
Book review 91 

of concurrency, synchronisation and communication. Other aspects considered 

include its application to embedded and distributed systems, and implementation 

issues. 

The book is structured as follows. The introductory chapter classifies the various 

approaches that concurrent programming languages have adopted to handle process 

execution, synchronisation and communication. Chapter 2 gives a very brief overview 

of the Ada language, followed by a description of the Ada tasking model. Chapter 

3 summarises work undertaken on formal aspects of the model, such as formal 
semantics and proof systems. Chapter 4 is a detailed assessment of Ada as a general 

purpose concurrent programming language, using the classification of Chapter 1. 

Chapters 5 and 6 consider particular issues relating to embedded and distributed 

systems. Implementation of Ada tasking is discussed in Chapter 7, and proposed 

changes to the model are evaluated in Chapter 8. 

With 234 references, the authors succeed in their aim of comprehensively reviewing 

the Ada tasking model. There are no major omissions or errors: the book was 
completed before the 1987 Ada-UK/SIGAda International Workshop on Real-Time 

Ada Issues, the proceedings of which (Ada Letters VII (6), Fall 1987) further 

elaborate many of the topics concerning embedded and distributed systems. 

The main benefit of the book is probably in highlighting recognised problem areas 

with the tasking model. As a balance, perhaps more could have been said about 

the rationale for some of the tasking constructs, and also about the advantages, 

such as portability and stability, gained from having an IS0 standard language 

definition held unchanged for a decade. 

Some familiarity with concurrent programming in general is assumed on the part 

of the reader, and a previous knowledge of Ada is required to fully understand the 

algorithms given in the appendices. Hence, for a first introduction to Ada tasking, 

a publication such as Alan Burns ’ “Concurrent Programming in Ada” (CUP 1985) 

is more appropriate than this one, which will be of most interest to users and 

implementors of embedded or distributed Ada systems, and to programming 

language researchers. To this comparatively restricted audience, this book can 

certainly be recommended. 

Ian MEARNS 

Marconi Data Systems 

Chelmsford 

United Kingdom 

Computability Theory, Semantics and Logic Programming. By Melvin Fitting. Oxford 

Logic Guide 13, Oxford University Press, Oxford, 1987, Price X25.00 (hard 

cover), ISBN 0 19 503691 3. 

Many books invent a new language for pedagogical purposes. This book invents 

a whole panoply of them both declarative and imperative. The purpose is not, as 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82285016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


92 Book reviews 

usual, solely to cudgel the reader into adopting a particular paradigm but to explore 

the foundations of computation by implementing one in another. The book exem- 

plifies that we have no choice over what can be computed; the only choice we have 

is the way we choose to compute it. The bias of the book is that Logic Programming 
is the way. 

With this stance it polarizes its potential audience about an immutable demarcation 

line. It is strange how a discipline with logic in its name attracts such irrational 

feelings (both fanatically hostile and zealous, particularly among university pro- 

fessorial staff). However, coming across this book on library or bookstore shelf most 

Prolog devotees would not immediately recognise this as a book on Logic Program- 

ming, apart of course from the title. To begin with, a Prolog clause in Edinburgh 

syntax (with arguments suppressed) 

p := q, r, s, t. 

would be written in this book 

where the iogical implication + is assumed to be right associative. While the 

replacement of := by an implication symbol is commendable, Fitting’s syntax for 

Horn clauses is reminiscent of programs written on teletype terminals where every- 

thing has to be in upper case. I malign the syntax somewhat as only predicate 

symbols are in upper case but as you have by now appreciated I find it an annoyance 

that distracted from my appreciation of the book. 

One of the endearing features is that at the end of each Chapter there is a 

background section providing references to the original literature. It is interesting 

to note that Fitting appears to attribute Horn Clauses to Smullyan. (Horn clauses 

have been attributed to people other than Horn and indeed I understand that Horn 

is not a little embarrassed by having them named after him.) 

Another difference between Prolog and this book is that Prolog is concerned with 

backwards reasoning (modus tollens) while a family of related languages, EFS 
(elementary formal systems), introduced in the first two chapters is concerned with 

forward reasoning (modus ponens); in theorem proving circles this has been called 

hyperresolution. The different members of the family EFS are distinguished by their 

data structures. In the second and third chapters Fitting seeks to establish semantics 

for the members of EFS in terms of minimal models and least fixed points. In this 

respect the book can, naturally, be compared with Lloyd [l], the as yet only other 

book which considers the semantics of Logic Programming. 
Fitting describes the fixed point theory of the EFS family in terms of operators: 

functions which map relations to relattons while Lloyd views the semantics of Logic 

Programming from the more abstract setting of lattice theory. From personal teaching 

experience Fitting’s approach is much more accessible to students. Fitting defines 

a semifixed point of an operator T as a subset S of its domain such that T(S) G S 

(set inclusion). Lloyd doesn’t define this concept but uses it in passing. I believe it 



Book reviews 93 

is worth naming such sets as they turn out to be models of the program. Fitting 

also defines a notion of compactness which is used in establishing continuity of the 

immediate consequence operator. Again Lloyd proves that the immediate con- 

sequence operator has this property without naming it. It is such devices for breaking 

up, what appear to students complex proofs, which make Fitting’s book suitable 

for self study; Lloyd makes no concessions to the mathematically immature. Fitting’s 

proofs are simple and straight forward which make the book a suitable text for 

third year and possibly second year undergraduates while Lloyd, I believe, is strictly 

a graduate text. Furthermore, there are no vital missing steps in Fitting’s proofs; 

the same cannot be said for Lloyd’s book. My feelings about Lloyd’s book has 

been expressed by Lassez et al. [2] in relation to unification.. . those who do not 

realise the subtleties are often satisfied with a casual understanding, this leads to 

incorrect statements and when some flaw is expected in establishing an “intuitively 

obvious” result, the proof is left to the reader. 
From the pedagogical point of view Fitting’s book is to be preferred to Lloyd’s. 

