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Abstract 

The objective of this paper is to present investigations related to the performance of fluid film journal bearings incorporating the 
synergistic effects of elliptic bore and non-Newtonian rheology of lubricant. The Rabinowitsch fluid model has been employed 
herein for simulating the non-Newtonian rheology of lubricant and Reynolds equation is developed accordingly. The 
performance parameters (load carrying capacity, coefficient of friction, and stability) of bearing have been investigated and 
discussed herein in terms of ellipticity (of bearing bore) and non-linearity parameter (relating the non-Newtonian rheology). The 
combined effects of shear thinning of the lubricant and increase in the ellipticity of the bearing bore cause reduction in the load 
carrying capacity and increase in friction coefficient in comparison to plain circular bore journal bearing lubricated with 
Newtonian lubricant. However, increase in the ellipticity of bore alone enhances the stability of the rotor-bearing system. 
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Nomenclature 

ijc  Damping coefficient, N-s/m 

ijC  Dimensionless damping coefficient, ij ij rC c C W  

Cr Radial clearance, m 
 e Eccentricity, m 
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 f Coefficient of friction 

,x yF  Dimensionless forces in X and Y directions,  2
,, 0

2
x y rx yF C LF UR  

G Ellipticity parameter, max min rG R R C  

h   Dimensionless film thickness, rh h C   

ijK  Dimensionless stiffness coefficient, ij i rjK k C W  

L Length of the bearing, m 
m mass, kg 
P   Dimensionless pressure, 2

0rP C URP   

cP  Dimensionless cavitation pressure 

R Radius of journal, m 
U Journal surface velocity, m/s 
W  Dimensionless load, 2 2

0rW C LW UR   

x   Normalized x-coordinate, rx x C   

X  Normalized displacement perturbation in X-direction, / rX X C   

X   Normalized velocity perturbation in X-direction, / rX X C   

y  Normalized y-coordinate, / ry y C   
Y  Normalized displacement perturbation in Y-direction, / rY Y C   

Y   Normalized velocity perturbation in X-direction, / rY Y C   

z  Normalized z-coordinate, /z z L   
 
Greeks 
 

α Non-linearity parameter in Rabinowitsch fluid model 
δ Angle between the major axis of elliptic bore and load line, rad 

 Eccentricity ratio re C   
  Dimensionless viscosity ( 0 ) 

θ Angle, rad 
φ Fraction of film content 
ϕ Attitude angle 

 Journal angular speed, rad/s 

 Dimensionless shear stress, 
22

0rC U  

1. Introduction 

      Fluid film journal bearings are widely employed in rotating machinery for supporting the rotors for wide range 
of operating parameters. Usually it has been noticed that non-circularity defects in the bore of bearings develop at 
the micro-level during the operation due to the vibration, wear and misalignment at the interfaces of rotor/bearings. 
In the last couple of decades, many researchers [1-6] have attempted to address the performance parameters of the 
journal bearings having bore defects. The presence of surface imperfection [1] and non-circularity defects [2, 3] in 
bearing bore has substantially influenced the performance behaviours of journal bearings. Influence of ellipticity of 
bore on the performance of dynamically loaded journal bearing and dynamic behavior of the wavy rotor supported 
on journal bearings have been studied by Goenka and Booker [4] and Bonneau and Frêne [5], respectively. It has 
been reported that in the presence of wave form (defect) on the rotor, high magnitude of vibration commences even 
in the absence of unbalance forces [4]. In the stability studies of the rotors, the values of bearing coefficients 
(stiffness and damping) play vital role [7, 8]. Stability studies of rigid rotors supported on the fluid film journal 
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bearings have been presented by the authors [7-15] extracting the stiffness and damping coefficients of film through 
the linear perturbation approach. From practical aspects, the rotor stability studies incorporating the synergistic 
effects of bearing defects (ellipticity of the bore and orientation of its major axis with respect to the load line) and 
non-Newtonian rheology of the lubricant (due to additives mixed in the lubricant to improve its performance) have 
great significance. It is worth noting here that ellipticity in the bearing bore arises due to the operational issues 
(fluctuation/variation in operating parameters and circularity imperfections in the shafts) and manufacturing 
constraints. Thus, the objective of this paper is to present numerical study for exploring the influence of ellipticity of 
the bore (with its orientation) and non-Newtonian rheology (thinning) of the lubricant on the performance and 
stability of bearings. 

