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Abstract

The propagation of guided waves in photonic crystal fibers (PCFs) is studied. The structure of a PCF can be regarded as a perfect
two-dimensional photonic crystal with a line defect along the invariant direction. This problem can be treated as an eigenvalue
problem for a family of noncompact self-adjoint operators. We prove that line defects do not change the essential spectrum of
the associated “background” medium. This result plays a key role for studying the influence of line defects on the “background”
spectrum. A modified Combes–Thomas estimate is also formulated.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Photonic crystals (PCs) are periodically structured dielectric media, which are designed to favor band gaps, i.e.,
monochromatic electromagnetic waves of certain frequencies cannot propagate through these structures. The fact
that photonic crystals exhibit band gaps that bear a resemblance to semiconductors has great importance in physics.
Since the first proposals of a photonic band gap effect by Yablonovitch [23] and John [12], lots of applications have
been studied. Among these applications, photonic crystal fibers (PCFs) as fundamental transmission medium to guide
electromagnetic waves have been intensively studied. See, e.g., [2,3,6,7,17,18]. Photonic crystal fibers consist of
a periodic array of two different optical transparent materials running through the length of the fibers with a central
defect which serve as cores for light guiding. Physically, guided waves (or guided modes) can be created in these
structures, i.e., electromagnetic waves of certain frequencies propagate along the line defects of these structures may
have finite transverse energy (or we can say that they are localized near the line defects) and radiating otherwise.

To the best of our acknowledge, although this phenomenon has been intensively studied in experiments and nu-
merical simulations, theoretical studies are few. Recently, we noticed that in [22], both the transverse electric (TE)
and transverse magnetic (TM) cases were studied. More precisely, in TM case, a guided wave has only longitudinal
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electric field and a purely transverse magnetic field. Similarly, in TE case, a guided wave has only longitudinal mag-
netic field and a purely transverse electric field. By dealing with the two 2D scalar differential equations, they proved
the exponentially decay of the guided waves in the cladding. They also proved the possibility of opening gaps in the
spectrum of the background spectrum making it possible to guide electromagnetic waves with suitable cores.

One can also deal with this problem under the assumption of weak guidance, i.e., small variations of electric per-
mittivity and magnetic permeability of the medium. Then guided waves have only transverse electric and transverse
magnetic fields, approximately. Under this assumption the problem can be reduced into a scalar problem in the trans-
verse plane of a photonic crystal fiber. However, for photonic crystal fibers used in practice, this scalar approximation
is generally not valid, due to great variations of electric permittivity and magnetic permeability of the medium. So it
is very important to study the vectorial problem not only in theory but also in practice.

The goal of this paper is to give a mathematical framework for understanding this phenomenon. For this purpose,
we use the theory developed in [8,9]. The distinguishing point of our work, is that the results here are also hold
for the ordinary dielectric waveguides, where the ordinary waveguides is a cylindrical structure, with homogeneous
electric permittivity and magnetic permeability in longitudinal direction and inhomogeneous electric permittivity and
magnetic permeability in the transverse plane. This paper is a first step in rigorously explaining the spectral properties
of guided modes in photonic crystal fibers. The existence of eigenvalues created by line defects, exponential decay
property of the corresponding eigenfunctions and other interesting issues have been studied in [19].

The outline of the remainder of this paper is as follows: In Section 2, we show that this problem can be treated
as an eigenvalue problem for a family of noncompact self-adjoint operators. We prove the self-adjointness of these
operators in Section 3. In Section 4, we prove the stability of the essential spectrum, i.e., line defects do not change
the essential spectrum of the associated “background” medium (in fact we only require background medium to be
invariant in one direction, the periodic condition of the background medium in the transverse plane is unnecessary).
This is a fundamental result for studying their point spectrum. Since the proof of the Combes–Thomas estimate used
in Section 4 is complex, we will list it as Section 5 separately. It is worth noting that this estimate is also very useful
for studying the exponential decay property of guided waves [19].

2. Mathematical formulation

First we will give a rigorous description of some special photonic crystals and photonic crystal fibers. We will
adapt some notations for convenience in the following:

�x = (x, x3) ∈ R
3, x = (x1, x2) ∈ R

2.

We consider lossless inhomogeneous dielectric medium occupying the whole space R
3. The functions ε(�x)

and μ(�x) which describe the medium are called electric permittivity and magnetic permeability, correspondingly.
We assume that ε(�x) and μ(�x) are invariant under any translation in the x3 direction

ε(�x) = ε(x), μ(�x) = μ(x). (1)

It is reasonable physically that there exist constants c1 and c2 such that

0 < c1 � ε(�x),μ(�x) � c2 < ∞ a.e. (2)

If they are periodic functions of the transverse variable x with period Y = R
2/Z

2, i.e.,

ε(x + �n) = ε(x), μ(x + �n) = μ(x) for all �n ∈ Z
2, x ∈ R

2, (3)

these structures are often called (two-dimensional) photonic crystals, or photonic band gap materials [13]. Further-
more, a photonic crystal fiber is created if a line defect in parallel with x3-direction is introduced (see Fig. 1). We
describe the defect strip by

Ω̃ = {�x = (x, x3) ∈ R
3
∣∣ x3 ∈ R, x ∈ Ω

}
, (4)

where Ω is the support of the perturbation in the transverse plane. We assume that Ω is a measurable compact subset
of R

2. Without loss of generality, we also assume that 0 ∈ Ω . Inside the defect, the dielectric medium can be different
from the background medium. We define the background medium and the perturbed medium rigorously in Section 4.
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Fig. 1. The line defect is shown on the cross section of the photonic crystal fiber as a darker region.

It is worth noting that the results of this paper hold for all ε(x) and μ(x) which just satisfy (1) and (2). That is to say,
the condition (3) for ε(x) and μ(x) is unnecessary.

The Maxwell’s equations that govern light propagation in the medium in absence of free charges and currents look
as follows:⎧⎪⎪⎨

⎪⎪⎩
∇�x × E(�x, t) + ∂B(�x, t)

∂t
= 0, ∇�x · B(�x, t) = 0,

∇�x × H(�x, t) − ∂D(�x, t)

∂t
= 0, ∇�x · D(�x, t) = 0,

(5)

where E(�x, t),H(�x, t) are the electric and magnetic fields, and D(�x, t) and B(�x, t) are the displacement and magnetic
induction fields, correspondingly. The so-called constitutive relations are

D(�x, t) = ε(�x)E(�x, t), B(�x, t) = μ(�x)H(�x, t).

