(
p ν p ′ ν + p ν p ′ ν − g νν

(
pp ′ − m 

2 
))

iv 4 ( p , p 
′ ) μμ; νν = −4 iκ2 [ 

(
pp ′ − m 

2 
)

( ημνημν + ημνημν − ημμηνν ) 

−
(

p μ
′ 
p ′ ν

′ + p ν
′ 
p ′ μ

′ ) { ημμ′ ( ημνην ′ ν + ημνην ′ ν − ην ′ μηνν ) 

+ ημμ′ ( ημνην ′ ν + ημνην ′ ν − ην ′ μηνν ) } ] 

(18) 

sing the standard conventions so that p is incoming and p ′ is outgoing 

or the scalar particle momenta at the respective vertices. In this way, 

e see that we may isolate the IR dominant part of i �1 ( p ) by the 

eparation 

1 

k 2 − 2 kp + � + iε
= − �(

k 2 − 2 kp + � + iε
)2 + 

1 

k 2 − 2 kp + iε

− 2 �2 (
k 2 − 2 kp + � + iε

)2 (
k 2 − 2 kp + iε

)
− �3 (

k 2 − 2 kp + � + iε
)2 (

k 2 − 2 kp + iε
)2 

+ 

∞ ∑ 

n = 2 
( −1 ) 

n �n (
k 2 − 2 kp + iε

)n + 1 

(19) 

rom which we can see that the first term on the RHS gives, upon 

nsertion into ( 17 ), the IR-divergent contribution for the coefficient of 
he lowest order inverse propagator for the on-shell limit � → 0. The 

econd term does not produce an IR-divergence and the remaining 
erms vanish faster than � in the on-shell limit so that they do not 
contribute to the field renormalization factor which we seek to isolate. 

In this way we get finally 

i �1 ( p ) = 
{ 

−
∫ 

d n k 

( 2 π) 
4 

(
−2 i κ p μ p μ + i δv 3 ( p, p − k ) μμ

)( −i �

( k 2 − 2 kp + � + iε) 
2 

+ iR �F ( k, p ) 

) 

( −2 i κ p ′ ν p ′ ν + i δv 3 ( p 
′ − k , p ′ ) νν ) 

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

)
k 2 − λ2 + iε

−
∫ 

d n k 

2 ( 2 π) 
4 

iv 4 ( p , p ′ ) μμ; νν

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

)
k 2 − λ2 + i ε

} 
| p = p ′ 

= 
{ ∫ 

d n k 

( 2 π) 
4 

[ ( −iκ p μ) ( 2 ip μ) 
−i �

( k 2 − 2 kp + � + iε) 
2 

( −iκ p ′ ν ) ( 2 i p ′ ν ) 

i 1 
2 

(
ημνημν + ημνημν − ημμηνν

)
k 2 − λ2 + iε + ( 2 π) 

4 
β1 ( k ) 

k 2 − λ2 + iε

] } 
| p = p ′ , 

(20) 

which agrees with (14) –(16) with 

R �F ( k, p ) = 1 

k 2 − 2 kp + iε − 2 �2 

( k 2 − 2 kp + � + iε) 
2 

( k 2 − 2 kp + iε) 

− �3 

( k 2 − 2 kp + � + iε) 
2 
( k 2 − 2 kp + iε) 

2 

+ 
∞ ∑ 

n = 2 
( −1 ) 

n �n 

( k 2 − 2 kp + iε) 
n + 1 , 

iδv 3 ( p, p − k ) μμ = i v 3 ( p, p − k ) μμ − {−2 i κ p μ p μ
}
, 

β1 ( k ) = 
{ 

− 1 

( 2 π) 
4 

(
−2 i κ p μ p μ + i δv 3 ( p, p − k ) μμ

)
[ 

−i �

( k 2 − 2 kp + � + iε) 
2 

+ iR �F ( k, p ) ] ( iδv 3 ( p 
′ − k , p ′ ) νν ) 

{
i 

1 

2 

(
ημνημν + ημνημν − ημμηνν

)}

− 1 

( 2 π) 
4 

(
−2 i κ p μ p μ + i δv 3 ( p, p − k ) μμ

)
( iR �F ( k, p ) ) 

( −2 iκ p ′ ν p ′ ν ) 

{
i 

1 

2 

(
ημνημν + ημνημν − ημμηνν

)}

− 1 

( 2 π) 
4 

(
iδv 3 ( p, p − k ) μμ

)( −i �

( k 2 − 2 kp + � + iε) 
2 

) 

( −2 iκ p ′ ν p ′ ν ) 

{
i 

1 

2 

(
ημνημν + ημνημν − ημμηνν

)}

− 1 

2 ( 2 π) 
4 

iv 4 ( p , p ′ ) μμ; νν

{
i 

1 

2 

(
ημνημν + ημνημν − ημμηνν

)}} | p = p ′ . 

(21) 

One can see that the result in ( 16 ) differs from the correspond- 

ing result in QED in Eq. (5.13) of Ref. [ 20 ] by the replacement of 

the electron charges e by the gravity charges κ p μ, κ p ′ ν with the cor- 

responding replacement of the photon propagator numerator −i ημν

by the graviton propagator numerator i 1 2 ( η
μνημν + ημνημν − ημμηνν) . 

That the squared modulus of these gravity charges grows quadrati- 

cally in the deep Euclidean regime is what makes their effect therein 

in the quantum theory of general relativity fundamentally different 

from the effect of the QED charges in the deep Euclidean regime of 

QED, where the latter charges are constants order-by-order in per- 

turbation theory. 
Indeed, proceeding recursively, we write 

ρm ( k 1 , . . . , k m ) = S ′′ g ( k m ) ρm −1 ( k 1 , . . . , k m −1 ) + β( 1 ) 
m ( k 1 , . . . , k m −1 ; k m ) , (22) 

where here the notation indicates that the residual β
(1) 
m 

does not con- 

tain the leading infrared contribution for k m 

that is given by the first 
term on the RHS of ( 22 ). 5 We iterate ( 22 ) to get 

ρm ( k 1 , . . . , k m ) = S ′′ g ( k m ) S 
′′ 
g ( k m −1 ) ρm −2 ( k 1 , . . . , k m −2 ) 

+ S ′′ g ( k m ) β
( 1 ) 
m −1 ( k 1 , . . . , k m −2 ; k m −1 ) 

+ S ′′ g ( k m −1 ) β
( 1 ) 
m −1 ( k 1 , . . . , k m −2 ; k m ) 

+ 

{ 
−S ′′ g ( k m −1 ) β

( 1 ) 
m −1 ( k 1 , . . . , k m −2 ; k m ) + β( 1 ) 

m ( k 1 , . . . , k m −1 ; k m ) 
} 

. 

(23) 

The symmetry of ρm 

implies that the quantity in curly brackets is 

also symmetric in the interchange of k m − 1 and k m 

. We indicate this 

explicitly with the notation { 
−S ′′ g ( k m −1 ) β

( 1 ) 
m −1 ( k 1 , . . . , k m −2 ; k m 

) + β
( 1 ) 
m 

( k 1 , . . . , k m −1 ; k m 

) 
} 

= β
( 2 ) 
m 

( k 1 , . . . , k m −2 ; k m −1 , k m 

) . 
(24) 

Repeated application of ( 22 ) and use of the symmetry of ρm 

leads 

us finally to the exact result 

ρm ( k 1 , . . . , k m ) = S ′′ g ( k 1 ) · · · S ′′ g ( k m ) β0 

+ 

m ∑ 

i= 1 
S ′′ g ( k 1 ) · · · S ′′ g ( k i−1 ) S 

′′ 
g ( k i+ 1 ) · · · S ′′ g ( k m ) β1 ( k i ) 

+ · · · + 

m ∑ 

i= 1 
S ′′ g ( k i ) βm −1 ( k 1 , . . . , k i−1 , k i+ 1 , . . . , k m ) + βm ( k 1 , . . . , k m ) . 

(25) 
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where the case m = 1 has already been considered in ( 14 ) with ρ0 ≡
β0 . Here, we defined as well β

( i) 
i ≡ βi . 

We can use the symmetry of the residuals β i to re-write ρm 

as 

ρm ( k 1 , . . . , k m ) = 

∑ 

perm 

m ∑ 

r= 0 

1 

r! ( m − r ) ! 

r ∏ 

i= 1 
S ′′ g ( k i ) βm −r ( k r+ 1 , . . . , k m ) (26)

so that we finally obtain, upon substitution into ( 13 ), 

i �s,m 

( p ) = 

m ∑ 

r= 0 

1 

r! ( m − r ) ! 

( ∫ 
d n k S ′′ g ( k ) 

k 2 − λ2 + iε

) r 
∫ m −r ∏ 

i= 1 

d n k i 

k i 
2 − λ2 + iε

βm −r ( k 1 , . . . , k m −r ) . 

(27)

With the definition 

−B 

′′ 
g ( p ) = 

∫ 
d n k S ′′ g ( k ) 

k 2 − λ2 + iε
(28)

and the identification 

i �′ 
s,r ( p ) = 

1 

r! 

