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The nuclear aspects of flavour changing neutral current (FCNC) processes, predicted by various new-
physics models to occur in the presence of nuclei, are examined by computing the relevant nuclear matrix
elements within the context of the quasi-particle RPA using realistic strong two-body forces. One of our
aims is to explore the role of the non-standard interactions (NSI) in the leptonic sector and specifically:
(i) in lepton flavour violating (LFV) processes involving the neutral particles ν� and ν̃�, � = e,μ, τ and
(ii) in charged lepton flavour violating (cLFV) processes involving the charged leptons �− or �+. As
concrete nuclear systems we have chosen the stopping targets of μ− → e− conversion experiments,
i.e. the 48Ti nucleus of the PRIME/PRISM experiment at J-PARC and the 27Al of the COMET at J-PARC
as well as of the Mu2e at Fermilab. These experiments have been designed to reduce the single event
sensitivity down to 10−16–10−18 in searching for charged lepton mixing events. Our goal is, by taking
advantage of our detailed nuclear structure calculations and using the present limits or the sensitivity of
the aforementioned exotic μ− → e− experiments, to put stringent constraints on the parameters of NSI
Lagrangians.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

In recent years, ongoing extremely sensitive experiments
searching for physics beyond the current Standard Model (SM)
expect to see new physics or to set severe limits on various physi-
cal observables and particle model parameters [1–3]. In particular,
current experiments searching for flavour changing neutral current
(FCNC) processes in the leptonic sector [3–9] may provide insights
and new results into the physics of charged lepton flavour viola-
tion (cLFV) [7,8], neutrino oscillation in propagation [9] and others.
The cLFV experiments, although they have not yet discovered any
event, represent a very important probe to search for charged lep-
ton mixing with significant implications on understanding various
open issues in particle, nuclear physics and astrophysics [10–13].
To this purpose, exotic μ− → e− conversion studies are interest-
ing worldwide theoretically [14,15] as well as experimentally with
two experiments: (i) the COMET at J-PARC, Japan [4], and (ii) the
Mu2e at Fermilab, USA [5–7]. Both ambitious experiments expect
to reach a single event sensitivity down to 10−16–10−18.
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The best previous limit for the μ− → e− conversion was ob-
tained by the SINDRUM-II Collaboration at PSI on the reaction

μ− + 48Ti → e− + 48Ti, (1)

as RTi
μe < 6.1 × 10−13 [16] (many authors use the published upper

limit RTi
μe < 4.3 × 10−12 [17]), where RTi

μe denotes the branch-
ing ratio of the μ− → e− conversion rate divided by the total
μ−-capture rate in the 48Ti nucleus. The COMET experiment, is
expected to reach a high sensitivity, RAl

μe < 10−16 [4] using 27Al as
muon-stopping target while the Mu2e experiment aims to improve
RAl

μe even further, i.e. to a single event sensitivity 2 × 10−17, which
with a background of 0.5 events will reach a target sensitivity
RAl

μe < 6×10−17 [5–7]. The next decade experiments for cLFV, need
very high intensity and quality muon beams, like those planed to
be built at Fermilab for the Mu2e at Project-X and at J-PARC for
the PRIME/PRISM experiments. The use of Project-X beams by the
Mu2e experiment, expects to further decrease the upper bound to
RAl

μe < 2 × 10−18 [18], while the PRIME experiment, based on the
superior properties of the muon beam at J-PARC that can be deliv-
ered to the 48Ti, may reach the sensitivity of RTi

μe < 10−18 [19,20].
We should mention the most stringent upper bounds on purely

leptonic cLFV processes presently available for μ − e transitions,
namely, the new limit on the branching ratio of the μ+ → e+γ
process, Br(μ+ → e+γ ) < 5.7 × 10−13, set very recently by the
MEG experiment at PSI using one of the most intense continuous
.
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μ+ beams in the world [21], and that of the μ → eee pro-
cess set previously by the SINDRUM II Collaboration in the value
Br(μ+ → e+e+e−) < 1.0 × 10−12 [22].