We consider time-harmonic waves

E(�x, t) = eiωt
E(�x), H(�x, t) = eiωt

H(�x),

where ω > 0 is the angular frequency. This leads from Eqs. (5) to{∇ × E(�x) + iωμH(�x) = 0, ∇ · (μH) = 0,

∇ × H(�x) − iωεE(�x) = 0, ∇ · (εE) = 0.
(6)

Definition 2.1. A guided mode is the solution of (6) on the form{
E(�x) = (

E1(x),E2(x),E3(x)
)�

e−iβx3,

H(�x) = (
H1(x),H2(x),H3(x)

)�
e−iβx3

(7)

and ∫
R2

(
ε|E|2 + μ|H |2)dx < ∞,

where

E = (
E1(x),E2(x),E3(x)

)�
, H = (

H1(x),H2(x),H3(x)
)�

and β > 0 is the wave number of the mode in the x3-direction.
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We will introduce some notations in the following:

∇β =
⎛
⎝ ∂1

∂2

0

⎞
⎠ − iβ

⎛
⎝0

0

1

⎞
⎠ =

⎛
⎝ ∂1

∂2

−iβ

⎞
⎠ ,

where ∂1 = ∂/∂x1, ∂2 = ∂/∂x2. Furthermore, we define

∇βφ = (∂1φ, ∂2φ,−iβφ)�,

∇β × �u = (∂2u3 + iβu2,−∂1u3 − iβu1, ∂1u2 − ∂2u1)
�,

∇β · �u = ∂1u1 + ∂2u2 − iβu3,

where �u = (u1, u2, u3)
� and φ = φ(x) is a scalar function.

Now plugging formula (7) into (6) and eliminating E or H , one obtains

ε−1∇β × μ−1∇β × E = λE (8)

and

μ−1∇β × ε−1∇β × H = λH,

where λ = ω2.
We first consider the E-formulation (8). In the following, some functional spaces are useful. We shall denote

for any 3D vector field �u = (u1(x), u2(x), u3(x))� the transverse field by u = (u1(x), u2(x))�, thus we have �u =
(u�, u3(x))�. We define

curlu = ∂1u2 − ∂2u1

and

H
(
curl;R

2) = {
u ∈ L2(R2)

∣∣ curlu ∈ L2(
R

2)}
with the norm

‖u‖2
H(curl;R2)

= ‖u‖2
L2(R2)2 + ‖curlu‖2

L2(R2)
.

A standard Sobolev space is also needed

H 1(
R

2) = {
φ ∈ L2(

R
2) ∣∣ ∇φ ∈ L2(

R
2)2}

.

Furthermore, we also define

Hε = L2(
R

2)3 (9)

equipped with the weighted inner product

(�u, �v)ε =
∫
R2

ε �u · �v dx

and the norm ‖�u‖ε = √
(�u, �v)ε , where �v means the conjugate of �v.

We introduce

Vε = {�u ∈ Hε | ∇β × �u ∈ Hε}.
The space Vε is a Hilbert space equipped with the norm

‖�u‖2
Vε

=
∫
R2

ε
(|�u|2 + |∇β × �u|2)dx.
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Lemma 2.1. Vε is isomorphic to H(curl;R
2) × H 1(R2) and the norm ‖ · ‖Vε is equivalent to the norm

‖ · ‖H(curl;R2)×H 1(R2), i.e.,

Vε = {�u ∣∣ �u = (
u�, u3

)� ∈ H
(
curl;R

2) × H 1(
R

2)}.
Proof. We notice that

‖�u‖2
Vε

= ‖�u‖2
Hε

+ ‖∇β × �u‖2
Hε

=
∫
R2

ε
(|�u|2 + |∂2u3 + iβu2|2 + |∂1u3 + iβu1|2 + |∂1u2 − ∂2u1|2

)
dx

=
∫
R2

ε
(|�u|2 + |∇u3 + iβu|2 + |curl u|2)dx. (10)

This implies

‖�u‖Vε � C‖�u‖H(curl;R2)×H 1(R2)

for some constant C < ∞.
On the other hand, for �u ∈ Vε , using (10) and for some integer n � 1 + 2β2, we have

‖�u‖2
Vε

= ‖�u‖2
Hε

+ ‖∇β × �u‖2
Hε

=
∫
R2

ε
(|�u|2 + |∇u3 + iβu|2 + |curlu|2)dx

=
∫
R2

ε
(|�u|2 + |∇u3|2 + β2|u|2 − 2β Im(u · ∇u3) + |curlu|2)dx

�
∫
R2

ε
(|�u|2 + |∇u3|2 + β2|u|2 − 2β|u||∇u3| + |curlu|2)dx

=
∫
R2

ε

(
1

n
|u3|2 + 1

n
|∇u3|2

)
dx +

∫
R2

ε

(
1

2
|u|2 + 1

2
|curlu|2

)
dx

+
∫
R2

ε

(
n − 1

n
|u3|2 + 1

2
|curlu|2

)
dx

+
∫
R2

ε

(
n − 1

n
|∇u3|2 +

(
1

2
+ β2

)
|u|2 − 2β|u||∇u3|

)
dx

� 1

n
c1‖u3‖2

H 1(R2)
+ 1

2
c1‖u‖2

H(curl;R2)

+
∫
R2

ε

(
n − 1

n
|∇u3|2 +

(
1

2
+ β2

)
|u|2 − 2β|u||∇u3|

)
dx

� 1

n
c1‖u3‖2

H 1(R2)
+ 1

2
c1‖u‖2

H(curl;R2)

+
∫
R2

ε

(
2

√
n − 1

n

√
β2 + 1

2
− 2β

)
|u||∇u3|dx

� 1
c1‖u3‖2

H 1(R2)
+ 1

c1‖u‖2
H(curl;R2)
n 2
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where c1 is defined in (2). This implies

‖�u‖Vε � C̃‖�u‖H(curl;R2)×H 1(R2)

for some constant C̃ < ∞. This completes the proof. �
Some simple properties about the operators ∇β×, ∇β · and ∇β should be noticed:

Lemma 2.2.

(i) ∇β · (∇β×) = 0,

(ii) ∇β × (∇β) = 0,

(iii) ∇β · (εE) = 0 for E = (E1,E2,E3)
� satisfies (8) and λ 	= 0. (11)

Proof. One can easily check (i) and (ii). From Eq. (8),

∇β × μ−1∇β × E = λεE, (12)

applying (i) to (12) for λ 	= 0, one obtains (iii). �
Remark 2.1. Identity (iii) of Lemma 2.2 means that all physical solutions must satisfy the divergence free condition
for λ > 0.

3. Self-adjointness

In the following, we will first give a space decomposition which is analogous to the classical Hodge decomposition
(also called Helmholtz decomposition or Weyl decomposition in some literature).