∫ r ∏ 

i= 1 

d n k i 

k 2 i − λ2 + iε
βr ( k 1 , . . . , k r ) (29)

we introduce the result ( 27 ) into ( 9 ) via ( 10 ) to get 

−i 
(
�F ( p ) 

−1 − �s ( p ) 
)

= i 

∞ ∑ 

m = 0 

m ∑ 

r= 0 
�′ 

s,m −r ( p ) 

(
−B 

′′ 
g ( p ) 

)r 

r! 

= ie −B ′′ g ( p ) 
∞ ∑ 

� = 0 
�′ 

s,� ( p ) 

= −ie −B ′′ g ( p ) 

( 
�F ( p ) 

−1 −
∞ ∑ 

� = 1 
�′ 

s,� ( p ) 

) 
. 

(30)

In this way, our resummed exact result for the complete scalar prop-
agator in quantum general relativity is seen to be [ 9 , 11 –13 ] 

i �′ 
F ( p ) = 

ie B 
′′ 
g ( p ) 

( p 2 − m 

2 − �′ 
s ( p ) + iε) 

≡ i �′ 
F ( p ) | resummed ≡ i �′ 

F ( p ) 
∣∣
rsm 

, (31)

where 

�′ 
s ( p ) ≡

∞ ∑ 

� = 1 
�′ 

s,� ( p ) . (32)

We have introduced the shorthand “rsm” for “resummed” in the last

line of ( 31 ) for later convenience. 

This result ( 32 ) becomes identical to ( 7 ) when we take the limit n

→ 4 in it. In taking this limit, we note that B 

′′ 
g ( k) is UV finite so that

the limit exists without further ado. As the IR limit of the coupling

of the graviton to a particle is well-known [ 36 ] to independent of its

spin, the entirely analogous result to ( 32 ) holds for the propagators

of all particles [ 9 , 11 –13 ] with corresponding exponent B 

′′ 
g ( k) and the

attendant IR-improved proper self-energy function. We note that in

�′ 
s ( p) the limit n → 4 can be taken if we represent it by its IR-improved

propagator expansion in which, to any finite order in the loop expan-

sion, the usual free Feynman propagator is replaced by its resummed

version with the attendant IR-improved proper self-energy function,

�′ 
s ( p) or its graviton analog, set to zero on at least one internal line

(per loop): for the scalar case this reads 

i �F ( p ) 
∣∣
resummed 

= 

ie B 
′′ 
g ( p ) (

p 2 − m 

2 + iε
) (33)

with a corresponding result for the graviton case. Standard resumma-

tion algebra then can be used to remove any double counting effects to

any finite order in the loop expansion, as B 

′′ 
g ( k) is a UV finite one-loop

effect. Let us now see how one proves this last remark. 

To this end, let ��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m 

) be the 1PI � -graviton,

m -scalar proper vertex function, where we suppress all Lorentz

indices without loss of content. We follow Ref. [ 38 ] and write

��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m 

) in terms of its skeleton expansion in which,

to any finite order in the respective loop expansion, each graph G is
mapped into a unique skeleton S in which all corrections to propaga-

tors and interaction vertices are removed. We then have the identifi-

cation 

��,m 

(
k 1 , . . . , k � ; k 

′ 
1 , . . . , k 

′ 
m 

)
= 

∑ 

skeletons S 
�S,�,m 

(
k 1 , . . . , k � ; k 

′ 
1 , . . . , k 

′ 
m 

; �′ 
F , D 

′ 
F , 
{
� j 

}
, κ
)

(34)

following the recipe in Ref. [ 38 ] so that here one uses the complete

propagators, �′ 
F , D 

′ 
F , for the scalar and the graviton on the lines of

the skeleton and one uses the complete interaction vertex foundations

{ �j } at each respective vertex in the skeleton to produce the exact,

complete result for ��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m 

) . In this representation,

it is immediate how to obtain the attendant N -th loop result accurate

up to and including the N -th loop for ��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m 

) : one

expands the propagators and complete interaction vertices to the

appropriate order, ≤N and retains all terms with ≤N loops in the sum

on the RHS of ( 34 ). In the case of the exact scalar propagator, for

example, we expand it as usual in each term in ( 34 ), 

i �′ 
F ( p ) = i �F ( p ) + i �F ( p ) ( −i �s ( p ) ) i �F ( p ) + · · · , (35)

and we stop at the term with N -factors of ( −i �s ( k )) each one of which

we evaluate only to one loop order in this last term, with the atten-

dant higher loop evaluations in the terms with less than N factors

by the standard methodology. Inserting this result into ( 34 ) with the

analogous ones for the graviton propagator and the interaction ver-

tices we isolate the result accurate up to and including the N -th loop

by dropping all contributions that involve more than N -loops. This

is the standard Feynman diagrammatic practice. Since we have the

n -dimensional regulation of the UV divergences, the result we obtain

this way is UV finite. 

To improve it we substitute the resummed representation for the
propagators, which we denote as we have above so that we have 

��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m ) 

= 

∑ 

skeletons S 

�S,�,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m ; �

′ 
F | rsm 

, D 

′ 
F | rsm 

, 
{
� j 

}
, κ
)
. (36)

To obtain the IR-improved result correct up to an including the N -th

IR-improved loop, we repeat the same steps as we did for the un-

improved case: for example, we expand the scalar propagator as 

i �′ 
F ( p ) = 

ie B 
′′ 
g ( p ) (

p 2 − m 

2 − �′ 
s ( p ) + iε

)
= i e B 

′′ 
g ( p ) 

(
�F ( p ) + �F ( p ) 

(−i �′ 
s ( p ) 

)
i �F ( p ) + · · · ) , 

(37)

where we now stop the expansion at the term with N -factors of

( −i �′ 
s ( p)) in which each factor is only computed to one-loop order.

We then introduce this IR-improved N -loop result for the scalar prop-

agator and the analogous results for the graviton propagator and the

interaction vertices accurate as well to N loops in the IR-improved

loops into the the RHS of ( 36 ) and drop all terms with more than N IR-

improved loops. The result is now UV finite because the exponential

factor in the respective propagators render the integration in deep UV

finite for any finite order in the interaction strength κ because these

exponential factors fall faster than any of the finite powers of the loop

momenta that occur at finite orders in κ as given by the Feynman rules

that follow from Refs. [ 32 , 33 ] for ( 6 ). 

Finally, we observe that ( 12 ) can be inverted to give as well the

identity 

−�′ 
s,n ( k ) = −

n ∑ 

j= 0 
�s, j ( k ) 

(
B 

′′ 
g ( k ) 

)n − j 
/ ( n − j ) ! (38)

This allows us to employ the same result ( 36 ) in calculating the IR-

improved self-energy so that it too is now UV finite with our IR-

improved resummation prescription. It follows that, to any finite or-

der in the IR-improved loop expansion, all ��,m ( k 1 , . . . , k � ; k 
′ 
1 , . . . , k 

′ 
m 

)

are UV finite. QED. 
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6 We need to stress that this is a definition of convenience and is not a regularization 

because the integral which we calculate in ( 48 ) below it is UV finite with exponential 

damping in the UV. The definition is robust, the direction of approach to the origin 

can be chosen arbitrarily, and when its vacuum expectation value is taken it may be 

replaced with the standard path integral Feynman rule for the tadpole loop that it most 

certainly is to give the same result. 

7 We note the use here in the integrand of 2 k 2 0 rather than the 2( 
→ 

k 
2 

+ m 

2 ) in Ref. 

[ 19 ], to be consistent with ω = −1 [ 48 ] for the vacuum stress-energy tensor. 
As we have indicated above [ 9 ] and as Weinberg has shown in 

ef. [ 36 ], the IR limit of the coupling of the graviton to a particle is 

ndependent of its spin, so that we get the same exponential behavior 

n the resummed propagator for all particles in the Standard Model. 

ndeed, when we use our resummed propagator results, as extended 

o all the particles in the SM Lagrangian and to the graviton itself, 

orking now with the complete theory 

 ( x ) = 

1 

2 κ2 

√ −g ( R − 2 Λ) + 

√ −g L  

G 
SM 

( x ) , (39) 

here L  

G 
SM 

( x) is SM Lagrangian written in diffeomorphism invariant 

orm as explained in Refs. [ 9 , 11 ], we show in the Refs. [ 9 –18 ] that

he denominator for the propagation of transverse-traceless modes 

f the graviton becomes ( M Pl is the Planck mass) 

 

2 + �T 
(

q 2 
)

+ iε ∼= 

q 2 − q 4 
c 2 , eff 

360 π M 

2 
Pl 

, (40) 

here we have defined 

c 2 , eff = 

∑ 

SM particles j 

n j I 2 ( λc ( j ) ) 

∼= 

2 . 56 × 10 4 
(41) 

ith I 2 defined [ 9 –18 ] by 

I 2 ( λc ) = 

∫ ∞ 

0 
dx x 3 ( 1 + x ) 