In recent works, neutral current (NC) neutrino scattering pro-
cesses on leptons, nucleons and nuclei involving interactions that
go beyond the SM (non-standard interactions, NSI, for short) have
been examined [10–12]. Such processes may be predicted from
several extensions of the SM such as various realizations of the
seesaw mechanism in the standard model [15,23,24] and left-right
symmetric models [25]. The reactions of this type that take place
in nuclei are represented by

να(ν̃α) + (A, Z) → νβ(ν̃β) + (A, Z) (2)

(α,β = e,μ, τ ) and theoretically they can be studied under the
same nuclear methods as the exotic cLFV process of μ− → e−
conversion in nuclei. Among the interesting applications of the
reactions (2), those connected with the supernova physics may al-
low νe neutrinos to change flavour during core collapse creating
νe neutrino holes in the electron-neutrino sea [26] which may al-
low e−-capture on nucleons and nuclei to occur and subsequently
decrease the value of the electron fraction Ye . Such non-standard
interactions [27–29] may suggest alterations in the mechanisms
of neutrino-propagation through the supernova (SN) envelope and
affect constraints put on the physics beyond the SM as well as
on some scenarios of supernova explosion [30–32]. This motivated
the investigation of the NSI in both LFV and cLFV processes in so-
lar and supernova environment [33,34] and motivated our present
work too. Furthermore, the impact of non-standard neutrino inter-
actions on SN physics was the main motivation of works examin-
ing their effect on supernova when the neutrino self-interaction is
taken into account [13]. The extreme conditions under which neu-
trinos propagate after they are created in the SN core, may lead to
strong matter effects. It is known that, in particular, the effect of
small values of the NSI parameters can be dramatically enhanced
in the inner strongly deleptonized regions [13].

In general, low-energy astrophysical and laboratory neutrino
searches provide crucial information towards understanding the
fundamental electroweak interactions, within and beyond the SM.
Well-known astrophysical neutrino sources like the solar, super-
nova, Geoneutrinos, etc., constitute excellent probes in searching
for a plethora of neutrino physics applications and new-physics
open issues [35]. Since neutrinos interact extremely weakly with
matter, they may travel astronomical distances and reach the Earth
[36–38], etc. The recorded ν-signals in sensitive terrestrial nuclear
detectors of low-energy neutrinos [39,40], could be simulated pro-
viding useful information relevant to the evolution of distant stars,
the core collapse supernovae, explosive nucleosynthesis [41], neu-
trino oscillation effects and others. Recently it becames feasible to
detect neutrinos by exploiting the NC interactions and measuring
the nuclear recoil signal by employing detectors with very low-
threshold energies [42,43]. The NC interactions, through their vec-
tor components can lead to an additive contribution (coherence) of
all nucleons in the target nucleus [44–49].

The main purpose of the present Letter is to explore the nu-
clear physics aspects of the ν-nucleus reactions of Eq. (2) focus-
ing on the role of the NSI which have not been studied in de-
tail up to now. We should stress that, our strategy in studying
the nuclear aspects of FCNC in nuclei, is to carry out realistic
cross sections calculations for the exotic processes (1) and (2),
including NSI terms in the relevant effective Lagrangian. The re-
quired nuclear matrix elements are evaluated within the context
of the quasi-particle RPA, considering both coherent and incoher-
ent processes by applying the advantageous state-by-state method
developed in Refs. [33,50,51]. As a first step, we perform calcula-
tions for gs → gs transitions of the reactions (2) by solving the
Fig. 1. Nuclear level Feynman diagrams for: (a) SM Z-exchange neutral cur-
rent ν-nucleus reactions, (b) non-standard Z-exchange ν-nucleus reactions, and
(c) Z-exchange and photon-exchange μ− → e− in the presence of a nucleus (muon-
to-electron conversion). The non-standard (cLFV or LFV) physics enters in the com-
plicated vertex denoted by the bullet •.

BCS equations, for even–even nuclear systems, and employing the
experimental nuclear charge densities [52] for odd-A nuclei. For
comparison of our results with those of other methods [11,12,26,
44,45], SM cross sections calculations are also carried out. More
specifically, our present results refer to the even–even 48Ti isotope,
the stopping target of SINDRUM II and PRIME/PRISM μ− → e− ex-
periments. We perform similar calculations for processes (2) in the
27Al nucleus proposed as detector material in Mu2e and COMET
experiments. Finally, we will use the experimental upper limits of
the cLFV processes to put robust bounds on model parameters of
the relevant Lagrangians and the ratios of the NSI contributions
with respect to the SM ones.

