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We studied the low energy motion of particles in the general covariant version of Hořava–Lifshitz gravity
proposed by Hořava and Melby-Thompson. Using a scalar field coupled to gravity according to the
minimal substitution recipe proposed by da Silva and taking the geometrical optics limit, we could write
an effective relativistic metric for a general solution. As a result, we discovered that the equivalence
principle is not in general recovered at low energies, unless the spatial Laplacian of A vanishes. Finally,
we analyzed the motion on the spherical symmetric solution proposed by Hořava and Melby-Thompson,
where we could find its effective line element and compute spin-0 geodesics. Using standard methods
we have shown that such an effective metric cannot reproduce Newton’s gravity law even in the weak
gravitational field approximation.

© 2011 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

In [1,2], Hořava proposed an anisotropic gravity theory inspired
by the Lifshitz scalar [3] which has often been called Hořava–
Lifshitz (HL) gravity. In contrast with general relativity (GR), HL
gravity has the advantage of being power-counting renormalizable.

HL theory is built on the basic assumption of anisotropic scaling
between space and time, i.e.,

xi → bxi, t → bzt (1)

where z is the dynamical critical exponent. The scaling dimension
of an operator φ is defined by its transformation under (1). If φ →
b−sφ, then [φ] = s is the scaling dimension of φ. We assume z =
D , a necessary condition in order to achieve power counting in
(D + 1)-dimensional gravity.

In a theory with anisotropic scaling, space and time are fun-
damentally distinct. It is thus natural to use the Arnowitt–Deser–
Misner (ADM) formalism, splitting spacetime into space slices and
time. In the ADM formalism the spacetime metric is decomposed
as:

ds2 = −N2 dt2 + γi j
(
dxi + Ni dt

)(
dx j + N j dt

)
. (2)

Inspired by the ADM splitting, we build HL theory as a theory of
the fields N , Ni and γi j , which are, respectively, a scalar function,
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a 3-vector and a 3-dimensional metric tensor. The line element (2)
built with those fields is not a fundamental object in HL theory,
though, as we will show further in this Letter, an effective line
element arises in the low energy limit.

The spacetime anisotropy implies that GR’s general diffeomor-
phism invariance does not fit HL theory naturally. Thus, we con-
sider the local symmetries being restricted to

δt = f (t), δxi = ξ i(t, x j), (3)

which are the foliation preserving diffeomorphisms, Diff(M, F ),
where M is the spacetime manifold, provided with a preferred
foliation structure F .

If we restrict N to depend only on time, N = N(t) the the-
ory is called projectable. Otherwise, for N = N(t, xi), we have the
non-projectable HL theory. In this Letter we just consider the pro-
jectable version of HL theory.

The action of a (D + 1)-dimensional HL theory has the form:

S = S K − S V , (4)

where

S K =
∫

dt dD x
√

γ N
[

Kij G
ijkl K kl]

=
∫

dt dD x
√

γ N
[

Kij K i j − λK 2] (5)

is the kinetic term, which contains the time derivatives, with

Gijkl = 1 (
γ ikγ jl + γ ilγ jk) − λγ i jγ kl (6)
2
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being a generalized DeWitt metric. The λ parameter comes
from the absence of spacetime diffeomorphism symmetry due to
anisotropic scaling, and its GR value is λ = 1. A mechanism to
make λ be close to 1 in HL theory, at least at the IR limit, is neces-
sary to match observational constraints [4], but such a mechanism
is still unknown. Recently, it has been argued that λ �= 1 may spoil
the unitarity of quantum HL theory [5].

The spatial tensor Kij is the extrinsic curvature of spatial slices
defined by:

Kij = 1

2N
(γ̇i j − ∇i N j − ∇ j Ni) (7)

where a dot indicates the time derivative, ∇ is the covariant
derivative on the spatial slice Σ , whose metric γi j is used to raise
and lower indices.