−4 −λc x (42) 

nd with λc ( j) = 

2 m 

2 
j 

π M 

2 
Pl 

and [ 9 –18 ] n j equal to the number of effective 

egrees of particle j . For completeness, we repeat the derivation of 

 40 ) in our Appendix 2 , using results from Appendix 3 . In arriving 

t the numerical value in ( 41 ), we take the SM masses as follows: 

or the now presumed three massive neutrinos [ 39 , 40 ], we estimate 

 mass at ∼3 eV; for the remaining members of the known three 

enerations of Dirac fermions { e , μ, τ , u , d , s , c , b , t } , we use [ 41 –43 ]

 e 
∼= 

0.51 MeV, m μ
∼= 

0.106 GeV, m τ
∼= 

1.78 GeV, m u 
∼= 

5.1 MeV, 

 d 
∼= 

8.9 MeV, m s 
∼= 

0.17 GeV, m c 
∼= 

1.3 GeV, m b 
∼= 

4.5 GeV and 

 t 
∼= 

174 GeV and for the massive vector bosons W 

± , Z we use the 

asses M W 

∼= 

80.4 GeV, M Z 
∼= 

91.19 GeV, respectively. We set the 

iggs mass at m H 
∼= 

126 GeV, in view of the limit from LEP2 [ 44 , 45 ]

nd recent observations from ATLAS and CMS [ 46 ]. We note that (see 

he Appendix 1 ) when the rest mass of particle j is zero, such as it is 

or the photon and the gluon, the value of m j turns-out to be 
√ 

2 times 

he gravitational infrared cut-off mass [ 29 , 30 ], which is m g 
∼= 

3.1 ×
0 −33 eV. We further note that, from the exact one-loop analysis of 

ef. [ 47 ], it also follows (see Appendix 2 ) that the value of n j for the

raviton and its attendant ghost is 42. For λc → 0, we have found the 

pproximate representation (see Appendix 3 ) 

I 2 ( λc ) ∼= 

ln 

1 

λc 
− ln ln 

1 

λc 
−

ln ln 

1 
λc 

ln 

1 
λc 

− ln ln 

1 
λc 

− 11 

6 
. (43) 

hese results allow us to identify (we use G N for G N (0)) 

 N ( k ) = G  N / 

( 
1 + 

c 2 , eff k 
2 

360 π M 

2 
Pl 

) 
(44) 

nd to compute the UV limit g * as 

 ∗ = lim 

k 2 →∞ 

k 2 G  N 

(
k 2 
)

= 

360 π

c 2 , eff 

∼= 

0 . 0442 . (45) 

e stress that this result has no threshold / cut-off effects in it. It is a 

ure property of the known world. 

Turning now to the prediction for λ* , we use the Euler–Lagrange 

quations to get Einstein ’ s equation as 

 μν + �g μν = −κ2 T μν (46) 

n a standard notation where G  μν = R μν − 1 
2 

Rg μν , R μν is the con- 

racted Riemann tensor, and T μν is the energy-momentum tensor. 
Working then with the representation g μν = ημν + 2 κh μν for the flat 

Minkowski metric ημν = diag(1, −1, −1, −1) we see that to isolate Λ

in Einstein ’ s equation ( 46 ) we may evaluate its VEV (vacuum expecta- 

tion value of both sides). For any bosonic quantum field ϕ we use the 

point-splitting definition 

6 (here,:: denotes normal ordering as usual) 

ϕ ( 0 ) ϕ ( 0 ) = lim 

ε→ 0 
ϕ ( ε) ϕ ( 0 ) 

= lim 

ε→ 0 
T ( ϕ ( ε) ϕ ( 0 ) ) 

= lim 

ε→ 0 

{
: ( ϕ ( ε) ϕ ( 0 ) ) : + < 0 

∣∣T ( ϕ ( ε) ϕ ( 0 ) ) 
∣∣0 > 

} (47) 

where the limit ε ≡ ( ε, 
→ 

0 ) → (0 , 0 , 0 , 0) ≡ 0 is taken from a time-like

direction respectively. Thus, a scalar makes the contribution to Λ

given by 7 

Λs = −8 πG  N 

∫ 
d 4 k 

2 ( 2 π) 
4 

(
2 k 2 0 

)
e −λc ( k 2 / ( 2 m 

2 ) ) ln ( k 2 /m 

2 + 1 ) 

k 2 + m 

2 

∼= 

−8 πG  N 

[ 
1 

G  

2 
N 64 ρ2 

] 
, 

(48) 

where ρ = ln 

2 
λc 

and we have used the calculus of Refs. [ 9 –18 ] as 

recapitulated here in Appendices 2 and 3 . The standard equal-time 

(anti-)commutation relations algebra realizations then show that a 

Dirac fermion contributes − 4 times Λs to Λ. The deep UV limit of Λ

then becomes, allowing G N ( k ) to run as we calculated, 

�( k ) → 

k 2 →∞ 

k 2 λ∗, λ∗ = − c 2 , eff 

2880 

∑ 

j 

( −1 ) 
F j n j /ρ

2 
j 

∼= 

0 . 0817 (49) 

where F j is the fermion number of j , n j is the effective number of 

degrees of freedom of j and ρj = ρ( λc ( m j )). We see again that λ* is 

free of threshold / cut-off effects and is a pure prediction of our known 

world –λ* would vanish in an exactly supersymmetric theory. 

For reference, the UV fixed-point calculated here, ( g * , λ* ) ∼= 

(0.0442, 

0.0817), can be compared with the estimates in Refs. [ 24 , 25 ], which 

give ( g * , λ* ) ≈ (0.27, 0.36). In making this comparison, one must keep in 

mind that the analysis in Refs. [ 24 , 25 ] did not include the specific SM 

matter action and that there is definitely cut-off function sensitivity 

to the results in the latter analyses. What is important is that the 

qualitative results that g * and λ* are both positive and are less than 1 

in size are true of our results as well. 

For reference, we note that, if we restrict our resummed quantum 

gravity calculations above for g * , λ* to the pure gravity theory with no 

SM matter fields, we get the results 

g ∗ = . 0533 , λ∗ = −. 000189 

We see that our results suggest that there are still significant cut-off 

effects in the results used for g * , λ* in Refs. [ 24 , 25 ], which already seem

to include an effective matter contribution when viewed from our 

resummed quantum gravity perspective, as an artifact of the obvious 

gauge and cut-off dependencies of the results. Indeed, from a purely 

quantum field theoretic point of view, the cut-off action is 

�k S 
(
h, C , C ; g 

) = 

1 

2 
< h, R 

grav 
k h > + < C , R 

gh 
k C > (50) 

where g is the general background metric, which is the Minkowski 

space metric η here, and C , C are the ghost fields and the operators 
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R 

grav 
k , R 

gh 
k implement the course graining as they satisfy the limits 

lim 

p 2 /k 2 →∞ 

R k = 0 , 

lim 

p 2 /k 2 → 0 
R k → Z k k 

2 , 

for some Z k [ 3 ]. Here, the inner product is that defined in Ref. [ 3 ]

in its Eqs. (2.14, 2.15, 2.19). The result is that the modes with p � k

have a shift of their vacuum energy by the cut-off operator. There is

therefore no disagreement in principle between our gauge invariant

results and the gauge dependent and cut-off dependent results in

Refs. [ 3 ]. In other words, the graviton and ghost fields at low scales

compared to k have a mass added to them, so that their vacuum

energies are shifted by a mass of order k . Evidently, this shows up as a

positive contribution to the cosmological constant and explains why

the EFRG result for λ* has a positive value in the regime of the gauge

parameter in Ref. [ 3 ] where the UV fixed point is attractive. 

4. An estimate of Λ

To see that the results here, taken together with those in Refs.

[ 24 , 25 ], allow us to estimate the value of Λ today, we take the normal-

ordered form of Einstein ’ s equation 

: G  μν : + � : g μν : = −κ2 : T μν : . (51)

The coherent state representation of the thermal density matrix

then gives the Einstein equation in the form of thermally averaged

quantities with Λ given by our result in ( 48 ) summed over the de-

grees of freedom as specified above in lowest order. In Ref. [ 25 ], it

is argued that the Planck scale cosmology description of inflation

needs the transition time between the Planck regime and the classi-

cal Friedmann–Robertson–Walker (FRW) regime at t tr ∼ 25 t Pl . (We

comment below on the uncertainty of this choice of t tr .) 
8 We thus

introduce 

ρΛ ( t tr ) ≡ Λ ( t tr ) 

8 πG  N ( t tr ) 
= 

−M 

4 
Pl ( k tr ) 

64 

∑ 

j 

( −1 ) 
F n j 

ρ2 
j 

(52)

and use the arguments in Ref. [ 49 ] ( t eq is the time of matter-radiation

equality) to get the first principles estimate, from the method of the

operator field, 

ρΛ ( t 0 ) ∼= 

−M 

4 
Pl 

(
1 + c 2 , eff k 

2 
tr / 
(

360 π M 

2 
Pl 

))2 

64 

∑ 

j 

( −1 ) 
F n j 

ρ2 
j 

× t 2 tr 

t 2 eq 

×
( 

t 
2 / 3 
eq 

t 
2 / 3 
0 

) 3 

∼= 

−M 

2 
Pl ( 1 . 0362 ) 

2 
(
−9 . 194 × 10 −3 

)
64 

( 25 ) 
2 

t 2 0 

∼= 

(
2 . 4 × 10 −3 eV 

)4 
. 