2. Description of the formalism

The non-standard ν-nucleus processes (2) and the exotic cLFV
μ− → e− conversion in nuclei [1,14,15,34], can be predicted
within the aforementioned new-physics models [15]. In Fig. 1
we show some nuclear-level Feynman diagrams representing the
exchange of a Z -boson between a lepton and a nucleon for the
cases of ν-nucleus scattering in the SM (Fig. 1(a)) and in the non-
standard interactions of neutrinos with nuclei (Fig. 1(b)). We also
show the exchange of a Z -boson or a γ -photon in the μ− → e−
conversion, Fig. 1(c) [14,15]. The leptonic vertex in the cases of
Fig. 1(b), (c) is a complicated one. A general effective Lagrangian
that involves SM interactions (LSM) and NSI (LNSI) with a non-
universal (NU) term and a flavour changing (FC) term can be
written as

Ltot = LSM +LNSI = LSM +LNU +LFC. (3)

The individual components LSM and LNSI of this Lagrangian are
explained in the next subsections.

For a concrete example, it has been proposed [23] that, even
small deviation from unitary lepton mixing matrix, may cause
sizeable NSI effects and potentially large LFV [24]. The non-trivial
structure of electroweak currents in low-scale seesaw Lagrangians
leads to non-unitary lepton mixing matrix Nαβ , which can be
parametrized as N ≡ (1 − n)U . Uαβ is a unitary matrix and nαβ

a model depended non-standard matrix (α,β = e,μ, τ ) which
takes specific form within seesaw mechanisms [24].

2.1. Non-standard ν-nucleus reaction cross sections

The neutral current non-standard neutrino interactions ad-
dressed here, are described by a quark-level Lagrangian, LNSI,
parametrized (for energies � M Z ) as [11,29,30]

LNSI = −2
√

2G F

∑
f =u,d

α,β=e,μ,τ

ε
f P
αβ [ν̄αγρ Lνβ ][ f̄ γ ρ P f

]
, (4)
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where three light neutrinos να with Majorana masses are consid-
ered, f denotes a first generation SM quark and P = {L, R} are the
chiral projectors. The Lagrangian (4) contains flavour preserving
non-SM terms, known as non-universal (NU) interactions that are
proportional to ε

f P
αα , as well as flavour-changing (FC) terms pro-

portional to ε
f P
αβ , α �= β . These couplings are taken with respect

to the strength of the Fermi coupling constant G F [11,30]. For
the polar-vector couplings we are mainly interested in the present
work, it holds ε

f V
αβ = ε

f L
αβ + ε

f R
αβ , while for the axial-vector cou-

plings ε
f A
αβ = ε

f L
αβ − ε

f R
αβ .

The nuclear physics aspects of the non-standard ν-matter re-
actions can be studied by transforming the Lagrangian (4) to the
nuclear level where the hadronic current is written in terms of
NC nucleon form factors (functions of the four momentum trans-
fer) [34]. In the general case of the inelastic scattering of neutrinos
on nuclei, the magnitude of the three momentum transfer, q = |q|,
obtained from the kinematics of the reaction, is a function of the
scattering angle of the outgoing neutrino θ (laboratory frame), the
initial, Ei , and final, E f , neutrino energies, as well as the excita-
tion energy of the target nucleus ω as, q2 = ω2 + 2Ei E f (1 − cos θ)

[49,50]. In the special case of the coherent (elastic) channel we
focus in this work (ω = 0 and Ei = E f ≡ Eν ), only gs → gs transi-
tions occur (for spin-zero nuclei) and we have q2 = 2E2

ν(1 − cos θ)

or q = 2Eν sin(θ/2).
The coherent differential cross section with respect to the scat-

tering angle θ for NSI ν-nucleus processes is written as

dσNSI,να

d cos θ
= G2

F

2π
E2
ν(1 + cos θ)