2. Mathematical model 

The non-circular bore bearing (having particular orientation with respect to the load line) with the coordinate system 
is shown in Fig. 1 along with representation of lubricating film by springs and dampers. 

                                     (a) 

 

                                              (b) 

Fig. 1. (a) Schematic diagram of elliptic bore bearing with coordinate system, (b) Representation of film by springs and dampers 

2.1. Film thickness relation 

Normalized film thickness is expressed as [2]: 

 2 21 cos cos 1 cos cos sinh G G X Y   (1) 

where cosX , and sinY . For elliptic bore, the radial clearance Cr is expressed as (Rmin – R). Putting G = 
0, eq. (1) reduces to the film thickness relation applicable for the circular bore. 

2.2. Rheological relation 

The performance parameters of the fluid film journal bearings operating for wide range of loads and speeds are 
normally improved by adding the polymeric additives of high molecular weight in the lubricating oil. Thus, the 
lubricating oil with additive behaves as a non-Newtonian fluid. Hence for representing the rheology of lubricating 
oil with the polymeric additive, the Rabinowitsch fluid model has been employed herein [16].  The Rabinowitsch 
fluid model given by eq. (2) has been used in the proposed investigation:  

 3
xy xy

u

y
   (2) 
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where α is a factor accounting for the non-Newtonian effects (α > 0 for pseudo-plastic, α < 0 for dilatant, and  α = 0 
for Newtonian fluids). 

2.3. Modified Reynolds equation 

The modified Reynolds equation [17] incorporating the non-Newtonian rheology (Rabinowitsch fluid model) 
and mass conservation algorithm [18-20] is written as: 

3 2 33 5 3 5

2

12 4 80 12 80

1 1

2

h h h R h h
g g g g

L z z z

h h

th

  (3) 

where, 2
0rC UR  , ( 1)cP P . cP is the cavitation pressure, and  is the fraction of film content. g is a 

switch function which takes the value as g = 0 for φ < 1, and g = 1 for φ ≥ 1. 

2.4. Miscellaneous relations  

Resultant load on the bearing is computed as: 

 
2 21 2 1 22 2

0 0 0 0
cos sinX YW F F P d dz P d dz   (4) 

Coefficient of friction is evaluated using the following relation: 

 
1 2

0 0

1
at y h

r
xy

C
f d dz

R W
   (5) 

2.5. Dynamic performance parameter 

      Stability of a rigid rotor (well-aligned rigid rotor of mass 2m) supported on two identical elliptic bore journal 
bearings has been investigated in this paper. The direct and cross coupled stiffness and damping coefficients of the 
bearing have been computed using the finite perturbation approach [21]. The equations of motion for free vibration 
of the rotor- bearing system is written as: 

 
0 0

0 0
XX X

YX Y

Y XX XY

YY YX Y

c cm XX X

c cm YY Y

k k

k k
  (6) 

The solution of eq. (6) is taken as: 

 ( )h i t

h

XX
e

YY
   (7) 

For 0 , the solution happens an exponentially growing function that will signify the instability. Hence for 

the system to be stable, must be negative. Therefore, the threshold of the stability is obtained keeping 0  . 