(53)

where we take the age of the universe to be t 0 ∼= 

13.7 × 10 9 yrs. In

the latter estimate, the first factor in the second line comes from the

period from t tr to t eq which is radiation dominated and the second
8 The analysis in Ref. [ 25 ] of their renormalization group improved Einstein equa- 

tions finds a set of solutions in which one has power law inflation in the UV regime and 

one switches abruptly to the classical FRW solution with essentially zero cosmological 

constant at the transition time t tr . In other words, the solution to the renormalization 

group improved Einstein equations at the transition time and later is very well approxi- 

mated by non-running values of the gravitational and cosmological constant when one 

uses the FRW approximation. This also avoids issues of double counting of effects, for 

example. From our ( 52 ) one sees that allowing the running to continue past t tr would 

not change our result for ρΛ by very much at all, less than 8%. We ignore effects of such 

size here. 

 

 

 

 

 

factor comes from the period from t eq to t 0 which is matter dom-

inated. 9 This estimate should be compared with the experimental

result [ 30 ] 10 ρ�( t 0 ) | expt 
∼= 

((2 . 37 ± 0 . 05) × 10 −3 eV ) 
4 
. 

To sum up, in addition to our having put the Planck scale cosmol-

ogy [ 24 , 25 ] on a more rigorous basis, we believe our estimate of ρ�( t 0 )

represents some amount of progress in the long effort to understand

its observed value in quantum field theory. Evidently, the estimate

is not a precision prediction, as hitherto unseen degrees of freedom

may exist and they have not been included, for example. 

Indeed, we see that our result for the contribution to Λ from a

particle of rest mass m scales as 1 / ln 

2 (2 /λc ( m )) so that for masses

m � M Pl the larger the mass, the larger the contribution in magnitude.

We note that the t , b , c , s , d , u , τ , μ, e and the three neutrinos (together)

contribute respectively 21.1%, 17.6%, 16.7%, 15.2%, 13.5%, 13.2%, 5.63%,

4.97%, 4.01% and 7.93% of Λ whereas the Higgs, W and Z bosons con-

tribute −1.73%, −5.10% and −10.1% of Λ respectively. The photon and

the gluon, taken together, contribute −2.51% of Λ, while the graviton

contributes −0.277% thereof. Naively, such dependence on particle

mass might appear to contradict the Appelquist–Carazzone decou-

pling theorem [ 51 ], by which larger values of m might be expected

to be more suppressed. Two comments are in order. First, the de-

coupling theorem in Ref. [ 51 ] was only proved for renormalizable

theories whereas the Einstein–Hilbert theory we deal with here is

(power-countingly) nonrenormalizable. After we resum the theory,

it is UV finite with a characteristic scale of ∼M Pl for the scale beyond

which the UV modes are suppressed. Again, this is not the hypoth-

esis of the Appelquist–Carazzone theorem. The key is the scale M Pl .

In the analyses presented above, we assume that m / M Pl � 1 in de-

riving our results. For a quantity such as the integral on the RHS of

the ( 48 ) for Λs , which diverges like 4-powers of the cut-off without

resummation and which has a dependence on M 

4 
Pl 

when we resum

the theory, the remaining dependence on the particle mass m arises

from the strength of the suppression of the modes beyond the char-

acteristic scale M Pl and this is stronger for the smaller values of m

because they are farther away from M Pl which dominates the inte-

gral, as we expect from the uncertainty principle. This phenomenon

becomes even more transparent if we consider masses m � M Pl , so

that we are not subject to effects of finite physical intrinsic scales.

For two masses m 1 , m 2 satisfying m i � M Pl , we calculate that the

contribution to Λs scales as m i M Pl so that we have the behavior one

would expect from summing the zero modes of a field of rest mass

m i when the resummation causes the phase space integral to cut-off

at a scale ∼M Pl yielding the factor −8 πG  N ( M 

3 
Pl 

m i ) since the vacuum

energy density of the field is given by (Here H is the usual free field

Hamiltonian density.) 

< 0 | H | 0 > ∼
∫ M Pl d 3 k 

( 2 π) 
3 

1 

2 
ω ( k ) = 

∫ M Pl d 3 k 

( 2 π) 
3 

1 

2 

√ 

k 2 + m 

2 
i 

where ω( k ) is the usual frequency for mode 
→ 

k of the field and reduces

to m i when k 2 � m 

2 
i . The larger mass makes a larger contribution

because its zero modes are larger. This naturally raises the question

of what would happen to our estimate if there would be a GUT theory

at high scale? We now comment on this. 

In the current status of the standard GUT phenomenology, we

know that the main viable approaches involve susy GUT ’ s because

the standard non-susy models have trouble to match the value of

sin 

2 θW 

and have the three SU 2 L × U 1 × SU (3) c couplings [ 52 , 53 ]

meet given their now precise values [ 30 , 54 ] at the scale M Z , the rest

mass of the Z 0 heavy gauge boson in the Glashow–Salam–Weinberg
9 The method of the operator field forces the vacuum energies to follow the same 

scaling as the non-vacuum excitations. 
10 See also Ref. [ 50 ] for an analysis that suggests a value for ρ�( t 0 ) that is qualitatively 

similar to this experimental result. 
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11 In our analysis, we work on a flat background for our Fourier representations so 

that we have the usual Heisenberg connection between momentum space and position 

space – our k here is the not the same as the coarse graining scale k in Ref. [ 25 ]. 
heory [ 52 ]. To illustrate how a susy GUT might affect our estimate of 

we use the susy SO(10) GUT model in Ref. [ 55 ] for definiteness. 

In this model, the break-down of the GUT gauge symmetry to the 

ow energy gauge symmetry occurs with an intermediate stage with 

auge group SU 2 L × SU 2 R × U 1 × SU (3) c where the final break-down 

o the Standard Model [ 52 , 53 ] gauge group, SU 2 L × U 1 × SU (3) c , 

ccurs at a scale M R � 2 TeV while the breakdown of global susy 

ccurs at the (EW) scale M S which satisfies M R > M S . For our purposes 

he key observation is that susy multiplets do not contribute to our 

ormula in ( 52 ) when susy is not broken – there is exact cancellation 

etween fermions and bosons in a given degenerate susy multiplet. 

hus only the broken susy multiplets can contribute. In the model 

t hand, these are just the multiplets associated with the known SM 

articles and the extra Higgs multiplet required by susy in the MSSM 

 56 ]. In view of recent LHC results [ 57 ], we take for illustration the 

alues M R 
∼= 

4 M S ∼ 2.0 TeV and set the following susy partner values: 

m ˜ g 
∼= 

1 . 5 ( 10 ) TeV 

m ˜ G 

∼= 

1 . 5 TeV 

m ˜ q 
∼= 

1 . 0 TeV 

m ˜ � 
∼= 

0 . 5 TeV 

m 

˜ χ0 
i 

∼= 

{
0 . 4 TeV , i = 1 

0 . 5 TeV , i = 2 , 3 , 4 

m ˜ χ ±
i 

∼= 

0 . 5 TeV , i = 1 , 2 

m S = 0 . 5 TeV , S = A 

0 , H 

± , H 2 , 

(54) 

here we use a standard notation for the susy partners of the known 

uarks ( q ↔ ˜ q ), leptons ( � ↔ 

˜ � ) and gluons ( G  ↔ 

˜ G  ), and the EW

auge and Higgs bosons ( γ , Z 0 , W 

± , H , A 

0 , H 

± , H 2 ↔ ˜ χ) with the

xtra Higgs particles denoted as usual [ 56 ] by A 

0 (pseudo-scalar), H 

± (charged) and H 2 (heavy scalar). ˜ g is the gravitino, for which we 

how two examples of its mass for illustration. These particles then 

enerate the extra contribution 

�W ρ, GUT = 

∑ 

j∈ { MSSM low energy susy partners } 
( −1 ) 

F n j 

ρ2 
j 

∼= 

1 . 13 ( 1 . 12 ) × 10 −2 

(55) 

o the factor W ρ ≡∑ 

j 
( −1) F n j 

ρ2 
j 

on the RHS of ( 52 ) for the two respective 

alues of m ˜ g called out by the parentheses. The corresponding values 

f ρ� are −(1.67 × 10 −3 eV) 4 ( −(1.65 × 10 −3 eV) 4 ), respectively. The 

ign of these results would appear to put them in conflict with the 

ositive observed value quoted above by many standard deviations, 

ven when we allow for the considerable uncertainty in the various 

ther factors multiplying W ρ in ( 52 ), all of which are positive in our 

ramework. This may be alleviated either by adding new particles to 

he model, approach (A), or by allowing a soft susy breaking mass 

erm for the gravitino that resides near the GUT scale M GUT , which is 

4 × 10 16 GeV here [ 55 ], approach (B). In approach (A), we double 

he number of quarks and leptons, but we invert the mass hierarchy 

etween susy partners, so that the new squarks and sleptons are 

ighter than the new quarks and leptons. This can work as long as as 

e increase M R , M S so that we have the new quarks and leptons at 

 High ∼ 3.4(3.3) × 10 3 TeV while leaving their partners at M Low 

∼
.5 TeV. For approach (B), the mass of the gravitino soft breaking term 

hould be set to m ˜ g ∼ 2 . 3 × 10 15 GeV . More generally, our estimate 

n ( 53 ) can be used as a constraint of general susy GUT models and 

e hope to explore such in more detail elsewhere. This admittedly 

imited discussion of susy GUT effects highlights what one can expect 

or the impact on our estimate in ( 53 ) from higher mass scale physics. 