∣∣〈gs|∣∣GNSI
V ,να

(q)
∣∣|gs〉∣∣2

(5)

(α = e,μ, τ denotes the flavour of incident neutrinos), where |gs〉
represents the nuclear ground state (for even–even nuclei, like
the 48Ti, |gs〉 = | Jπ 〉 ≡ |0+〉). The nuclear matrix element, that
arises from the Lagrangian (4), takes the form∣∣MNSI

V ,να

∣∣2 ≡ ∣∣〈gs|∣∣GNSI
V ,να

(q)
∣∣|gs〉∣∣2

= [(
2εuV

αα + εdV
αα

)
Z F Z

(
q2) + (

εuV
αα + 2εdV

αα

)
N F N

(
q2)]2

+
∑
β �=α

[(
2εuV

αβ + εdV
αβ

)
Z F Z

(
q2)

+ (
εuV
αβ + 2εdV

αβ

)
N F N

(
q2)]2

(6)

(β = e,μ, τ ), where F Z(N) denote the nuclear (electromagnetic)
form factors for protons (neutrons) entered due to the CVC theory.
We note that in the adopted NSI model, the coherent NC ν-nucleus
reaction is not a flavour blind process. By considering the nuclear
structure details, the cross sections provided by Eq. (5), become
more realistic and accurate [29] (in Ref. [11] the variation versus
the momentum transfer of the nuclear form factor is neglected,
which for supernova neutrino studies is a rather crude approxima-
tion [53]).

From an experimental physics point of view, many neutrino de-
tectors are more sensitive to the recoil energy of the nuclear target,
T N , than to the scattering angles, θ . Therefore, it is also important
to compute the differential cross sections dσ/dT N . For coherent
scattering the nucleus recoils (intrinsically it remains unchanged)
with energy which, in the approximation T N � Eν (low-energy
limit), is maximized as, T max

N = 2E2
ν/(M + 2Eν), with M being the

nuclear mass [47,48]. Then, to a good approximation, the square of
the three momentum transfer, is equal to q2 = 2MT N , and the co-
herent NSI differential cross section with respect to T N is written
as

dσNSI,να

dT
= G2

F M

π

(
1 − MT N

2E2

)∣∣〈gs|∣∣GNSI
V ,να

(q)
∣∣|gs〉∣∣2

. (7)

N ν
Both Eqs. (5) and (7) are useful for studying the nuclear physics of
NSI of neutrinos with matter.

Furthermore, by performing numerical integrations in Eq. (5)
over the scattering angle θ or in Eq. (7) over the recoil en-
ergy T N , one can obtain integrated (total) coherent NSI cross sec-
tions, σNSI,να . The individual cross sections σNU,να and σFC,να may
be evaluated accordingly [53].

2.2. SM coherent ν-nucleus cross sections

At low and intermediate neutrino energies considered in this
Letter, the effective (quark-level) SM ν-nucleus interaction La-
grangian, LSM, reads

LSM = −2
√

2G F

∑
f =u,d

α=e,μ,τ

g f
P [ν̄αγρ Lνα][ f̄ γ ρ P f

]
, (8)

where g P
f are the P -handed SM couplings of f -quarks ( f = u,d)

to the Z -boson. We mention that, compared to previous studies
[12,26], we have taken into consideration the ν − u quark interac-
tion [see Eq. (6)], in addition to the momentum dependence of the
nuclear form factors.

For coherent ν-nucleus scattering, the SM angle-differential
cross section is given from an expression similar to Eq. (5) with
the nuclear matrix element being that of the Coulomb operator
M̂0(q) (product of the zero-order spherical Bessel function times
the zero-order spherical harmonic [49]). This corresponding matrix
element can be cast in the form [33]∣∣MSM

V ,να

∣∣2 ≡ ∣∣〈gs||M̂0||gs〉∣∣2

= [
g p

V Z F Z
(
q2) + gn

V N F N
(
q2)]2

, (9)

where g p(n)
V is the known polar-vector coupling of proton (neu-

tron) to the Z boson (see Fig. 1(a)). In the low energy limit,
one can also write in a straightforward manner the correspond-
ing differential cross section with respect to the nuclear recoil
energy, T N [47,48]. In this work, starting from original differen-
tial cross sections dσλ,να /d cos θ and dσλ,να /dT N , we evaluated
individual angle-integrated cross sections of the form σλ,να (Eν),
with α = e,μ, τ , and λ = tot,SM,NU, FP, FC, where under FC, the
six processes νe ↔ νμ , νe ↔ ντ , νμ ↔ ντ are included (obviously,
σνα→νβ = σνβ→να ) for both nuclei, 48Ti and 27Al. A great part of
these results is presented and used to compute folded cross sec-
tions below (for more results see Ref. [53]).