The potential term S V is defined by:

S V =
∫

dt dD x
√

γ N V(γi j) (8)

where V is a scalar operator built with the spatial metric and
its spatial derivatives, with [V ] = 2z. The most general V in pro-
jectable HL theory contains all operators with six spatial deriva-
tives of the metric or less. The most general parity invariant po-
tential is given in [6].

2. Covariant HL gravity

One of the issues of HL theory is the appearance of an extra
degree of freedom, which has been called scalar graviton or spin-0
graviton. Although the scalar graviton may decouple in the λ → 1
limit, as shown in [7] for projectable HL theory, it was the mo-
tivation for the construction of a version of HL theory with no
extra degree of freedom, by Hořava and Melby-Thompson [8]. This
theory was originally called general covariant gravity at a Lifshitz
point, but we will refer to it as the covariant HL theory, for short.

Hořava and Melby-Thompson constructed the covariant HL the-
ory for λ = 1 adding a U (1) extra gauge symmetry in the theory,

δα N = δαγi j = 0, δα Ni = ∇iα, (9)

and introducting the gauge fields A and ν , which transform under
U (1) as:

δα A = α̇ − Ni∂iα, δαν = α. (10)

The action of covariant HL theory for λ = 1 is

S
[
N, Ni, γi j, A, ν

]

=
∫

dt dD x
√

γ
[

K ij Ki j − K 2 + V(γi j)
] + Sν + S A, (11)

where

Sν =
∫

dt dD x
√

γ Nν

(
Rij − 1

2
γ i j R + Ωγ i j

)
(2Kij + ∇i∇ jν),

(12)

and

S A = −
∫

dt dD x
√

γ A(R − 2Ω), (13)

with Rij being the 3-dimensional Ricci tensor related to γi j and R
its trace.
3. The spherically symmetric solution

Hereafter, we specialize to the case D = z = 3. In [9] and [10],
the solutions with spherical symmetry in covariant HL gravity for
the case λ = 1 were found. Spherically symmetric solutions of co-
variant HL gravity coupled to electromagnetism are shown in [11].
We will be interested in what was called type (iii) solutions in [9].
The IR limit of this class of solutions was deduced in [8] by a sim-
ple argument. We can chose a gauge using U (1) symmetry that
fixes ν = 0, eliminating Sν from the total action. We obtain:

S = ζ 2
∫

dt d3x
√

γ
[
N

(
K ij Ki j − K 2 + R + 2Λ

)

− A(R − 2Ω) + O
(
ζ−2)], (14)

where we have introduced the momentum scale ζ = (16πG)−1/2 ∼
1/lP (lP denotes the Planck length) by making the redefinitions:

t → ζ−2t, Ni → ζ 2Ni,

A → ζ 4 A, α → ζ 2α. (15)

The IR limit corresponds to making ζ → ∞. The O(ζ−2) terms
in the action turn out to be negligible, eliminating all the high
order spatial derivatives terms. If, in addition to the IR limit, we
suppose Kij = 0 and Λ = Ω , the action we obtain is:

S =
∫

dt d3x
√

γ (N − A)(R − 2Λ), (16)

which is the GR action for Kij = 0, if we identify

N
(
t, xi) ≡ N(t) − A

(
t, xi), (17)

where N is the general relativistic function lapse in the ADM
formalism. In the case of vanishing cosmological constant, the
Schwarzschild metric is a well-known solution of (16), with:

N = 1, A = 1 − √
f (r),

γi j dxi dx j = dr2

f (r)
+ r2 dΩ2, (18)

where f (r) = 1 − 2M
r . If we interpret solution (18) as equivalent

to GR’s Schwarzschild solution, this suggests that the gauge field
A(t, xi) may be closely related to the gravitational potential. The
way the U (1) gauge theory can be understood as a limit of dif-
feomorphisms of the type δt = ξ(t, xi), as shown in [8,9], seems to
reinforce this interpretation.