Moreover, we need to stress that the value of t tr cannot be taken 

s precise, as we now elaborate. Specifically, we are using for it the 

heory of Ref. [ 25 ]. We can see that the solution to the renormalization 

roup improved Einstein equations in Ref. [ 25 ] relates M Pl 
∼= 

ξH ( t tr ) 

 

α/ t tr where α = 1 / (2 − 2 �∗
�) with �∗

� equal to the relative vacuum 

nergy in the UV fixed point regime so that �∗
� ∈ (0 , 1) . Here, H is the
Hubble parameter as usual and ξ is of order unity and positive. For 

power law Planck scale inflation, we need α > 1, or �∗
� > 1 / 2 . The 

authors in Ref. [ 25 ] take as ‘generic ’ �∗
� = 0 . 98 which leads to α = 25

and in the solution to their renormalization group improved Einstein 

equations to the t tr = αt Pl = 25 t Pl that we have used here. Taking the 

difference between �∗
� and 1 an order of magnitude smaller would 

amount to fine tuning, so it is probably unreasonable. In addition, in 

order to match smoothly onto the FRW classical solution, t tr cannot 

be too close to t Pl , where the classical solution surely fails. Thus, we 

need α significantly larger than 1. In other words, what the authors in 

Ref. [ 25 ] have taken really does seem to be ‘generic ’ , as they put it. We

feel t tr could be smaller by a factor ∼3 and could be larger by a similar 

factor and still be ‘generic ’ . Even this error estimate alone would mean 

that our final result for ρ� is at least uncertain at the factor of 10 level 

in the Bonanno and Reuter model. This should be taken in addition to 

the uncertainty associated with the relation between the momentum 

scale k and the cosmological time t as we have indicated above for 

Ref. [ 25 ], where the estimates here realize this via Eqs. (2.2) and (5.1) 

in Ref. [ 25 ], k ( t ) = ξH ( t ) ∼= 

α/ t . 11 Given that we are switching from

the Planck regime to the FRW regime, there is uncertainty in t tr from 

both pieces of this last relation. Realistically, especially given the non- 

rigorousness of any argument based on fine tuning, we actually do not 

know the precise value of t tr at this point to better than a couple of 

orders of magnitude which translate to a conservative uncertainty at 

the level of 10 4 on our estimate of ρ� . We caution the reader to keep 

this in mind. 

We discuss in closing three final important matters that we have 

not mentioned: (1), the effect of the various spontaneous symmetry 

vacuum energies on our ρΛ estimate methodology as exhibited here; 

(2), the issue of the impact of our approach on big bang nucleosyn- 

thesis (BBN) [ 58 ]; and, (3), the covariance of theory in the presence 

of time dependent values of Λ and of G N . We consider these issues in 

turn, where we start with (1). 

From the standard methods we know for example that the en- 

ergy of the broken vacuum for the EW case contributes an amount of 

order M 

4 
W 

to ρ� . If we consider the GUT symmetry breaking we ex- 

pect an analogous contribution from spontaneous symmetry break- 

ing of order M 

4 
GUT . When compared to the RHS of ( 52 ), which is 

∼ ( −(1 . 0362) 
2 

W ρ/ 64) M 

4 
Pl 

� 

10 −2 

64 M 

4 
Pl 

, we see that adding these effects 

thereto would make relative changes in our results at the level of 

64 

10 −2 

M 

4 
W 

M 

4 
Pl 

∼= 

1 × 10 −65 and 

64 

10 −2 

M 

4 
GUT 

M 

4 
Pl 

∼= 

7 × 10 −7 , respectively, where 

we use our value of M GUT given above in the latter evaluation for 

definiteness. We do ignore such small effects here. 

Concerning the impact, or the lack thereof, of our approach to Λ on 

the phenomenology of big bang nucleosynthesis (BBN) [ 58 ], we recall 

that the authors in Ref. [ 25 ] have already noted that when on passes 

from the Planck era to the FRW era, a gauge transformation (from the 

attendant diffeomorphism invariance) is necessary to maintain con- 

sistency with the solutions of the system ( 2 ) (or of its more general 

form as given below) at the boundary between the two regimes at the 

transition time t tr . Requiring that the Hubble parameter be continu- 

ous at t tr the authors in Ref. [ 25 ] arrive at the gauge transformation 

on the time for the FRW era relative to the Planck era 

t → t ′ = t − t as (56) 

so that the continuity of the Hubble parameter at the boundary gives 

α

t tr 
= 

1 

2 ( t tr − t as ) 
(57) 
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when a ( t ) ∝ t α in the (sub-)Planck regime. This implies 

t as = 

(
1 − 1 

2 α

)
t tr . (58)

In our case, we have from Ref. [ 25 ] the generic case α = 25, so that 

t as = 0 . 98 t tr . (59)

Here, we have used the diffeomorphism invariance of the theory to

choose another coordinate transformation for the FRW era, namely, 

t → t ′ = γ t (60)

as a part of a dilatation where γ now satisfies the boundary condition

required for continuity of the Hubble parameter at t tr : 

α

t tr 
= 

1 

2 γ t tr 
(61)

so that 

γ = 

1 

2 α
. (62)

The model in Ref. [ 25 ] purports that, for t > t tr , one has the time t ′ and

an effective FRW cosmology with such a small value of Λ that it may

be treated as zero. Here, we extend this by retaining Λ �= 0 so that we

may estimate its value. But, with our diffeomorphism transformation

between the (sub-)Planck regime and the FRW regime, we can see

that, at the time of BBN, the ratio of ρΛ to 3 H 2 

8 πG N 
is 

�Λ ( t BBN ) = 

M 

2 
Pl ( 1 . 0362 ) 

2 9 . 194 × 10 −3 ( 25 ) 
2 
/ 
(

64 t 2 BBN 

)
( 3 / ( 8 πG  N ) ) 

(
1 / ( 2 γ t BBN ) 

2 
)

∼= 

π10 −2 

24 
= 1 . 31 × 10 −3 

. 

(63)

Thus, at t BBN our ρΛ is small enough that it has a negligible effect on

the standard BBN phenomenology. We see that the uncertainty in the

value of α, which is the value of t tr in units of 1 
M Pl 

, does not affect

the estimate in ( 63 ) because the factors of α2 = 25 2 cancel between

the numerator and the denominator on the RHS of the first line of

( 63 ). This is in contrast with our estimate of ρΛ( t 0 ) in ( 53 ) where the

dependence on α2 = 25 2 is not cancelled, as we have discussed above. 

Turning next to the issue of the covariance of the theory when �

and G N depend on time, we follow in Eq. ( 2 ) the corresponding real-

ization of the improved Friedmann and Einstein equations as given

in Eqs. (3.24) in Ref. [ 24 ]. We note that the equations in ( 2 ) should be

compared to the more general realization given in Eqs. (2.1) in Ref.

[ 25 ] – we have effectively followed the latter realization in our dis-

cussions in this Section. The difference between the two realizations

is the solution of the constraint following from Bianchi ’ s identity: 

D 

ν ( �g νμ + 8 πG  N T νμ) = 0; (64)

for, in ( 2 ), this identity is solved for a covariantly conserved T μν as well

whereas in Eq. (2.1) in Ref. [ 25 ], one has the modified conservation

requirement, as we noted above, 

ρ̇ + 3 
ȧ 

a 
( 1 + ω ) ρ = − Λ̇ + 8 πρĠ  N 

8 πG  N 
(65)

to be compared with ( 2 ) in which the RHS of this latter equation is

set to zero. The phenomenology which we referenced from Ref. [ 24 ]

is qualitatively unchanged by the simplification in ( 2 ) but of course

the details of the that phenomenology, such as the (sub-)Planck era

exponent for the time dependence of a , etc., are affected, as is the

relation between Λ̇ and Ġ  N in ( 2 ). What we can say is that ( 2 ) contains

a special case of the more general realization of the Bianchi identity

requirement when both � and G N depend on time whereas what

we have done in this Section uses that more general realization. We

should also note that only when Λ̇ + 8 πρĠ  N = 0 holds is covariant

conservation of matter in the current universe guaranteed and that
either the case with or the case without such guaranteed conservation

is possible provided the attendant deviation is small. Detailed studies

of such deviation, including its maximum possible size, can be found

in Refs. [ 59 –61 ]. 