Lemma 3.1. The space Hε can be decomposed to the direct sum of the spaces Hε(β) and G(β),

Hε = Hε(β) ⊕ G(β), (13)

where

Hε(β) = {�u ∈ Hε

∣∣ ∇β · (ε �u) = 0
}

(14)

and

G(β) = {∇βφ
∣∣ φ ∈ H 1(

R
2)}.

The sum (13) is orthogonal with respect to the scalar product with the weight ε(x) dx.

Proof. For arbitrary �u ∈ Hε , introduce the unique weak solution φ ∈ H 1(R2) of ∇β ·(ε∇βφ) = ∇β ·(ε �u), i.e., φ solves
the weak formulation∫

R2

(ε∇βφ) · ∇βψ dx =
∫
R2

(ε �u) · ∇βψ dx

for any ψ ∈ H 1(R2). We set �v = �u − ∇βφ, then we have

0 =
∫
R2

(ε �u − ε∇βφ) · ∇βψ dx

=
∫
R2

(∇β · (ε �u − ε∇βφ)
)
ψ dx

=
∫
R2

(∇β · (ε�v)
)
ψ dx for all ψ in H 1(

R
2).

This implies �v ∈ Hε(β) and orthogonality of the spaces between Hε(β) and G(β). Thus the lemma is proved. �
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Definition 3.1. The unbounded operator Aε(β) is defined by

Aε(β)�u = ε−1∇β × μ−1∇β × �u
with

D
(
Aε(β)

) = {�u ∈ Vε

∣∣ ∇β × μ−1∇β × �u ∈ Hε

}
.

We can describe the structure of Aε(β) by

Lemma 3.2.

(i) KerAε(β) = G(β),

(ii) ImAε(β) ⊂ Hε(β).

Proof. (i) By (ii) of Lemma 2.2 we have G(β) ⊂ KerAε(β). Conversely, if �u ∈ KerAε(β), by Green’s formula, we
have

0 =
∫
R2

∇β × (
μ−1∇β × �u) · �udx =

∫
R2

μ−1|∇β × �u|2 dx,

this implies

∇β × �u = 0,

i.e., ⎧⎨
⎩

∂2u3 + iβu2 = 0,

−∂1u3 − iβu1 = 0,

∂1u2 − ∂2u1 = 0.

Hence we have

�u =
(

− 1

iβ
∂1u3,− 1

iβ
∂2u3, u3

)�

= i

β
(∂1u3, ∂2u3,−iβu3)

�

= i

β
∇βu3.

Since ∇βu3 ∈ G(β), this implies KerAε(β) ⊂ G(β). Thus, KerAε(β) = G(β).
(ii) is the immediate consequence of (i) of Lemma 2.2. �
Since Aε(β)|G(β) = 0, we have σ(Aε(β)) = {0} ∪ σ(Aε(β)|Hε(β)∩Vε ). It is natural to work on the restriction

of Aε(β) to the space Hε(β) ∩ Vε , i.e.,

Aε(β) ≡ Aε(β)|Vε(β),

where

Vε(β) = Hε(β) ∩ Vε = {�u ∈ Vε

∣∣ ∇β · (ε �u) = 0
}
.

The nonnegative closed quadratic form aε(β; ·,·) corresponding to Aε(β) is

aε(β; �u, �v) =
∫
R2

(
μ−1∇β × �u) · ∇β × �v dx for all (�u, �v) ∈ Vε(β) × Vε(β). (15)

Next, a two-dimensional scalar valued operator div is defined by

divu = ∂1u1 + ∂2u2 for u = (u1, u2)
�.
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Theorem 3.1. For any β > 0, the operator Aε(β) is self-adjoint, uniformly positive and

σ
(
Aε(β)

) ⊂ [
ρ−β2,∞)

,

where

ρ− = infx∈R2

(
ε−1(x)μ−1(x)

)
> 0.

Proof.

aε(β; �u, �u) =
∫
R2

μ−1|∇β × �u|2 dx

� ρ−
∫
R2

ε|∇β × �u|2 dx

= ρ−
∫
R2

ε
(|∂2u3 + iβu2|2 + |∂1u3 + iβu1|2 + |∂1u2 − ∂2u1|2

)
dx

= ρ−
∫
R2

ε
(|∇u3 + iβu|2 + |curlu|2)dx

= ρ−
∫
R2

ε
(|∇u3|2 + β2|u|2 − 2β Im(u · ∇u3) + |curlu|2)dx. (16)

Notice that �u ∈ Hε(β),

∇β · (ε �u) = 0,

it implies that

div(εu) = iβ(εu3).

By Green’s formula, we have

−
∫
R2

εu · ∇u3 dx =
∫
R2

div(εu)u3 dx = iβ

∫
R2

ε|u3|2 dx.

Since ε is a real number, we have

−Im
∫
R2

εu · (∇u3) dx = −
∫
R2

ε Im
(
u · (∇u3)

)
dx = β

∫
R2

ε|u3|2 dx. (17)

Plugging identity (17) into (16) leads to

aε(β; �u, �u) � ρ−
∫
R2

ε
(|∇u3|2 + |curlu|2)dx + ρ−β2

∫
R2

ε
(|u|2 + 2|u3|2

)
dx

� ρ−β2‖�u‖2
ε . �

Remark 3.1.

(i) Theorem 3.1 is just the first step for studying the spectral properties of Aε(β). It is well known that the spectrum
of Aε(β) consists of an essential spectrum corresponding to a continuum of radiating modes (i.e., plane wave-like
modes) and a point spectrum corresponding to guided modes. Of course the radiating modes have no finite energy
in the transverse plane.

(ii) The results of Lemmas 3.1, 3.2 and Theorem 3.1 are similar to the versions of Lemmas 1.1, 1.2 and 2.1 in [14].
However, we should notice that the operator Aε(β) is different to the counterpart defined in [14].
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4. Stability of essential spectrum

In the following we set L (H) as the space of all bounded linear operators, where H is a Hilbert space, and
Com(H) as the subspace of L (H) of all compact operators.

We will also describe the background medium by ε0 and μ0, and the perturbed medium by ε and μ. However, it
should be noticed that we do not require ε0 and μ0 satisfying (3) until we give a statement.

We adapt Aε(β) as the perturbed operator according to Aε0(β). We also introduce

η(x) = μ−1(x) − μ−1
0 (x), ξ(x) = ε−1(x) − ε−1

0 (x)

and

η± = max
{±η(x),0

}
, ξ± = max

{±ξ(x),0
}
,

then we have

Aε(β) − Aε0(β) = (
ε−1∇β × μ−1∇β×) − (

ε−1
0 ∇β × μ−1

0 ∇β×)
= ((

ε−1∇β × μ−1∇β×) − (
ε−1

0 ∇β × μ−1∇β×))
+ ((

ε−1
0 ∇β × μ−1∇β×) − (

ε−1
0 ∇β × μ−1

0 ∇β×))
= (

ξ∇β × μ−1∇β×) + (
ε−1

0 ∇β × η∇β×)
.