3. Results and discussion

3.1. Nuclear structure calculations

At first, we studied the nuclear structure details of the matrix
elements entering Eqs. (5)–(7) and Eq. (9) that reflect the depen-
dence of the coherent cross section on the incident ν-energy Eν

and the scattering angle θ (or the recoil energy T N ). For the even–
even 48Ti nucleus, the stopping target of the PSI [16,17] and PRIME
[19,20] experiments, this study involves realistic nuclear structure
calculations for the cross sections dσλ,να /d cos θ and dσλ,να /dT N ,
performed after constructing the nuclear ground state |gs〉 by solv-
ing iteratively the BCS equations [50]. Then, the nuclear form fac-
tors for protons (neutrons) are obtained as [33]

F Nn

(
q2) = 1

Nn

∑
j

[ j]〈 j| j0(qr)| j〉(υ j
Nn

)2
(10)

with [ j] = √
2 j + 1, Nn = Z (or N). υ

j
Nn

denotes the occupation
probability amplitude of the j-th single nucleon level. The cho-
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Table 1
The ratios Rλ,να (for the definition see Eq. (12) in the text) of all possible να + (A, Z) → νβ + (A, Z) processes. They have been evaluated in their asymptotic values reached
at Eν ≈ 120 MeV.

να (A, Z) Rtot RNU RFP Rνα↔νe Rνα↔νμ Rνα↔ντ

νe
48Ti 1.037 0.002 0.905 – 0.121 × 10−4 0.130
27Al 1.044 0.003 0.902 – 0.130 × 10−4 0.139

νμ
48Ti 1.293 0.001 0.929 0.121 × 10−4 – 0.361
27Al 1.318 0.001 0.927 0.130 × 10−4 – 0.387
sen active model space consists of the lowest 15 single-particle
j-orbits, j ≡ (n, �,1/2) j without core, up to major h.o. quanta
N = 4h̄ω. The required monopole (pairing) residual interaction,
obtained from a Bonn C–D two-body potential was slightly renor-
malized with the two parameters g p,n

pair (g p
pair = 1.056, for proton

pairs, and gn
pair = 0.999, for neutron pairs).

We note that, we have devoted a special effort on the accu-
rate construction of the nuclear ground state, (i) because the co-
herent channel is the dominant one for the neutral current SM
ν-nucleus processes and we assumed that this holds also for NSI
processes, and (ii) because in a next step we are intended to per-
form extensive incoherent cross sections calculations where all ac-
cessible final nuclear states will be built on the present ground
state.

For the odd-A 27Al nucleus (its ground state spin is |gs〉 =
| Jπ 〉 = |(5/2)+〉), the stopping target of Mu2e and COMET ex-
periments, we obtained the form factor F Z (q2), through a model
independent analysis (using a Fourier–Bessel expansion model) of
the electron scattering data for the charge density distribution of
this isotope [52]. Since similar data for F N (q2) 27Al are not avail-
able, we considered (to a rather satisfactory approximation) that
F N � F Z (a difference up to about 10% usually appears for medium
and heavy nuclear systems [52]). The momentum dependence of
the nuclear form factors was ignored by some authors [11] which
at low ν-energies relevant for solar neutrinos is practically a good
approximation, but for energies relevant to supernova neutrinos
addressed in this work, it may lead to differences of even an order
of magnitude [53].