On the other hand, solution (18) has been interpreted by Green-
wald et al. in [12] as a Einstein–Rosen bridge. According to this
point of view, the A-field has no direct relation with the relativistic
lapse, being simply a (time-vector and space-scalar) field coupled
with the ADM fields in the theory. However, they did not take into
account the possible role of the coupling between matter and the
A-field as we are doing here.

4. Matter coupling and equivalence principle

In [13], a recipe to build Lagrangians of fields coupled to co-
variant HL gravity was proposed. Using that recipe, the action of a
scalar field takes the general form:

S = 1

2

∫
dt d3x

√
γ N

×
[

1

N2

(
φ̇ − N̂ i∂iφ

) + c0(φ)φ�φ + m2φ2 + · · ·
]

+
∫

dt d3x
√

γ
[
c1(φ)�φ + c2(φ)∇ iφ∇iφ

]
(A − a), (19)
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where � = γi j∇ i∇ j , N̂i = Ni − ∂iν , a = ν̇ − N j∇ jν + N
2 ∇ iν∇iν

and we omitted the high spatial derivative terms and a possible
potential. We will be interested here in the weak field limit of
this action, which amounts to consider only the terms in the ac-
tion up to quadratic order in φ. In this case we have c0(φ) = c0,
c1(φ) = c1φ and c2(φ) = c2, where c0, c1 and c2 are constants. To
further simplify our equations, we choose the gauge ν = 0.

Under those assumptions, the φ equation of motion in the IR
limit is

D2φ + K Dφ − c0�φ + m2φ − I(φ, A) = 0, (20)

where D = 1
N (∂t − Ni∂i) and

I(φ, A) = b

[
A

N
�φ + ∇iφ∇ i

(
A

N

)]
+ c1φ�

(
A

N

)
, (21)

with b ≡ 2(c1 − c2).
Before the analysis of the special case (18), we consider the

geometrical optics limit of the field φ in a general background,
as a mean to find the equation of motion of classical particles in
covariant HL theory. This procedure has already been discussed for
projectable and non-projectable HL theory [14–16] and the results
they have obtained are transfered for covariant HL theory only in
case of vanishing A-field.

To proceed with the geometrical optics approximation, we write

φ
(
t, xi) = R

(
t, xi)eiS(t,xi), (22)

insert (22) into (21), consider the real part of it, suppose that S
derivatives are much larger than R derivatives and keep only the
leading order terms. We obtain:

− 1

N2

[
(∂t S)2 − 2Ni∂i S∂t S + (

Ni∂i S
)2]

+
(

c0 + b
A(t, xi)

N

)
γ i j∂i S∂ j S

= −m2 + c1�

(
A

N

)
+ bγ i j ∂i R

R
∂ j

(
A

N

)
. (23)

The last two terms on right-hand side of (23) are not usual and
must be addressed. The last one, bγ i j ∂i R

R ∂ j(
A
N ), can be safely dis-

carded as negligible as long as ∂ j(
A
N ) is bounded in the considered

spacetime region, as we suppose the limit ∂ R 
 ∂ S . The other one,
c1�( A

N ) cannot be discarded by the same argument and we must
maintain it.

We should remember that in the ADM formalism we have the
following identities for the four-dimensional metric gμν :

g00 = − 1

N2
, g0i = Ni

N2
, gij = hij − Ni N j

N2
, (24)

where hij stands for the 3-dimensional metric tensor.
Eq. (23) is a Hamilton–Jacobi equation. Defining xμ = (t, xi),

pμ = ∂μS and using (24), we can write:

H
(
xμ, pμ,τ

) = −gμν pμpν − m2 + c1�

(
A

N

)
= 0, (25)

where gμν dxμ dxν ≡ ds2
e is the effective line element:

ds2
e = −N2 dt2 + γi j

c0 + b A(xμ)
N

(
dxi + Ni dt

)(
dx j + N j dt

)
. (26)

First, we must remark that (26) is different from the line element
(2) from which we started, unless b A(xμ) vanishes. This interpre-
tation of (26) as an effective relativistic line element is consistent
provided c0 + b A(xμ)

> 0.
N
Secondly, the super-Hamiltonian (25) contains a coordinate de-
pendent potential given by c1�( A

N ), where we remind that � is
the Laplacian related to γi j and not to the effective metric. It
means that, in general, covariant HL gravity coupled with scalar
matter does not respect the weak form of the principle of equiva-
lence [17], even in the IR limit, as the equation of motion of other-
wise free particles is mass dependent.