By our hypotheses (4), both ξ and η are bounded measurable functions and they are supported inside Ω . ξ±∇β ×
μ−1∇β×, ε−1

0 ∇β × η±∇β× and Aε(β) − Aε0(β) is denoted by Aξ±, Aη± and S, respectively. It is easy to see
Aε±,Aη± are nonnegative self-adjoint operators. Since we have

S = Aξ+ − Aξ− + Aη+ − Aη−
and

Aε(β) = (
Aε0(β) + Aξ+ + Aη+

) − (Aξ− + Aη−),

it suffices to prove Theorem 4.1 below in the case that both ξ(x) and η(x) do not change their signs for all x. Without
loss of generality, we only consider the case ξ � 0 and η � 0.

Theorem 4.1 (Stability of essential spectrum).

σess
(
Aε(β)

) = σess
(
Aε0(β)

)
.

Proof. Since (Aε0(β)+ I )−nS(Aε0(β)+ I )−n is a Hilbert–Schmidt operator for arbitrary n � 1 which will be proved
in Theorem 4.2 below, this implies that (Aε0(β) + I )−nS(Aε0(β) + I )−n ∈ Com(H). This theorem follows from
Corollary XIII.4 in [20]. �
Theorem 4.2. For any ε(x) and μ(x) satisfying condition (2), any bounded measurable functions ξ(x), η(x) with the
same compact support and any n � 1, (Aε0(β) + I )−nS(Aε0(β) + I )−n is a Hilbert–Schmidt operator.

Proof. We first prove this theorem in the case S = ε−1
0 ∇β × η∇β×, where η � 0 has a compact support.

As we know that, if 0 � A � B , where A and B are two self-adjoint operators with B Hilbert–Schmidt, A is
also Hilbert–Schmidt. Hence, we can always find infinitely differentiable function η̃ with compact support such that
η(x)μ0(x) � η̃(x) for x ∈ R

2. Because

0 � ε−1
0 ∇β × η(x)∇β× � ε−1

0 ∇β ×
(

η̃

μ0

)
∇β×,

it is sufficient to consider the case η = η̃/μ0 with η̃ ∈ C∞
0 (Ωη), where Ωη represents the support of η. Also, let χη

denote the characteristic function of Ωη, then we have
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(
Aε0(β) + I

)−n(
ε−1

0 ∇β × η∇β×)(
Aε0(β) + I

)−n

= (
Aε0(β) + I

)−n(
ε−1

0 (∇βη̃) × μ−1
0 ∇β×)(

Aε0(β) + I
)−n

+ (
Aε0(β) + I

)−n(
ε−1

0 η̃∇β × μ−1
0 ∇β×)(

Aε0(β) + I
)−n

= (
Aε0(β) + I

)−n
χηε

−1
0 (∇β η̃) × μ−1

0 ∇β × (
Aε0(β) + I

)−1(
Aε0(β) + I

)−(n−1)

+ (
Aε0(β) + I

)−n
χηε

−1
0 η̃∇β × μ−1

0 ∇β × (
Aε0(β) + I

)−1(
Aε0(β) + I

)−(n−1)
.

Some notations are needed in the following

ε+
0 = sup

x∈R2
ε0(x), μ+

0 = sup
x∈R2

μ0(x),

ε−
0 = inf

x∈R2
ε0(x), μ−

0 = inf
x∈R2

μ0(x). (18)

Because Aε0(β) is a nonnegative operator on Hε0 , it is easy to see∥∥∇β × μ−1
0 ∇β × (

Aε0(β) + I
)−1∥∥ = ∥∥Aε0(β)

(
Aε0(β) + I

)−1∥∥
ε0

� ε+
0 . (19)

Next, we will estimate the term ‖∇β × (Aε0(β) + I )−1‖. For all �v ∈ Hε0 , we have

∥∥∇β × (
Aε0(β) + I

)−1�v∥∥2 =
∫
R2

∣∣∇β × (
Aε0(β) + I

)−1�v∣∣2
dx

� μ+
0

∫
R2

(∇β × (
Aε0(β) + I

)−1�v) · (μ−1
0 ∇β × (

Aε0(β) + I
)−1�v)

dx

= μ+
0

∫
R2

((
Aε0(β) + I

)−1�v) · (∇β × μ−1
0 ∇β × (

Aε0(β) + I
)−1�v)

dx

= μ+
0

∫
R2

((
Aε0(β) + I

)−1�v) · (ε0Aε0(β)
(
Aε0(β) + I

)−1�v)
dx

� μ+
0 ε+

0

∥∥(
Aε0(β) + I

)−1�v∥∥∥∥Aε0(β)
(
Aε0(β) + I

)−1�v∥∥
� μ+

0 ε+
0 ‖�v‖2.

Hence we have∥∥∇β × (
Aε0(β) + I

)−1∥∥ �
√

μ+
0 ε+

0 , (20)

where operator norm ‖ · ‖ is defined by

‖A‖ = sup
�0	=�v∈Hε

‖A�v‖
‖�v‖ .

Besides, it is easy to see∥∥(
Aε0(β) + I

)−1∥∥ � 1. (21)

Since tr|χη(Aε0(β) + I )−1χη|2 < ∞ by Theorem 4.3 below, we know that (Aε0(β) + I )−1χη is a Hilbert–Schmidt
operator. Then for this case the theorem is proved by employing (19), (20) and (21).

We then deal with the case

S = ξ∇β × μ−1∇β × .

Since μ−1 = η + μ−1
0 , we can rewrite S as

S = (ξ∇β × η∇β×) + (
ξ∇β × μ−1∇β×)

.
0
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For the first part, we can proof (Aε0(β) + I )−nξ∇β × η∇β × (Aε0(β) + I )−n is Hilbert–Schmidt by mimicking the
proof above. In the following, we only need to deal with the second part. Let χξ be the characteristic function of ξ ,
then we have(

Aε0(β) + I
)−n

ξ∇β × μ−1
0 ∇β × (

Aε0(β) + I
)−n

= (
Aε0(β) + I

)−n
χξ

ξ

ε0
Aε0(β)

(
Aε0(β) + I

)−1(
Aε0(β) + I

)−(n−1)
.