3.2. Integrated coherent ν-nucleus cross sections

In the next step of our calculational procedure we obtained
angle-integrated coherent ν-nucleus cross sections by integrating
numerically Eq. (5) over angles [or Eq. (7) over T N ] for the various
interaction components as

σλ,να (Eν) =
∫

dσλ,να

d cos θ
(θ, Eν)d cos θ (11)

(λ = tot,SM,NU, FP, FC). We found that the exotic FCNC processes
να → νβ in 48Ti have significantly lower cross section compared to
the SM one. From the obtained FCNC ν-nucleus cross sections the
most challenging result corresponds to the νμ → νe transition (and
to its lepton conjugate process, νe → νμ). This is mainly due to the

severe constraint ε
f P
μe = 2.9 × 10−4 inserted in the Lagrangian (4)

which has been derived from the nuclear μ− → e− conversion ex-
perimental limits on cLFV branching ratio [4–7]. We remind that,
in this work we have employed the NSI parameters ε

f V
αβ (except

the ε
f V
μe ) derived from various experimental bounds in Ref. [10].

By exploiting our cross sections σλ,να (Eν), we find it interesting
to estimate the ratio of each of the individual cross sections, σλ,να ,
with respect to the SM cross sections defined as

Rλ,να (Eν) = σλ,να (Eν)
, λ = tot,NU,FP,FC. (12)
σSM(Eν)
For 48Ti, the latter ratios initially are slowly increasing functions
of Eν , but eventually (for energies higher than about 80–120 MeV)
they tend asymptotically to the values listed in Table 1. For 27Al,
however, the ratios Rλ,να are energy independent which is a con-
sequence of the different treatment applied in studying the nuclear
structure details than that followed for 48Ti. From the comparison
of the results of Table 2 with those of the method [11], we con-
clude that our realistic calculations are important in the case of
48Ti nucleus, where the BCS method gave us F N �= F Z and, hence,
the results obtained for Rλ,να differ from those given by Ref. [11].
For 27Al, however, for which we considered F N � F Z , the depen-
dence on the nuclear structure parameters in the numerator and
denominator of Eq. (12) cancel out and, then, our predictions for
Rλ,να are equal to those of Ref. [11].

It is worth noting that, some constraints coming from solar [27]
and atmospheric [28] neutrino data indicate that the NSI might
be large, while according to the present experimental data, ε

f V
ττ is

unacceptably large and, consequently, it derives unrealistic results
(the corresponding FP and NU cross sections, not included here,
are larger than the SM ones) [10,29].

3.3. Supernova neutrino fluxes and expected event rates

One of the most interesting connections of our present calcula-
tions with ongoing and future neutrino experiments is related to
supernova ν-detection. As it is known, in SN explosions most of
the energy is released by ν-emission. Then, the total neutrino flux,
Φ(Eν), arriving at a terrestrial detector reads [44,45]

Φ(Eν) =
∑
α

Φνα (Eν) =
∑
α

Nνα

4πd2
ηSN

να
(Eν) (13)

(α = e,μ, τ ), where Nνα is the number of (anti)neutrinos emitted
from a supernova source at a typical distance (here we used d =
8.5 kpc) and ηSN

να
denotes the energy distribution of the (anti)neu-

trino flavour α [47]. We assume that the emitted SN-neutrino en-
ergy spectra ηSN

να
(Eν) resemble Maxwell–Boltzmann distributions

that depend on the temperature Tνα of the (anti)neutrino flavour
να (ν̃α). By convoluting the integrated cross section σλ,να (Eν) with
the neutrino distributions, the signal produced on a terrestrial de-
tector may be simulated as

σ
sign
λ,να

(Eν) = σλ,να (Eν)ηSN
να

(Eν). (14)

The resulting signals, σ
sign
λ,να

(Eν), obtained by inserting in
Eq. (14) the cross sections σλ,να , are plotted in Fig. 2. Note that,

in contrast to the original cross sections, now σ
sign
να→νβ

�= σ
sign
νβ→να

.

Fig. 2 shows that for incoming νμ neutrinos the signal σ
sign
λ,νμ

presents an appreciably wider energy range compared to that of
νe and that the maximum peak is shifted towards higher energies
following the features of the distributions ηSN

να
(Eν). The simulated

cross sections of Fig. 2 reflect the characteristics of the incident
neutrino spectrum of a specific flavour α having its own position
of the maximum peak and width of the distribution ηSN

να
. We re-

mind that, as usually, for incoming νe neutrinos, the distribution
(ηSN

ν + ηSN)/2 is used.

e ν̃e
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Table 2
Flux averaged cross sections 〈σλ,να 〉 (in 10−40 cm2) for various supernova neutrino spectra parametrized by Maxwell–Boltzmann distributions.