Substituting eq. (7) in eq. (6) and putting 0 , the following relationship is obtained: 
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2

2

0( ) ( )

0( ) ( )
hXX XX XY XY

hYX YX YY YY

Xk m i c k i c

Yk i c k m i c
  (8) 

For the non-trivial solution, the determinant of the coefficient matrix in (refer eq. (8)) must be zero. Thus, 
equating the real and imaginary components of the determinant of the coefficient matrix to zero yields the following 
two equations (provided in the normalized form): 

 2 ( )( )XX eq XX eq XY YX
cr

XX XX XY YX

K K K K K K

C C C C
   (9) 

 XX YY YY XX YX XY XY YX
eq

XX YY

C K C K C K C K
K

C C
   (10) 

where  cr  is whirl frequency ratio, 2 r
eq

C
K m

W
 is an equivalent stiffness. In the present study, the stability 

parameter is defined by critical mass 2
2

eq r
cr

cr

K C
M m

W
.   

3. Computational procedure 

The modified Reynolds eq. (3) has been discretized using the finite difference method. Thereafter, coupled 
solution of algebraic equations has been achieved by using Gauss-Seidel iterative technique. Numerical results 
reported in this paper have been generated using 51(N ) x 21(Nz) grids. This grid size has been arrived based on the 
grid independence test.  The numerical solution is carried out as per the following steps: 

 
1. For prescribed values of G, δ, ε, α and for an assumed value of the attitude angle ϕ, the fraction film content φ is 

computed by solving eq. (3). Convergence is attained when
1 1 5

, , ,
1 1 1 1

10
m n m nN N N

i j i j i j
i j i j

. 

2. Bearing force components xF  and yF are calculated and if 410y xF F , then another value of ϕ is assumed 

until the convergence. 
3. A finite perturbation of displacements ( 0.001 )rX Y C  and velocities ( 0.001 )rX Y C are given to 

the journal centre and bearing forces are calculated to obtain the stiffness and damping coefficients. 
4. Steps 1-3 are repeated for various input parameters.  

4. Results and discussion 

This section presents the numerical results pertaining to the performance parameters of elliptic bore journal 
bearing and stability of rigid rotor mounted on elliptic bore journal bearings. All the results reported in this paper 
have been generated for L/D =1. For developing the confidence in the proposed model, the dimensionless stiffness 
and damping coefficients numerically obtained using the present model have been compared with the work of 
ref.[17] in Figs. 2(a) and 2(b). Good correlations between the present numerical results (shown with lines) and work 
of ref.[17] (shown with different markers) can be seen in these figures. Thus, the overall correctness of the results 
achieved from the proposed model has been established. 
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(b) 

Fig. 2. Comparison of stiffness and damping coefficients with findings of ref. [17] (G = 0 and α = 0.1) 

Figures 3(a) and 3(b) demonstrate the pressure profiles at the mid-plane of bearing for different values of the 
bore orientations (δ = 0°, 30°, 60°, 90°, 120°, and 150°). Large magnitude of pressure profiles are seen in these 
figures with the circular bore (i.e. G = 0). It is obvious from these figures that the pressure developed inside the 
circular bore bearing is larger as compared to elliptic bore bearing irrespective of the orientation of the elliptic bore.  
However, the orientation of elliptic bore has significant influence upon the magnitude and profile of the pressure. It 
can be seen that pressure inside the elliptic bore is on the higher side for δ > 90°. This is due to the film shape i.e. a 
convergent zone is encountered first in the moving direction of lubricant for δ > 90°. 

 

Dimensionless pressure, P

1

2

3

=0
=30
=60
=90
=120
=150

= 0, G = 0.5, = 0.6

G = 0

 
(a) 

Dimensionless pressure, P

1

2

3

=0
=30
=60
=90
=120
=150

= 0.5, G = 0.5, = 0.6

G = 0

 
(b) 

Fig. 3. Pressure profile in the lubricating films at bearing mid planes for two different input parameters 