Also, it follows from Theorem 4.3 below that (Aε0(β) + I )−nχξ is Hilbert–Schmidt. Furthermore, we have∥∥Aε0(β)
(
Aε0(β) + I

)−1∥∥ � 1.

Hence we know that the theorem also holds in this case by employing the inequality above and (21). Thus we complete
the proof of this theorem. �

For simplicity of notations, the operators Aε0(β) and Aε0(β) are abbreviated to A0(β) and A0(β) in the following,
correspondingly.

We define

μ0 = sup
x∈R2

μ−1
0 (x), μ0 = inf

x∈R2
μ−1

0 (x) (22)

and

ε0 = sup
x∈R2

ε−1
0 (x), ε0 = inf

x∈R2
ε−1

0 (x). (23)

We shall also formally define some auxiliary operators

Y0(β)�u = −ε0ε
−1
0 ∇β

(
μ−1

0 ∇β · (ε0 �u)
)

and

W0(β)�u = A0(β)�u + Y0(β)�u
for any �u ∈ Hε0 . W0(β) is rigorously defined by the nonnegative self-adjoint operator on weighted Hilbert space
L2(R2; ε0(x) dx) given by the nonnegative quadratic form

w0(β; �u, �u) =
∫
R2

μ−1
0 |∇β × �u|2 dx + ε0

∫
R2

μ−1
0

∣∣∇β · (ε0 �u)
∣∣2

dx

for �u ∈ {�u | ∇β × �u ∈ L2(R2)3, ∇β · (ε0 �u) ∈ L2(R2)}.
By Green’ formula, one has(

W0(β)�u, �u)
ε0

= w0(β; �u, �u).

It follows from Lemma 3.1 that Y0(β)|Hε0 (β) = 0. Furthermore, if we set

Y0(β) = Y0(β)|G(β),

we have

W0(β) = A0(β) ⊕ Y0(β) (24)

by the decomposition (13). Particularly, if ε0(x) ≡ 1 and μ0(x) ≡ 1, we have

Θ ≡ (∇β × ∇β×) − ∇β(∇β ·)
= ∇β(∇β ·) − (∇β · ∇β) ⊗ I3 − ∇β(∇β ·)
= −�β ⊗ I3,

where �β = ∂2 + ∂2 − β2 is the operator in Hε and I3 is the identity operator on C3.
1 2 0
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Now we will give an auxiliary theorem needed in the proof of Theorem 4.2.

Theorem 4.3. (A0(β) + I )−1χD is a Hilbert–Schmidt operator, where D can be any bounded measurable subset
of R

2.

Since

0 �
(
A0(β) + I |Vεo (β)

)−1 ⊕ 0|G(β)

�
(
A0(β) + I |Vεo (β)

)−1 ⊕ (
Y0(β) + I |G(β)

)−1

= (
W0(β) + I

)−1
,

Theorem 4.3 is the immediate consequence of the following theorem:

Theorem 4.4. The operator (W0(β) + I )−1χD is a Hilbert–Schmidt operator, where W0(β) is defined in (24) and D

can be any bounded measurable subset of R
2.

In order to prove this theorem, we need some preparing work in the following.
We shall introduce some needed notations.

R := (
W0(β) + I

)−1
, T (t) := (tΘ + I )−1 for t > 0.

Lemma 4.1.

T (ε0μ0) � R � T (ε0μ0)

Proof. As we know that if A and B are self-adjoint operators with 0 < A < B , we have A−1 > B−1. Hence the lemma
follows from (22) and (23). �
Theorem 4.5. For arbitrary r > 1 and t > 0, there exists a constant M1 = M1(r, β, t) < ∞, such that

tr
(
χΩT r(t)χΩ

)
� M1 (25)

for any bounded measurable subset Ω ⊂ R
2.

Proof. Since

T r(t) = (tΘ + I )−r = t−r
(−� + β2 + t−1)−r

,

it is sufficient to prove

tr
(
χΩ

(−� + β2 + t−1)−r
χΩ

)
� t rM1(r, t),

where � = ∂2
1 + ∂2

2 . Let G(x,y;β2 + t−1) be the kernel according to the operator (−� + β2 + t−1)−r . Since for any
number k > 0, (−�+k)−r is a positive operator, we have G(x,y; k) � 0. The following formula is due to Simon [21],
formally

(H + E)−α = cα

∞∫
0

e−tH e−tEtα−1 dt

for α > 0, where cα is a constant expressible as a � function. Particularly, let H = −�, E = k and α = r . Then we
have

(−� + k)−r = cr

∞∫
et�e−tkt r−1 dt.
0
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Using the Fourier transform, we obtain

G(x,y; k) = c

∞∫
0

e−se− k|x−y|2
4s sr−2 ds (26)

for some constant c > 0, as desired. Here G(x,y; k) � 0 is the kernel of (−� + k)−r .
First of all, we shall show that for 0 < r < 1,

0 � G(x,y; k) � c̃
(√

k|x − y|)−(2−2r)
e−�|x−y|, (27)

where c̃ and � are two positive constants. Using a scaling argument, one can use the inequality (26) to obtain

G(x,y; k) = c

∞∫
0

e−se− k|x−y|2
4s sr−2 ds

= c

∞∫
0

e−k|x−y|2t e− 1
4t

(
k|x − y|2t)r−2

k|x − y|2 dt

= c
(√

k|x − y|)2r−2
∞∫

0

e−(k|x−y|2t+ 1
8t

)e− 1
8t t r−2 dt

� c
(√

k|x − y|)2r−2
e
−

√
k
2 |x−y|

∞∫
0

e− 1
8t t r−2 dt

� c̃
(√

k|x − y|)2r−2
e−�|x−y|,

for some constant c̃ > 0, where � =
√

k
2 . Note that we used the fact 0 < r < 1 to obtain the last inequality. In order

to prove tr(χΩ(−� + k)−rχΩ) � ∞ for r > 1, it suffices to prove that tr(χΩ(−� + k)− r
2 χΩ) is a Hilbert–Schmidt

operator for r
2 > 1

2 , or equivalently, to prove∫
Ω

∫
Ω

K2(x, y; k) dx dy < ∞,

where K(x,y; k) is the kernel of (−� + k)− r
2 .

We first consider the case 1
2 < r

2 < 1. We can use the estimate (27) to obtain

0 � K(x,y; k) � c′(√k|x − y|)−(2−2 r
2 )

e−�′|x−y|

for suitable c′ and �′ > 0. A simple calculation shows that∫
Ω

∫
Ω

((√
k|x − y|)−(2−r)

e−�′|x−y|)2
dx dy �

∫
Ω

∫
Ω

(√
k|x − y|)−2(2−r)

dx dy < ∞.