να (A, Z) 〈σtot〉 〈σSM〉 〈σNU〉 〈σFP〉 〈σνα→νe 〉 〈σνα→νμ 〉 〈σνα→ντ 〉
νe

48Ti 5.32 5.15 1.20 × 10−2 4.66 – 6.07 × 10−5 6.50 × 10−1

27Al 1.57 1.50 3.83 × 10−3 1.35 – 1.95 × 10−5 2.09 × 10−1

νμ
48Ti 19.6 15.2 1.93 × 10−2 14.2 1.80 × 10−4 – 5.36
27Al 6.07 4.61 6.42 × 10−3 4.27 6.00 × 10−5 – 1.78
Fig. 2. The convoluted cross sections, evaluated with Maxwell–Boltzmann distri-
butions, that represent the expected signal to be recorded on 48Ti ν-detector,
σ

sign
λ,να

(Eν ). Due to the flavour dependence of the SN neutrino distribution, the
energy-window of νe neutrinos signal is more narrow compared to those of νμ

and ντ neutrinos.

In SN neutrino simulations, another useful quantity is the flux
averaged cross section [35] which in our notation is written as

〈σλ,να 〉 =
∫

σλ,να (Eν)ηSN
να

(Eν)dEν . (15)

The results for 〈σλ,να 〉, obtained by using our angle-integrated
cross sections are listed in Table 2. We note that our flux aver-
aged cross sections differ by about 30% from those of [11].

From experimental physics perspectives, it is also interesting to
make predictions for the differential event rate of a ν-detector [44,
45,51]. The usual expression for computing the yield in events is
based on the neutrino flux, Φνα . To include the NSI of neutrinos
with nuclei, the yield in events Yλ,να (T N ), is [44,45]

Yλ,να (T N) = Nt

∫
Φνα dEν

∫
dσλ,να

d cos θ
δ

(
T N − q2

2M

)
d cos θ, (16)

where Nt is the total number of nuclei in the detector mate-
rial. Assuming a detector filled with one tone 48Ti, we evaluated
Fig. 3. Differential event rate, Yλ,να (T N ), as a function of the nuclear recoil energy,
T N , for 48Ti ν-detector. The line labelling is same to that of Fig. 2.

differential event rates Yλ,να (T N ) for several supernova scenarios.
These results are plotted in Fig. 3 where for each particular inter-
action, the corresponding neutrino flux has been considered. We
see that, the respective results for the NU and FC processes, es-
pecially the case of νμ → νe transition, present appreciably small
contributions and that, the lower the energy recoil, the larger the
potentially detected number of events. Hence, for the observation
of non-standard ν-nucleus events, detector medium with very low
energy-recoil threshold is required.

With the above results for Yλ,να (T N ), one can obtain the to-
tal number of counts by integrating Eq. (16) above the energy
threshold, T thres.

N , of the detector in question. For the 48Ti nucleus,
assuming T thres.

N ≈ 1 keV, we find about 13.5 events/ton for the SM
process but only 10−3 events/ton for the flavour changing νμ ↔ νe
reaction, i.e. about four orders of magnitude less events [53]. We
also conclude that, for making accurate predictions of the total
number of counts, the nuclear structure parameters play signifi-
cant role. Thus, for the νμ → νe transition we end up with about
29% less events, compared to those given by the approximation of
Ref. [11]. On the other hand, adding up the total number of events
for the three SM processes of the form, να → να , we end up with
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Table 3
Upper limits on the NSI parameters ε

f V
μe and the ratios Rνμ↔νe for the FC νμ ↔ νe

reaction channel resulting from the sensitivity of the μ− → e− conversion experi-
ments.

Parameter COMET Mu2e Project-X PRIME

ε
f V
μe × 10−6 3.70 2.87 0.52 0.37

Rνμ↔νe × 10−10 21.2 13.0 0.42 0.19

only 2% less events than those provided from the formalism of
Refs. [44,45].