However, Fitting doesn’t really consider negation (as beyond the scope of the book) 

while Lloyd’s book is mainly concerned with the semantics of negation as finite 

failure (this is where the mathematically interesting results are to be found). So to 

a large extent the comparison between the two books is unfair; Fitting’s book is 

pedagogical and mainly concerned with establishing concepts of computability, 

while Lloyd’s is a compendium of results on Logic programming. Lloyd [l] only 

devotes 3 pages and a single theorem to computability. Whereas Lloyd shows that 

Horn clause programs are capable of computing partially recursive functions, Fitting 

carefully builds up the argument that recursively enumerable relations are sound 

basis on which a theory of computation can be defined. 
To this end Chapter 4, on implementing data structures, takes a categorical 

viewpoint with data structures as objects and implementations of one in another as 

morphisms. Categorical terminology is not, however, used and everything is 

explained from the bottom up again making it suitable for undergraduates. 

The kernel Chapter, which the first four chapters merely serve to set up the 

machinery for, is Chapter 5. Fitting shows that EFS(string) can be implemented on 

an abstract model of a register machine. In the process of doing so he introduces 
two more programming languages IMP, a Pascal-like language and LOG a Prolog- 

like language and shows that they are all computationally equivalent and this he 

puts forward as empiric evidence for the Church-Turing thesis. The inspiration for 

the book can, perhaps, be seen in the paper by Tarnlund [4] on Horn clause 

computability. 

The final Chapter is the Orobos, in which the worm eats its tail and programs 

are treated as data. Decidability is defined and the theorem that the halting problem 

is not decidable proved. 
This book will not replace Lloyd as the main reference for the semantics of logic 

programming but I can’t believe, as has been rumored, that this is the intention. 

The book is an undergraduate level text (in the UK at least) on computability from 



94 Book reviews 

the unfashionable viewpoint of recursively enumerable relations. To this end the 

book has been carefully executed with all details explained. Knowing my colleagues, 

I feel certain that it will not, unfortunately, find a sympathetic audience either in 
the Logic Programming camp because of its emphasis on computability or in the 

theory of computation camp because of its bias to logic programming. Those who 

were expecting a more careful treatment of the semantics of logic programming 

than is provided by Lloyd will have to wait for the reportedly forthcoming book by 

Lassez and Maher. 

References 
[I] J. Lloyd (1987, 1984) Foundations of Logic Programming (Springer, Berlin, 1987). 
[2] J.-L. Lassez, M. J. Maher and K. Marriott, Unification revisited, Technical Report, IBM Yorktown 

Heights, 1987. 
[3] J.-L. Lassez, and M. J. Maher, 7ke Semantic.s qf Logic Programs (Oxford University Press, Oxford). 
[4] S. Tarnlund, Horn clause computability, BIT 17 (1977) 215-226. 

Graem RINGWOOD 

Department of Computing 

Imperial College 

London, United Kingdom 

The Design and Evaluation of a High-Performance Smalltalk System. By David 

Michael Ungar. MIT Press, Cambridge, MA, 1987, Price E26.95. 

Another book in the ACM distinguished dissertation series from MIT Press, 

Ungar’s thesis describes the implementation of Smalltalk on a derivative of the 

RISC-2 processor at the University of California, Berkeley. The Smalltalk on a 

RISC (SOAR) project encompassed both software and hardware techniques for 

increasing the efficiency of Smalltalk execution to a level suitable for implementation 

on inexpensive processors. Smalltalk suffers the overheads of dynamic binding, 

run-time type checking, garbage collection and heap-allocated stacks. In addition 

to the interpretive overheads, this makes naive Smalltalk implementations painfully 

slow. By compiling Smalltalk and providing the suitable architectural features, a 

SOAR processor with modest cycle time (400 ns) implements many macro-bench- 

marks faster than the definitive Dorado implementation (70 ns micro-cycle time). 

Most of the performance gains were achieved by software techniques suitable for 

implementation on any machine. Although compilation is the most important 

element, it is only briefly discussed in the book and little information is given about 

the compiler. However, effective techniques such as in-line caching of call targets 

and direct addressing are investigated. The main thrust of software techniques was 
aimed at improving garbage collection which typically accounts for lo%-15% of 

execution time. The generation scavenging garbage collector is described in detail 

(pidgin C source included) and statistics gathered to illustrate the effectiveness of 

the scheme and highlight areas for improvement. Generation scavenging maintains 

two areas of objects-a “newspace” which is garbage collected frequently (every 