All the results for the performance parameters (excluding pressure profiles) reported in this paper have been 
expressed in relative form (i.e. ratio of the performance parameter with the elliptic bore bearing to the performance 
parameter with cylindrical bore bearing of radius equal to the minor radius of the elliptic bore bearing) for bringing 
the clarity in the comparisons.  The results for load (W/W0), coefficient of friction (f/f0), and stability parameter 
(Mcr/Mcr0) have been presented in the Figs. 4-6 where the subscript ‘0’ signifies the value of a parameter for the 
circular bore bearing. The results reported in these figures have been generated for combinations of operating 
parameters: α = 0 and 0.5, δ = 0°, 30°, 60°, 90°, 120°, and 150°; and G = 0.1, 0.2, 0.3, 0.4, and 0.5  in order to have 
generality in the comparisons.  

 
The variation of load factor (W/W0) with eccentricity ratio (ε) for combinations of values of α, δ, and G are 

shown in Figs. 4(a)-4(d). It can be seen in these figures that load carrying capacity reduces for elliptic bores 
compared to the circular bore and bore orientation has a profound influence on the load carrying capacity. Also the 
load carrying capacity decreases with increasing values of ellipticity parameter (G). Marginal increase in the load 
carrying capacity has been observed with few combinations of α, δ, and G, particularly at very low values of 
eccentricity ratio (ε). This happens due to the relatively large pressure generation region and magnitudes in elliptic 
bore bearing in comparison to circular bore bearing due to the formation of physical wedge. 
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Fig. 4. Variation of W/W0 with eccentricity ratio 

Figures 5(a)-5(d) show the variation of friction parameter (f /f0) with eccentricity ratio ( ) for combinations of δ 
and G. It can be seen from these figures that the orientation of the elliptic bore influences the friction parameter for 
both Newtonian and non-Newtonian lubricants. Comparing Figs. 5(c) and 5(d), it is observed that the ellipticity 
parameter (G) does not have vital effect on the friction parameter. However, it can be concluded in general that 
ellipticity of the bore increases the coefficient of friction in comparison with a circular bore.  
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Fig. 5. Variation of f/f0 with eccentricity ratio 

Figures 6(a)-6(d) illustrate the variation of the stability parameter (Mcr/Mcr0 ) with eccentricity ratio (ε) for the 
combinations of input parameters: α, δ, and G. It can be seen that for Newtonian lubricant α = 0, the stability 
parameter (Mcr/Mcr0) is greater than 1 at high values of G,  and 90 .  This implies that elliptic bore bearing 
provides higher stability limit in comparison to circular bore. It can be stated that in general the ellipticity of the 
bearing bore is helpful in improving the stability of the rotor. On the other hand for non-Newtonian fluids (refer 
Figs. 6(b) and 6(d)), it is seen that the stability parameter is generally less than 1 for 0.3  0.6. The stability with 
non-Newtonian fluid is better with elliptic bore if bearings are heavily loaded. Higher stability with elliptic bore 
bearing compared to circular bore is due to the fact that the former generally has higher dissipation of whirl energy 
resulting in increment of stability limit speed.  
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Fig. 6. Variations of Mcr / Mcr0 with eccentricity ratios 
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5. Concluding remarks 

The performance of hydrodynamic journal bearing incorporating the effects of ellipticity of the bore and non-
Newtonian rheology of lubricant has been investigated in this paper. The bearing coefficients (stiffness and 
damping) have been computed using the finite perturbation approach for exploring the linear stability of a rigid 
rotor. Moreover based on the investigations reported herein, the following conclusions have been drawn: 

 
 Elliptic bore which gets generated due to the operational issues of bearing is not helpful for improving the load 

carrying capacity and reducing the friction coefficient. 
 Elliptic bore bearing in general enhances the stability of the rotor-bearing system for any orientation of elliptic 

bore. 
 Shear thinning of lubricant in general decreases the load carrying capacity of elliptic bore bearing, but an 

increase in load carrying capacity is achieved for G < 0.2 and ε < 0.3. 
 Shear thinning of lubricant in general results in decrease of stability of the rotor-bearing system. 
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