We want however to stress again that the model Planck scale cos-

mology of Bonanno and Reuter which we use is just that, a model.

More work needs to be done to remove from it the type of uncertain-

ties which we just elaborated in our estimate of Λ. We look forward,

however, to additional possible checks from experiment with just this

latter goal in mind. 

Note added 

Here, we point out for clarity that in computing Λ in the Planck

regime the assumption of K = 0 is presumed as that is the only case for

which the Bonanno–Reuter Planck scale cosmology has been shown

to allow a smooth connection from the Planck regime for times near

or earlier than the Planck time to the semi-classical FRW regime for

times after t tr . For K = 0, by definition, equal time slices are flat 3-

spaces, exactly as we have employed in the vacuum states used to

compute the zero-point energies that comprise Λ. Thus the results in

Sections 3 and 4 are fully self-consistent. 
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Appendix 1. Evaluation of gravitational infrared exponent 

In the text, we use several limits of the gravitational infrared ex-

ponent B 

′′ 
g defined in ( 28 ). Here, we present these evaluations for

completeness. 
We have to consider 

−B ′′ g ( p ) = 
∫ 

d 4 k S ′′ g ( k ) 

k 2 − λ2 + iε
= 
∫ 

d 4 k 

( 2 π) 
4 

( k 2 − λ2 + iε) 

i 1 
2 

(
ημν ημν + ημν ημν − ημμηνν

)
( −iκ p μ) ( 2 ip μ ) ( −iκ p ′ ν ) ( 2 i p ′ ν ) 

( k 2 − 2 kp + � + iε) ( k 2 − 2 kp ′ + �′ + iε) 
| p = p ′ 

= 2 iκ2 p 4 

16 π4 

∫ 
d 4 k 

( k 2 − λ2 + iε) 

1 

( k 2 − 2 kp + � + iε) 
2 

, 

(66)

where � = p 2 − m 

2 . The integral on the RHS of ( 66 ) is given by 

I = 

∫ 
d 4 k (

k 2 − λ2 + iε
) 1 (

k 2 − 2 kp + � + iε
)2 

= 

−iπ2 

p 2 
1 

x + − x −

[ 
x + ln 

(
1 − 1 / 

(√ 

2 x + 
))

− x − ln 

(
1 − 1 / 

(√ 

2 x −
))] 

with 

x ± = 

1 

2 
√ 

2 

( 
� + λ

2 ±
((

� + λ
2 
)2 − 4 

(
λ

2 − i ε
))1 / 2 

) 
(67)

for � = 1 − m 

2 /p 2 , λ
2 = λ2 /p 2 and ε = ε/p 2 . In this way, we arrive at

the results, for p 2 < 0, 

B 

′′ 
g ( p ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

κ2 
∣∣∣p 2 ∣∣∣

8 π2 
ln 

( 
m 

2 

m 

2 + 

∣∣p 2 ∣∣
) 

, m �= 0 

κ2 
∣∣∣p 2 ∣∣∣

8 π2 
ln 

( 
m 

2 
g 

m 

2 
g + 

∣∣p 2 ∣∣
) 

, m = m g = λ

2 κ2 
∣∣∣p 2 ∣∣∣

8 π2 
ln 

( 
m 

2 
g 

| p 2 | 

) 
, m = 0 , m g = λ, 

(68)

where we have made more explicit the presence of the observed small

mass, m g , of the graviton. When m = 0 and one wants to use dimen-

sional regularization for the IR regime instead of m g , we normalize
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Fig. 2. The graviton((a),(b)) and its ghost((c)) one-loop contributions to the graviton 

propagator. q is the 4-momentum of the graviton. 

Fig. 3. The scalar one-loop contribution to the graviton propagator. q is the 4- 

momentum of the graviton. 
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12 This regime is for numerical convenience only, as it allows us to work with a 

simple quadratic equation in q 2 in determining the Fourier transform of the graviton 

propagator below. It is justified because the pole position which we find at non-zero q 2 

satisfies it. There is no problem of principle to treat the exact result, and it will appear 

elsewhere. 
he propagator at a Euclidean point k 2 = −μ2 and use standard fac- 

orization arguments [ 62 –66 ] to take the factorized result for B 

′′ 
g from 

 68 ) as 

B 

′′ 
g ( p ) 

∣∣
factorized 

= 

2 κ2 
∣∣∣p 2 ∣∣∣

8 π2 
ln 

( 
| μ2 | 
| p 2 | 

) 
, m = 0 , m g = 0 . (69) 

n physical applications, such mass singularities are absorbed by the 

efinition of the initial state “parton” densities and / or are canceled 

y the KLN theorem in the final state; we do not exponentiate them 

n the exactly massless case. 

We stress that the standard analytic properties of the 1PI 2pt func- 

ions obtain here, as we use standard Feynman rules. Wick rotation 

hanges the Minkowski space Feynman loop integral 
∫ 

d 4 k with 

 = ( k 0 , k 1 , k 2 , k 3 ) for real k j and k 2 = k 0 2 − k 1 2 − k 2 

 − k 3 2 into the integral i 
∫ 

d 4 k E with k = ( ik 0 , k 1 , k 2 , k 3 ) and

 

2 = −k 0 
2 − k 1 

2 − k 2 
2 − k 3 

2 ≡ −k 2 E with k E the Euclidean 4-vector k E 
 ( k 0 , k 1 , k 2 , k 3 ) with metric δμν = diag (1, 1, 1, 1). Thus our results rig-

rously correspond to | p 2 | = −p 2 in ( 68 ), ( 69 ) with m 

2 replaced with

 

2 − i ε, with ε↓ 0, following Feynman, for p 2 < 0; by Wick rotation 

his is the regime relevant to the UV behavior of the Feynman loop 

ntegral. Standard complex variables theory then uniquely specifies 

ur exponent for any value of p 2 . 

ppendix 2. Graviton inverse propagator 

To obtain the result in ( 40 ) we first consider [ 9 ] the diagrams in 

igs. 2 and 3 . These graphs have a superficial degree of divergence 

n the UV of + 4 and are a test of our methods because, in the usual 

reatment of the theory, they generate a UV divergence in the respec- 

ive 1PI 2-point function for the coefficient of q 4 which can not be 

emoved by the standard field and mass renormalizations. 

For example, consider the graph in Fig. 3 a. When we use our re- 

ummed propagators, we get (here, k → ( ik 0 , 
→ 

k ) by Wick rotation, 
and we work in the transverse-traceless space) 

i �( q ) 
1 a 
μν; μν = iκ2 

∫ 
d 4 k 

2 ( 2 π) 
4 

(
k ′ μk ν + k ′ νk μ

)
e 

κ2 
∣∣∣∣k ′ 2 

∣∣∣∣
8 π2 

ln 

( 
m 2 

m 2 + 
∣∣∣k ′ 2 ∣∣∣

) 

(
k ′ 2 − m 

2 + iε
)

(
k ′ μk ν + k ′ νk μ

)
e 

κ2 
∣∣∣k 2 ∣∣∣

8 π2 
ln 

( 
m 2 

m 2 + 
∣∣∣k 2 ∣∣∣

) 

(
k 2 − m 

2 + iε
) . 

(70) 

We see explicitly that the exponential damping in the deep Euclidean 

regime has rendered the graph in Fig. 3 a finite in the UV. For the same 

reason, all of the graphs in Figs. 2 and 3 are UV finite when we use 

our respective resummed propagators to compute them. 

To evaluate the effect of the corrections in Figs. 2 and 3 on the 

graviton propagator, we continue to work in the transverse, traceless 

space and isolate the effects from Figs. 2 and 3 on the coefficient of 

the q 4 in the graviton propagator denominator, 

q 2 + 

1 

2 
q 4 �T ( 2 ) + iε (71) 

so that we need to evaluate the transverse, traceless self-energy func- 

tion ΣT ( q 2 ) that follows from ( 70 ) for Fig. 3 a and its analogs for Figs.

3 b and 2 by the standard methods. Here, we work in the expectation 

that, in consequence to the newly UV finite calculated quantum loop 

effects in Figs. 2 and 3 , the Fourier transform of the graviton propa- 

gator that enters Newton ’ s law, our ultimate goal here, will receive 

support from from | q| 2 � M 

2 
Pl 

. We will therefore work in the limit 

that q 2 /M 

2 
Pl 

is relatively small, � .1, for example. 12 This will allow us 

to see the dominant effects of our new finite quantum loop effects. 

In other words, we will work to ∼10% (leading-log) accuracy in what 

follows. See Appendix 2 for more discussion on this point. 

First let us dispense with the contributions from Figs. 2 b and 3 b. 