The violation of the equivalence principle in the UV limit is a
well-known property of HL-type theories, as the high energy cor-
rections of the geodesic equation depend on m/M p , where M p ∼ ζ

is the Planck mass. Such corrections may be small enough at ac-
cessible energies to be compatible with experimental data. This is
not the case for the IR violation of equivalence principle we found,
which is a covariant HL only effect.

5. Motion in the Schwarzschild-like background

In this section we study the motion of particles in the back-
ground given by (18), using the method discussed above. We
should first note that �A = 0 in this case, therefore the weak
equivalence principle is satisfied and the motion of free particles
will be mass independent in this background. Moreover, the cou-
pling between A and φ depends only on the parameter b.

Inserting the background (18) in (20) we obtain:

∂2
t φ − [

c0 + b
(
1 − √

f (r)
)]

�φ + bf (r)∂r

√
f (r)∂rφ + m2φ = 0.

(27)

As we must obtain standard Klein–Gordon equation in flat
spacetime in the limit r → ∞, we set c0 = c2 = 1.

Using the substitution (22) and following the same steps, we
find the particular case of Eq. (23):

−(∂t S)2 + [
1 + b(1 − √

f )
]∇i S∇ i S + bf ∂r

√
f
∂r R

R
= −m2. (28)

The last term on left-hand side is not dangerous since f ∂r
√

f =
1
3 ∂r f 3/2 is positive for r > 2M , bounded from above and behaves
as O (M/r2) for large r. Thus, considering ∂r R small, we can safely
discard this term as well and insert (18) into (26) to obtain the
effective line element:

ds2
e = −dt2 + [

1 + b(1 − √
f )

]−1
(

dr2

f
+ r2 dΩ2

)
, (29)

which, at first sight, has no resemblance with Schwarzschild space-
time.

To show that this is indeed the case, we must test this effec-
tive metric in well-known situations, using the standard GR tools.
The cases of visible light or classical particle at low velocity in the
Sun’s exterior gravitational field both fit our approximations very
well and could, at least in principle, lead us to restrain the value
of b, which is the only free parameter in our equations.

After a standard calculation, we obtain, at first order, the de-
flection of massless particles in the geometry given by (29) as

δφ = 4M

r0

(
2 − b

4

)
, (30)

where r0 is the impact parameter. This coincides with the GR
result for b = −2. This coincidence, despite the differences be-
tween (29) and Schwarzschild spacetime, is due to the fact that
null geodesics are invariant by conformal transformations and (29)
is conformally related to

ds2
c = −(1 + b − b

√
f )dt2 + dr2

+ r2 dΩ2, (31)

f
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which can be expanded for small M/r as:

ds2
c = −

[
1 + bM

r
+ O

(
M2

r2

)]
dt2 + dr2

f
+ r2 dΩ2, (32)

which coincides with Schwarzschild metric at leading order for
b = −2.

If we use massive test particles the result is different, as con-
formally related spacetimes are inequivalent. Considering, for in-
stance, a radial motion of a massive particle in (29), we have

−ṫ2 + [
1 + b(1 − √

f )
]−1

f −1ṙ2 = −1, (33)

where the dot stands for d/dτ and τ is the proper time. The con-
served quantity related to time independence of (29) is ṫ ≡ E .
Substituting into (33), we obtain

1

[1 + b(1 − √
f )] f

ṙ2 = E 2 − 1. (34)

Eq. (34) is clearly incompatible to what we know about gravi-
tational physics. Consider, for example, a particle with initial con-
ditions r(τ = 0) = r0 and ṙ(τ = 0) = 0, that is, a particle dropped
at a point r0. According to (34) this particle will stay indefinitely
at rest!