(Note that r
2 > 1

2 , i.e., r > 1.) Thus tr(χΩ(−� + k)− r
2 χΩ) is proved to be a Hilbert–Schmidt operator for 1

2 < r
2 < 1.

As a consequence, tr(χΩ(−� + k)−rχΩ) � ∞ for 1 < r < 2.
Moreover, recalling that if A and B are self-adjoint operators and 0 � A � B with trB < ∞, then trA < ∞. Note

that (−� + k)−p � kq−p(−� + k)−q for 0 < q < p. Thus we have tr(χΩ(−� + k)−rχΩ) < ∞ for r � 2. This
completes the proof of Theorem 4.5. �
Remark 4.1. Similar results appear in [1] and [9] for 3D case.
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We will also introduce some notations needed in the following. We set

�m = (m1,m2) ∈ Z
2

and χ �m as the characteristic function of the set

Ω �m =
{
x ∈ R

2
∣∣∣ −1

2
� x1 − m1 <

1

2
, −1

2
� x2 − m2 <

1

2

}
for �m ∈ Z

2,

and

R �m�n = χ �mRχ�n, χ �m�n = max{χ �m,χ�n}. (28)

It is easy to see that
∑

m∈Z2 χ �m ≡ 1.

Theorem 4.6. There exists a positive number M2 = M2(ε0,μ0) < ∞, such that

tr|R �m�n|2 = trR∗
�m�nR �m�n � M2 for all �m, �n ∈ Z

2.

Proof. Using Theorem 4.5 and Lemma 4.1, we have

tr|R �m�n|2 = trR∗
�m�nR �m�n

= trχ�nRχ �mχ �mRχ�n
= trχ�nRχ �mRχ�n
� trχ�nRχ �m�nRχ�n
= trχ�nχ �m�nRχ �m�nRχ �m�nχ�n
� trχ �m�nRχ �m�nRχ �m�n
= tr(χ �m�nRχ �m�n)2

� tr
(
χ �m�nT (ε0μ0)χ �m�n

)2

= trχ �m�nT (ε0μ0)χ �m�nT (ε0μ0)χ �m�n
� trχ �m�nT 2(ε0μ0)χ �m�n
� M1(2, ε0μ0)

= M2(ε0,μ0) < ∞. �
Lemma 4.2. Suppose A ∈ L (H) is a positive operator, where H is a Hilbert space. Then for any number s ∈ (0,1),

tr(A) � ‖A‖s tr
(
A1−s

)
.

Proof. One can prove this inequality easily by using the definition of the trace. More precisely, for any given ortho-
normal basis {un}∞n=1,

tr(A) =
∞∑

n=1

(un,Aun) =
∞∑

n=1

‖√Aun‖2 �
∞∑

n=1

∥∥(
√

A)s(
√

A)1−sun

∥∥2

� ‖√A‖2s
∞∑

n=1

∥∥(
√

A)1−sun

∥∥2 = ‖A‖s tr
(
A1−s

)
. �

Lemma 4.3. Let A � 0 be a bounded operator and P an orthogonal projection on a Hilbert space H . For any γ > 1,
we have

tr(PAP )γ � trPAγ P. (29)
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Proof. For the proof, we refer to Lemma 21 in [9]. �
Theorem 4.7. There exists a positive number M3 < ∞ such that

trχ �mR2χ �m � M3, ∀ �m ∈ Z
2.

Proof. Since 1 = ∑
�n∈Z2 χ�n = ∑

�n∈Z2 χ2
�n , we have

trχ �mR2χ �m =
∑
�n∈Z2

trχ �mRχ�nχ�nRχ �m =
∑
�n∈Z2

tr|R �m�n|2.

For α ∈ (0,1), it follows from Lemma 4.2 that

tr|R �m�n|2 = tr|R �m�n|α|R �m�n|2−α � ‖R �m�n‖αtr|R �m�n|2−α.

For α ∈ (0,1), we can use Corollary 5.3 of Section 5 to obtain∑
�n∈Z2

‖R �m�n‖α � 1

(ε−
0 )α

∑
�n∈Z2

‖χ �mR0χn‖α
ε0

� M3 for all �m ∈ R
2,

where ε−
0 is defined in (18). Hence we have

trχ �mR2χ �m �
∑
�n∈Z2

‖R �m�n‖αtr|R �m�n|2−α

� sup
�m∈Z2

(
tr|R �m�n|2−α

) ∑
�n∈Z2

‖R �m�n‖α

� M3 sup
�m∈Z2

(
tr|R �m�n|2−α

)
.

Next, we need to prove sup �m∈Z2(tr|R �m�n|2−α) < ∞. Note λj (A), j = 1,2, . . . (counting multiplicity) the singular
values of A ∈ Com(H), then we can easily verify that λj (A) = λj (|A|) = λj (A

∗), λj (BA) � ‖B‖λj (A) for all
B ∈ L (H) (for the proof, see, e.g., [9,11]). Using these properties we have

λ2
j (R �m�n) = λj

(|R �m�n|2
)

= λj

(
χ�nRχ �mRχ�n

)
� λj (χ�nRχ �m�nRχ�n)
� λj (χ �m�nRχ �m�nRχ �m�n)
= λj

(
(χ �m�nRχ �m�n)2)

= (
λj (χ �m�nRχ �m�n)

)2

�
(
λj

(
χ �m�nT (ε0μ0)χ �m�n

))2
.

Hence we have

λj (R �m�n) � λj

(
χ �m�nT (ε0μ0)χ �m�n

)
.

Note that 0 < α < 1, so 2 − α > 1. Applying (25) and (29), we have

tr|R �m�n|2−α =
∞∑

j=1

(
λj (R �m�n)

)2−α

�
∞∑

j=1

(
λj

(
χ �m�nT (ε0μ0)χ �m�n

))2−α

= tr
(
χ �m�nT (ε0μ0)χ �m�n

)2−α
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� tr
(
χ �m�nT 2−α(ε0μ0)χ �m�n

)
� M1(2 − α,β, t).

Thus the theorem is proved. �
It should be noticed that the proof of this theorem is just a similar version of Lemma 23 in [9].
Now we can complete the proof of Theorem 4.4.

Proof of Theorem 4.4. Since η has a compact support, we can conclude that there exists an index set J with |J | < ∞
(where |J | is the cardinality of the set J ), such that

suppD ⊂ ΩJ ,

where ΩJ = ⋃
�m∈J Ω �m. Hence we have RχD � RχΩJ

.
On the other hand, by applying Theorem 4.7, we have

tr|RχΩJ
|2 �

∑
�m∈J

tr|Rχ �m|2

=
∑
�m∈J

trχ �mR2χ �m

� |J | sup
�m∈J

trχ �mR2χ �m

< ∞.