These are independent of q 2 so that we use a mass counter-term to 

remove them and set the graviton mass to 0. Following the sugges- 

tion of Feynman in Ref. [ 33 ], we will change this to a small non-zero 

value below to take into account the recently established small value 

of the cosmological constant [ 29 , 30 ]. See also the discussion in Refs. 

[ 67 –70 ] where it is shown that the quantum fluctuations in the ex- 

act de Sitter metric implied by the non-zero cosmological constant 

correspond in general to a mass for the graviton. Here, as we expand 

about a flat background, we take this effect into account as a small 

infrared regulator for the graviton. The deviations from flat space in 

the deep Euclidean region that we study due to the observed value of 

the cosmological constant are at the level of e 10 −61 − 1 ! This is safely 

well beyond the accuracy of our methods. 

Returning to Fig. 3 a, when we project onto the 

transverse, traceless space, that is to say, the gravi- 
ton helicity space { e μν( ± 2) = ε

μ
± εν± , where εν± = 

± ( ̂ x ± i ̂  y ) / 
√ 

2 when ̂  x , ̂  y are purely space-like and ( 
→ 

ˆ x , 
→ 

ˆ x , 
→ 

q / | → 

q 

| ) form a right-handed coordinate basis } , we get (see the Appendix 

3 ) the result 

i �T 
(

q 2 
)

3 a 
= 

−iκ2 m 

4 

96 π2 

∫ 1 

0 

dα

∫ ∞ 

0 

dx 
x 3 
(

2 ( x + 1 ) d + d 
2 
)

( x + 1 ) 
2 (x + 1 + d 

)2 ( 1 + x ) 
−λc x , (72) 

where λc = 

2 m 

2 

π M 

2 
Pl 

, d = α(1 − α) 
→ 

q 
2 
/m 

2 so that we have made the sub- 

stitution x = k 2 and imposed the mass counter-term as we noted. 

We have taken for definiteness q = (0 , 
→ 

q ). We also use q = | → 

q | when

there is no chance for confusion. We are evaluating ( 72 ) in the deep 
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UV where m 

2 / q 2 � 1 and where q 2 /M 

2 
Pl 

� 0 . 1 – see Footnote 8.

Accordingly, we get 

i �T 
(

q 2 
)

3 a 
= 

−iκ2 

96 π2 

( 
| → 

q | 2 m 

2 c 1 
3 

+ 

| → 

q | 4 c 2 
30 

) 
, (73)

where 

c 1 = I 1 ( λc ) = 

∫ ∞ 

0 
dx x 3 ( 1 + x ) 

−3 −λc x 

c 2 = I 2 ( λc ) = 

∫ ∞ 

0 
dx x 3 ( 1 + x ) 

−4 −λc x . 

(74)

Using the usual field renormalization, we see that Fig. 3 a makes the

contribution 

i ̃  �
T 
(

q 2 
)

3 a 
∼= 

−iκ2 
∣∣∣→ 

q 
∣∣∣4 c 2 

2880 π2 
(75)

to the transverse traceless graviton proper self-energy function. 

Turning now to Fig. 2 , the pure gravity loops, we use a contact

between our work and that of Ref. [ 47 ]. In Ref. [ 47 ], the entire set of

one-loop divergences has been computed for the theory in ( 6 ). The

basic observation is the following. As we work only to the leading

logarithmic accuracy in ln λc , it is sufficient to identify the correspon-

dence between the divergences as calculated in the n-dimensional

regularization scheme in Ref. [ 47 ] and as they would occur when λc

→ 0. This we do by comparing our result for ( 72 ) when q 2 → 0 with

the corresponding result in Ref. [ 47 ] for the same theory. In this way

we see that we have the correspondence 

− ln λc ↔ 

1 

2 − n/ 2 
. (76)

This allows us to read-off the leading log result for the pure gravity

loops directly from the results in Ref. [ 47 ]. Since − ln λc = ln M Pl 
2 −

ln m 

2 − ln 

2 
π

, we see that our exponentiated propagators have cut-off

our UV divergences at the scale ∼ M Pl and the correspondence in

( 76 ) shows the usual relation between the effective UV cut-off scale

and the pole in (2 − n / 2) in dimensional regularization. Note as well

that, if the small cosmological constant [ 29 , 30 ] is set to zero, 13 the

graviton is then exactly massless and we normalize its propagator at

a Euclidean point p 2 = −μ2 as is standard for massless non-Abelian

gauge theories for example. It follows that for the graviton case and

for all other cases where m = 0, as we explain in Appendix 1 (see

( 69 )), the mass m in ( 76 ) is replaced with m = μ – there is no zero

mass divergence in the case that the mass of the respective particle

is zero. The UV correspondence is the same in both the m �= 0 and m

= 0 cases. 

Specifically, the result in Ref. [ 47 ], when interpreted as we have

just explained, is that the pure gravity loops give a factor of 42 times

the scalar loops for the coefficient a 2 above when we work in the

regime where | q 2 | is relatively small compared to M 

2 
Pl 

. Here, we again

take into account the recent evidence for a non-zero cosmological

constant [ 29 , 30 ], which can be seen to provide the small non-zero

rest mass for the graviton, m g 
∼= 

3.1 × 10 −33 eV, which serves as an
13 For the reader unfamiliar with Feynman ’ s original observation [ 33 ] that, in his 

approach to QGR, one of the main effects of the cosmological constant is to give the 

quantum graviton field h μν a mass, we recall Einstein ’ s equation R μν − 1 
2 

g μν R + �g μν = 

−κ2 T μν , with R μν and T μν the respective Ricci and energy-momentum tensors. For g μν = 

ημν + 2 κh μν , we get R μν = κr μν + O( κ2 ), with r μν = �h μν − ∂ α∂ μh αν − ∂ α∂ ν h αμ + ∂ μ∂ ν h αα
so that, absorbing the Λημν term into the normal ordering constant- ημν term in T μν , we 

get the result r μν − 1 
2 
ημνr αα + 2 �h μν = κT ′ μν where here T ′ μν is now the normal ordered 

energy-momentum tensor, including the contribution from the graviton itself. This 

result shows that the field h μν , as already noted by Feynman [ 33 ], now has mass- 

squared 2 Λ working to leading order in Λ. We treat this as an IR regulator mass for a 

massless spin 2 field in Minkowski space over the Planck scale distances with which 

we work. Indeed, the non-zero value of Λ means the background metric should be of 

de Sitter type and this avoids the problems noted in Refs. [ 71 , 72 ] associated with a 

graviton mass different from zero in Minkowski space, as we explained further in the 

text above. 

 

 

 

IR regulator for the graviton. This is the value of rest mass in λc which

should be used for pure gravitational loops – see Footnote 9 for more

discussion on this point relevant to Refs. [ 71 , 72 ]. See the Appendix 1

for the derivation of the corresponding infrared exponents. 

We note that, for λc = 0, the constant c 2 is infinite and, as we have

already imposed both the mass and field renormalization counter-

terms, there would be no physical parameter into which that infinity

could be absorbed: this is just another manifestation that QGR, with-

out our resummation, is a non-renormalizable theory. 

Using the universality of the coupling of the graviton when the

momentum transfer scale is relatively small compared to M Pl , we can

extend the result for the scalar field above to the remaining known

particles in the Standard Model by counting the number of physical

degrees of freedom for each such particle and replacing the mass of

the scalar with the respective mass of that particle. For a massive

fermion we get a factor of 4 relative to the scalar result with the

appropriate change in the mass parameter from m to m f , the mass of

that fermion, for a massive vector, we get a factor of 3 relative to the

scalar result, with the corresponding change in the mass from m to

m V , the mass of that vector, etc. In this way, we arrive at the result that

the denominator of the graviton propagator becomes, in the Standard

Model, 

q 2 + �T 
(

q 2 
)

+ iε ∼= 

q 2 − q 4 
c 2 , eff 

360 π M 

2 
Pl 

, (77)

where we have defined 

c 2 , eff = 

∑ 

SM particles j 

n j I 2 ( λc ( j ) ) 

∼= 

2 . 56 × 10 4 
(78)

with I 2 defined above and with λc ( j) = 

2 m 

2 
j 

π M 

2 
Pl 

and [ 12 ] n j equal to the

number of effective degrees of particle j as already illustrated. The

values for Standard Model masses used in arriving at the numerical

value for c 2, eff in ( 78 ) are explained in the text. We also note that (see

Appendix 3 ) for λc → 0, we have found the approximate representa-

tion 

I 2 ( λc ) ∼= 

ln 

1 

λc 
− ln ln 

1 

λc 
−

ln ln 

1 
λc 

ln 

1 
λc 

− ln ln 

1 
λc 

− 11 

6 
. (79)

The results ( 77 ), ( 78 ) and ( 79 ) have been used in the text. 

Appendix 3. Evaluation of gravitationally regulated loop 

integrals 

In this section we present the derivation of the representations

which we have used in the text in evaluating the gravitationally reg-

ulated loop integrals in Figs. 2 and 3 . 