It is instructive to write Eq. (34) as sum of kinetic and potential
energy, to first order in M/r:

1

2
ṙ2 + E(2 − b)

M

r
= E, (35)

where E = 1
2 (E 2 − 1) is the mechanical energy per unit mass. We

can interpret (35) as an energy dependent gravitational constant,
and we have E = 0 in the case of a dropped particle, hence, a par-
ticle at rest does not feel any gravitational field, thus stays still.
If we interpret (18) as the gravitational field of a central mass,
this is utterly irreconcilable with Newton’s gravitational law, which
should been valid at the limit of weak gravitational field and low
velocities, as we had taken. It is worth noting also that the force
can be repulsive as well, depending on the value of b.

6. Final remarks

We conclude our analysis by stating that the interpretation
of the A-field given in [8], as a part of the GR function lapse,

N = N − A is not compatible with the prescription for coupling
covariant HL gravity to matter proposed by one of the authors
in [13]. If we do not stick with this interpretation of A, we need
not interpret (18) as a Schwarzschild-like spacetime in HL gravity.
However, it is still a spherically symmetric solution of the the-
ory and if covariant HL gravity effectively describes our universe,
we should study the stability of this solution to know whether it
is or it is not expected to be found in nature. We must remind
the reader that (34) is not the only spherically symmetric solu-
tion of covariant HL theory. One of the solutions found in [9,10]
is just Schwarzschild solution in Painleve–Gullstrand coordinates,
with A = ν = 0, whose effective IR line element is given by:

ds2 = −dt2 + (
dr + Nr dt

)2 + r2(dθ2 + sin2 θ dϕ2), (36)

with Nr = √
2M/r. In this case, at low energy, our scalar field

propagates in the same way it does in the relativistic case, lead-
ing to standard (and mass independent) Schwarzschild geodesics
in the geometrical optics limit.

Instead, it may be that the coupling recipe we used is inade-
quate and we should find another way to couple matter to gravity
in covariant HL theory. The fact that we do not recover the weak
equivalence principle in general seems to be an issue of such a
recipe. Maybe we should look for a way to relate U(1) transforma-
tions to boosts in Lorentz group, as the one suggested by Hořava
and Melby-Thompson in [8]. The Minkowski solution in covariant
HL gravity is:

N = 1, Ni = 0, gij = δi j, A = ν = 0. (37)

Since standard Lorentz boosts do not belong to Diff(M, F ),
they proposed that a Lorentz boost in covariant HL theory should
be composed of a foliation preserving diffeomorphism and a U(1)
transformation. Thus, a boost-like transformation in the x-direction
should be written:

t′ = t coshω,

x′ = x coshω − t sinhω,

α = −x sinhω. (38)

Solution (37) is invariant under transformation (38) with the
exception of the field ν , which defines a preferred frame. The stan-
dard action of a scalar field in flat spacetime,

S[φ] = 1

2

∫
dt d3x

[
(∂tφ)2 − (�∂φ)2], (39)

is invariant under (38), as it contains no coupling with ν . A cou-
pling between φ and the invariant A − a (which vanishes in (37))
may appear in the general case, as in the recipe used to build (19).
On the other hand, it seems that in this case matter should cou-
ple to Ni instead of the invariant N̂i = Ni − ∂iν we have used
here. However, it is not clear how we could build a full U(1) ×
Diff(M, F ) invariant action of a scalar coupled to a general solu-
tion in this manner.

Those two questions, the meaning of the A-field and the cou-
pling of covariant HL gravity to matter, are still widely open and
deserve further investigation.
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