Thus we know RχD is a Hilbert–Schmidt operator. �
5. A Combes–Thomas estimate

We first introduce some notations.
Let χx,h be the characteristic function of a square of side 2h centered at x, i.e.,

χx,h = χΩx,h

with

Ωx,h = {
y ∈ R

2
∣∣ |y1 − x1| � h, |y2 − x2| � h

}
,

and

R(z) = (
A0(β) − zI

)−1
.

We also denote 〈·,·〉 as the inner product of Hilbert space H with the norm ‖ · ‖.
Classical wave operators, e.g., acoustic operators and Maxwell operators, can be regarded as generalized

Schrödinger operators. Usually they satisfy a resolvent decay estimate which is called Combes–Thomas estimate
in mathematical physics. See, e.g., [5,8–10,16,21].

Theorem 5.1. Let z ∈ ρ(A0(β)), n ∈ N, h > 0 and 0 < ν < 1, then we have

∥∥χx,hR
n(z)χy,h

∥∥
ε0

�
((

1 + ν

1 − ν

)2 1

d

)n

e2
√

2hνθ0e−νθ0|x−y| for all x, y ∈ R
2,

with

θ0 = d

4

√
μ−

0

d + |z| ,

where
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d ≡ dist
(
z, σ

(
A0(β)

)) = inf
�u∈D(A0(β)),‖�u‖ε0 =1

∥∥(
A0(β) − zI

)�u∥∥
ε0

and μ−
0 is defined in (18). The norm in the left-hand side is the operator norm in Hε0 , where Hε0 is analogous to Hε

defined in (9).

Proof. We formally define the operators parameterized by α,

Aα(β) = e−α·x̃A0(β)eα·x̃ , α = (α′,0), α′ ∈ R
2 and x̃ = (x,0), x ∈ R

2,

as the closed densely operators on {�u ∈ C1
0(R2;C

3) | ∇β · �u = 0} uniquely defined by the corresponding quadratic
form

aα(�u, �u) =
∫
R2

μ−1
0 (∇β + α) × �u · (∇β − α) × �udx

= 〈
μ−1

0 (∇β + α) × �u, (∇β − α) × �u〉
.

We denote a0[�u] and aα[�u] as the abbreviation of aε0(�u, �u) and aα(�u, �u), respectively (where aε0(�u, �u) is defined in
the same way as aε(�u, �u) defined in (15)). Notice that

aα[�u] − a0[�u] = 〈
μ−1

0 (∇β + α) × �u, (∇β − α) × �u〉 − 〈
μ−1

0 ∇β × �u,∇β × �u〉
= −〈

μ−1
0 ∇β × �u,α × �u〉 + 〈

μ−1
0 ∇β × �u,α × �u〉 − 〈

μ−1
0 α × �u,α × �u〉

= −2i Im
(〈
μ−1

0 ∇β × �u,α × �u〉) − 〈
μ−1

0 α × �u,α × �u〉
,

then we have∣∣aα[�u] − a0[�u]∣∣ = (
4
(
Im

(〈
μ−1

0 ∇β × �u,α × �u〉))2 + (〈
μ−1

0 α × �u,α × �u〉)2) 1
2 .

Using the inequality

ab � 1

2γ
a2 + γ

2
b2 for all γ > 0,

we have∣∣aα[�u] − a0[�u]∣∣ �
(
4|α|2‖�u‖2(μ−

0

)−1
a0[�u] + (

μ−
0

)−2|α|4‖�u‖4) 1
2

= |α|‖�u‖(4
(
μ−

0

)−1
a0[�u] + (

μ−
0

)−2|α|2‖�u‖2) 1
2

� 1

2
|α|

((
1

γ
‖�u‖2

)
+ γ

(
4
(
μ−

0

)−1
a0[�u] + (

μ−
0

)−2|α|2‖�u‖2))

= 2|α|γ (
μ−

0

)−1
a0[�u] + 1

2
|α|

(
1

γ
+ γ

(
μ−

0

)−2|α|2
)

‖�u‖2.

Since we can choose γ sufficiently small such that 2|α|γ (μ−
0 )−1 < 1 for any fixed α, it follows Theorem VI 3.9

in [15] that aα[·] is sectorial and closed for |α| > 0. Then by the first representation theorem (Theorem VI 2.1 in [15])
we can define Aα(β) as the unique m-sectorial operator corresponding to aα[·].

Assume z ∈ ρ(A0(β)), if there exists 0 < ν < 1 such that

2
∥∥(

e + f A0(β)
)
R(z)

∥∥
ε0

� ν, (30)

where

e = 1

2
|α|

(
1

γ
+ (

μ−
0

)−2|α|2γ
)

, f = 2|α|(μ−
0

)−1
γ.

We can apply Theorem VI 3.9 in [15], further take into account the fact d = dist(z, σ (A0(β))) � 1
‖R(z)‖ε0

to conclude

that z ∈ ρ(Aα(β)) and
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∥∥Rα(z) − R(z)
∥∥

ε0
� 8‖(e + f A0(β))R(z)‖ε0

(1 − 2‖(e + f A0(β))R(z)‖ε0)
2

∥∥R(z)
∥∥

ε0

� 4ν

(1 − ν)2

1

d
,

where Rα(z) := (Aα(β) − zI)−1. Hence we have

∥∥Rα(z)
∥∥

ε0
�

(
1 + 4ν

(1 − ν)2

)
1

d
=

(
1 + ν

1 − ν

)2 1

d
. (31)

On the other hand,

2
∥∥(

e + f A0(β)
)
R(z)

∥∥
ε0

�
(
2e + 2f

(
d + |z|)) 1

d

= |α|
(

1

γ
+ (|α|(μ−

0

)−2 + 4
(
d + |z|)(μ−

0

)−1)
γ

)
1

d
.

Define

Φ(γ ) = 1

γ
+ (|α|2(μ−

0

)−2 + 4
(
d + |z|)(μ−

0

)−1)
γ.

One can easily find that

γ0 = (|α|2(μ−
0

)−2 + 4
(
d + |z|)(μ−

0

)−1)− 1
2 (32)

minimizes the function Φ(γ ) for γ > 0, so we have

Φ(γ0) = 2γ −1
0 = min

γ>0
Φ(γ ).

Hence

2γ −1
0

|α|
d

� ν (33)

ensures the inequality (30). Furthermore, plugging (32) into (33) and solving the inequality, we can conclude it suffices
to require

|α|2 � 1

2
μ−

0

√
16

(
d + |z|)2 + ν2d2 − 2

(
d + |z|)μ−

0

= 2
(
d + |z|)μ−

0

(√
1 + ν2d2

16(d + |z|2) − 1

)
.