Considering the integrals in Fig. 3 to show the methods, we need

the result for 

I μν; μν = i 

∫ 
d 4 k 

( 2 π) 
4 

(
k ′ μk ν + k ′ νk μ

)
e 

κ2 
∣∣∣∣k ′ 2 

∣∣∣∣
8 π2 

ln 

( 
m 2 

m 2 + 
∣∣∣k ′ 2 ∣∣∣

) 

(
k ′ 2 − m 

2 + iε
)

(
k ′ μk ν + k ′ νk μ

)
e 

κ2 
∣∣∣k 2 ∣∣∣

8 π2 
ln 

( 
m 2 

m 2 + 
∣∣∣k 2 ∣∣∣

) 

(
k 2 − m 

2 + iε
) . 

(80)

In the limit that | q 2 | � M 

2 
Pl 

, standard symmetric integration methods

give us, for the transverse parts, 

I μν; μν = 

iπ2 {
g μν g μν + permutations 

}
I 0 (81)
12 
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here we have 

I 0 ∼= 

∫ 1 
0 dα

∫ ∞ 

0 dk k 3 

( 2 π) 
4 

k 4 e λc ( k 2 /m 

2 ) ln ( m 

2 / ( m 

2 + k 2 ) ) 

[ k 2 + m 

2 + | q 2 ∣∣α ( 1 − α) ] 
2 

(82) 

nd where we used the symmetrization, valid under the respective 

ntegral sign, 

 μk νk μk ν → 

k 4 

24 

{
g μν g μν + permutations 

}
(83) 

nd λc = 2 m 

2 / ( π M 

2 
Pl 

). The integral I 0 , with the use of the mass counter-
erm, then leads us to evaluate the difference, 

I = I 0 ( q ) − I 0 ( 0 ) ∼= 

∫ 1 
0 dα

∫ ∞ 

0 dx 

2 ( 2 π) 
4 

x 3 ( x + 1 ) 
−λc x 

( x + 1 ) 
2 (x + 1 + d 

)2 
(
−2 d ( x + 1 ) − d 

2 
)

(84) 

here we define here d = | q 2 | α(1 − α) /m 

2 . It is seen that the domi-

ant part of the integrals comes from the regime where x ∼ 1 / ( ρλc ) 

ith ρ = −ln λc , so that we may finally write 

�I = I 0 ( q ) − I 0 ( 0 ) 

∼= 

∫ 1 
0 dα

∫ ∞ 

0 dx 

2 ( 2 π) 
4 

x 3 ( x + 1 ) 
−λx 

( x + 1 ) 
2 (x + 1 + d 

)2 
(
−2 d ( x + 1 ) − d 

2 
)

∼= 

− | q | 2 I 1 
6 ( 2 π) 

4 
− | q | 4 I 2 

60 ( 2 π) 
4 
, 

(85) 

here we have defined 

I 1 ( λc ) = 

∫ ∞ 

0 
dx x 3 ( 1 + x ) 

−3 −λc x , 

I 2 ( λc ) = 

∫ ∞ 

0 
dx x 3 ( 1 + x ) 

−4 −λc x . 

he result ( 85 ) has been used in the text. 

For the limit in practice, where we have λc → 0, we can get accurate 
stimates for the integrals I 1 , I 2 as follows. Consider first I 2 . Write x 3 

 ( x + 1 − 1) 3 = ( x + 1) 3 − 3( x + 1) 2 + 3( x + 1) − 1 to get 

I 2 ( λc ) = 

∫ ∞ 

0 

dx 
(

( 1 + x ) 
−1 − 3 ( x + 1 ) 

−2 + 3 ( x + 1 ) 
−3 − ( x + 1 ) 

−4 
)

( 1 + x ) 
−λc x 

∼= 

∫ ∞ 

0 

dx ( x + 1 ) 
−1 −λc x − 11 

6 
. 

se then the change of variable r = λc x to get, for ρ = ln (1 /λc ), 

∫ ∞ 

0 

dx ( x + 1 ) −1 −λc x = 
∫ ∞ 

0 

dr 
e −r ln ( r+ λc ) −ρr 

r + λc 

= − ln λc + 
∫ ∞ 

0 

dr ln ( r + λc ) ( ln ( r + λc ) + r/ ( r + λc ) + ρ) e −r ln ( r+ λc ) −ρr 

∼= ρ + 
∫ ∞ 

0 

dr 

∞ ∑ 

j= 0 

1 

j! 

(
( ρ + 1 ) ( ∂/∂α) 

j+ 1 + ( ∂/∂α) 
j+ 2 
)

( ∂/∂ρ) 
j r αe −ρr | α= 0 

= ρ + 
∞ ∑ 

j= 0 

1 

j! 

(
( ρ + 1 ) ( ∂/∂α) 

j+ 1 + ( ∂/∂α) 
j+ 2 
)

( ∂/∂ρ) 
j 
� ( α + 1 ) ρ−α−1 | α= 0 

∼= ρ + − ( ρ + 1 ) ln ρ + ln 2 ρ
ρ − ln ρ

= ρ − ln ρ − ln ρ

ρ − ln ρ
. 

(86) 

his gives us the approximation 

I 2 ( λc ) = ρ − ln ρ − ln ρ

ρ − ln ρ
− 11 

6 
(87) 

hen λc → 0, as we noted in the text. 

The integral I 1 is a field renormalization constant so, in the usual 

enormalization program, we do not need it for most of the applica- 

ions. Here, we will discuss it as well for completeness. We get 

I 1 ( λc ) = 

∫ ∞ 

0 
dx ( 1 + x ) 

−λc x − 3 

(
I 2 ( λc ) + 

11 

6 

)
+ 

5 

2 

= 

∫ ∞ 

dx ( 1 + x ) 
−λc x − 3 I 2 ( λc ) − 3 , 
0 
where, as above, we use ∫ ∞ 

0 
dx ( 1 + x ) 

−λc x = 

∫ ∞ 

0 dr 

λc 
e −r ln ( r+ λc ) −rρ

∼= 

∫ ∞ 

0 dr 

λc 

∞ ∑ 

j= 0 

1 

j! 
( ∂/∂ρ) 

j 
( ∂/∂α) 

j r αe −ρr | α= 0 

= 

1 

λc 

∞ ∑ 

j= 0 

1 

j! 
( ∂/∂ρ) 

j 
( ∂/∂α) 

j 
� ( 1 + α) ρ−α−1 | α= 0 

∼= 

1 

λc 

1 

ρ − ln ρ
. 

Thus, we get 

I 1 ( λc ) ∼= 

1 

λc 

1 

ρ − ln ρ
− 3 I 2 ( λc ) − 3 . (88) 

Finally, let us show why we can neglect the terms d that were in 

the denominators of I j , j = 1, 2. It is enough to look into the differences 

�I j = 

∫ ∞ 

0 dx x 3 

( x + 1 ) 
j 

⎛ 

⎝ 

1 

( x + 1 ) 
2 

− 1 (
x + 1 + d 

)2 
⎞ 

⎠ ( x + 1 ) 
−λc x , j = 1 , 2 , (89) 

where we note that the integral I 1 is absorbed by the standard field 

renormalization where here for convenience we do this at | q 2 | = 0 
when we neglect d in the denominator of I 1 or at the zero of the 
respective graviton propagator away from the origin otherwise. From 

this perspective, the main integral to examine to illustrate the level 

of our approximation becomes 

�I 2 = 

∫ ∞ 

0 dx 

( x + 1 ) 
2 

{ 
( x + 1 ) 

−λc x 

( x + 1 ) 
2 

− ( x + 1 ) 
−λc x (

x + 1 + d 
)2 
} 

= 

∫ ∞ 

0 dr e −r ln ( r+ λc ) −rρ

( r + λc ) 
2 

{ 
1 

( r + λc ) 
2 

− 1 

( r + λc + σ ) 
2 

} 

∼= 

∫ ∞ 

0 

dr 

∫ ∞ 

0 

dα1 α1 

∫ ∞ 

0 

dα2 α2 e 
−r ln r −r ρ−α1 ( r + λc ) −α2 ( r + λc ) 

(
1 − e −α2 σ

)
, 

(90) 

where we have defined σ = λc d . The approximation, valid for small 

values of σ , (
1 − e −α2 σ

) = 2 e −α2 σ/ 2 sinh ( α2 σ/ 2 ) 
∼= 

α2 σe −α2 σ/ 2 (91) 

then allows us to get 

�I 2 ∼= 

4 σ
∂ 2 

∂σ 2 

∫ ∞ 

0 

dr e −rρ

(
1 − λc + σ/ 2 

r + λc + σ/ 2 

)

∼= 

2 + ρσ + 2 ρσ

(
1 + 

1 

4 
ρσ

)
e ρσ/ 2 

( 
C + ln ( ρσ/ 2 ) + 

∞ ∑ 

n = 1 

( −1 ) 
n 
( ρσ/ 2 ) 

n 

n n ! 

) 
, 

(92) 

which shows that this difference is indeed non-leading log. The anal- 

ogous analysis holds for �I 1 as well. 
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