We can also give a simple condition on |α| by applying Taylor expansion. Since
√

1 + x � 1 + x
2 for x > 0, we can

conclude that if

|α|2 � 2
(
d + |z|)μ−

0

(
−1 + 1 + 1

2

ν2d2

16(d + |z|)2

)

= μ−
0 ν2d2

16(d + |z|) ,

i.e., |α| � νd
4

√
μ−

0
d+|z| , (30) holds.

We set θ0 = d
4

√
μ−

0
d+|z| . In the following we assume that |α| � νθ0, then (31) holds. For any x0, y0 ∈ R

2, n ∈ N and

h > 0, let α = (
νθ0 (x0 − y0),0)�, we have
|x0−y0|
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∥∥χx0,hR
n(z)χy0,h

∥∥
ε0

= ∥∥χx0,he
−α·x̃Rn

α(z)eα·x̃χy0,h

∥∥
ε0

= ∥∥e−α′·(x0−y0)χx0,he
−α′·(x−x0)Rn

α(z)eα′·(x−y0)χy0,h

∥∥
ε0

� e−νθ0|x0−y0|∥∥χx0,he
−α′·(x−x0)

∥∥∞
∥∥Rα(z)

∥∥n

ε0

∥∥χy0,he
α′·(x−y0)

∥∥∞.

Since ∥∥χx0,he
±α′·(x−x0)

∥∥∞ � e
√

2|α|h

(notice that |α′| = |α|), we have

∥∥χx0,hR
n(z)χy0,h

∥∥
ε0

� e−νθ0|x0−y0|e
√

2|α|h
((

1 + ν

1 − ν

)2 1

d

)n

e
√

2|α|h

=
((

1 + ν

1 − ν

)2 1

d

)n

e2
√

2h|α|e−νθ0|x0−y0|

�
((

1 + ν

1 − ν

)2 1

d

)n

e2
√

2hνθ0e−νθ0|x0−y0|.

Thus the theorem is proved. �
Corollary 5.1. For any number s > 0 and any z ∈ ρ(A0(β)), there holds∑

�n∈Z2

∥∥χ �mR(z)χ�n
∥∥s

ε0
� C0 < ∞ for all �m ∈ R

2,

where χ �m and χ�n are defined in (28) and R(z) = (A0(β) − zI)−1.

Proof. For �m ∈ R
2 fixed, since νθ0 is a positive constant, we have

∑
�n∈Z2

∥∥χ �mR(z)χ�n
∥∥s

ε0
�

∑
�n∈Z2

((
1 + ν

1 − ν

)2 1

d

)s

e2s
√

2hνθ0e−sνθ0| �m−�n|

� K0

∑
�n∈Z2

e−sνθ0

√
(n1−m1)

2+(n2−m2)
2

� K0

∑
�n∈Z2

e
−sνθ0

|n1−m1 |+|n2−m2|√
2

� C0 < ∞,

where K0 = (( 1+ν
1−ν

)2 1
d
)se2s

√
2hνθ0 < ∞. �

We can also give Combes–Thomas estimates on the resolvent of operators Y0(β) and W0(β) in the following. We
can prove them by mimicking the proof of Theorem 5.1 and Corollary 5.1.

Let R̃(z) = (Y0(β) − zI)−1 for z ∈ ρ(Y0(β)). Then we have

Theorem 5.2. For any z ∈ ρ(Y0(β)), n ∈ N, h > 0 and 0 < ν < 1, there holds

∥∥χx,hR̃
n(z)χy,h

∥∥
ε0

�
((

1 + ν

1 − ν

)2 1

d ′

)n

e2
√

2hνθ1e−νθ1|x−y| for all x, y ∈ R
2,

with

θ1 = d ′

4

√
μ−

0

d ′ + |z| ,

where d ′ = dist(z, σ (Y0(β))).
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Corollary 5.2. For any number s > 0 and any z ∈ ρ(Y0(β)), there holds∑
�n∈Z2

∥∥χ �mR̃(z)χ�n
∥∥s

ε0
� C′

0 < ∞ for all �m ∈ R
2.

Because W0(β) = A0(β) ⊕ Y0(β), we have

R0 = (
A0(β) − zI |Vε0 (β)

)−1 ⊕ (
Y0(β) − zI |G(β)

)−1 = R(z) ⊕ R̃(z),

where R0 = (W0(β) − zI)−1. Then Theorem 5.3 below follows from Theorems 5.1 and 5.2.

Theorem 5.3. For any z ∈ ρ(W0(β)), n ∈ N, h > 0, and 0 < ν < 1, there holds

∥∥χx,hR
n
0χy,h

∥∥
ε0

�
((

1 + ν

1 − ν

)2 1

d ′′

)n

e2
√

2hνθ2e−νθ2|x−y| for all x, y ∈ R
2,

where θ2 = d ′′
4

√
μ−

0
d ′′+|z| with d ′′ = dist(z, σ (W0(β))).

Remark 5.1. It is worth noting that the resolvent decay exponentially fast, depending on d (the distance from z to the
edge of σ(W0(β))).

Furthermore, we also have

Corollary 5.3. For any number s > 0 and any z ∈ ρ(W0(β)), there holds∑
�n∈Z2

‖χ �mR0χn‖s
ε0

� C′′
0 < ∞ for all �m ∈ R

2.

Remark 5.2.

(i) It is worth noting that ε(x) and μ(x) may be any bounded measurable functions, thus the periodicity conditions of
ε(x) and μ(x) are unnecessary in the proof of Theorem 4.1. Our result is general, and the theorem of “stability of
the essential spectrum” presented in [4,14,22] can be regarded as a special case of ours. In [4,14], they considered
an infinite dielectric cylinder with an air cladding. In that case both ε(x)−1 and μ(x)−1 have compact supports,
noted as Ω . So there is a sufficiently large disk BR (where R means it’s radius), such that Ω ⊂ BR . Since outside
the disk, the medium is homogeneous, they proposed a constructive method to prove that the essential spectrum
is stable. However, since the medium can be inhomogeneous in the whole space that we considered here, their
method is failed here.

(ii) Generally speaking, Theorem 4.1 can be proved by verifying Aε(β) − Aε0(β) is relatively compact with respect
to Aε0(β), but unfortunately, this is not right.

(iii) The existence of eigenvalues in the band gap of photonic crystal fibers created by defects, exponentially decaying
property of the corresponding eigenfunctions and other interesting issues (e.g., embedding of eigenvalues in the
essential spectrum) have been studied in [19].
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