It is worth noting that, the choice of the target nucleus plays
also a key role, since a light nuclear target may yield high en-
ergy recoil tails but less counts. On the contrary, a heavy nuclear
target provides more counts and yields low-energy recoils making
the detection more difficult. This leads to the conclusion that the
best choice for a nuclear detector must consist of a combination of
light and heavy nuclear isotopes [45].

3.4. New stringent limits on ε
f V
μe from μ− → e− conversion

In the last part of this analysis, we exploit our channel-by-
channel cross sections calculations in order to provide new limits
for the NSI parameters ε

f P
μe , coming out of the present and future

experimental constraints of cLFV μ− → e− conversion as follows.
The authors of Ref. [10] (assuming that cLFV arises from loop di-
agrams involving virtual W’s) found that the couplings of charged
leptons with quarks are given by Cε

f P
αβ , where C ≈ 0.0027. Conse-

quently, for the νμ ↔ νe transition the NSI parameters are related
with the experimental upper limits of μ− → e− conversion as [10]

ε
f P
μe = C−1

√
R(A,Z)

μe . (17)

In our calculations, up to this point we used the value ε
f V
μe = 2.9×

10−4 resulting from the PSI upper limit, RT i
μe < 6.1 × 10−13 [16]

(occasionally, this value is a more severe constraint compared to
the value ε

f V
μe = 7.7 × 10−4 used in [10] which came out of the

upper limit RT i
μe < 4.3 × 10−12 [17]).

Significantly lower upper limits on the NSI ε
f P
μe parameters of

Eq. (12), are expected to be derived from the COMET, Mu2e, Mu2e
at Project-X and PRIME/PRISM μ− → e− conversion experiments.
Then, one may compute new ratios Rνμ↔νe of the FC νe ↔ νμ re-

action channel. The results for the NSI parameters ε
f V
μe and the

respective ratios Rνμ↔νe are listed in Table 3.
Before closing we find interesting to plot the expected neutrino

signals σ
sign
νμ→νe (Eν) resulting by using the limits of Table 3 in two

cases of ν-spectra: (i) supernova neutrinos, and (ii) laboratory neu-
trinos originating e.g. from the BNB (Booster Neutrino Beamline) at
Fermilab known as pion decay-at-rest (DAR) neutrinos [42,43]. In
the first case the simulated cross sections are obtained by employ-
ing the Supernova ν-spectra, ηSN

να
, discussed before [44,45] and the

results are illustrated in Fig. 4(a). In the second case, the simulated
cross sections are obtained by considering the laboratory neutrino
distribution of the stopped pion–muon neutrinos produced accord-
ing to the reactions π+ → μ+ +νμ , μ+ → e+ +νe + ν̃μ [42,43]. In
these experiments the emitted νe neutrino spectrum is described
by the normalized distribution ηlab.

να
, α = e,μ [35,51]. The simu-

lated laboratory neutrino signal σ
sign
νe→νμ

is shown in Fig. 4(b).
As can be seen, in both cases the exceedingly high sensitivity

of the designed experiments reduces drastically (compare Figs. 2
and 4) the area of observation of the ν-signals σ

sign
νe→νμ

(Eν).
We should note that for models based on non-unitary lepton

mixing matrix (including seesaw), constraints on nαβ (related to
Fig. 4. Simulated ν-signal, σ
sign
νe→νμ

, of the FCNC process νe + (A, Z) → νμ + (A, Z)

in 48Ti, for the PSI and PRIME/PRISM experiments and in 27Al, for the COMET, Mu2e
and Mu2e at Project-X: (a) for supernova neutrinos and (b) for pion–muon stopped
neutrinos. The shaded area represents the excluded region of observation by the
increased sensitivity of the designed experiments. For each plot the relevant NSI
parameter ε

f P
μe of Table 3 has been employed.

ε
f P
αβ within normalisation factors [24]) may similarly come out. Ob-

viously, for NSI considering both d and u quarks, nαβ enter the
nuclear matrix elements of Eq. (6).

4. Conclusions

In conclusion, we explored NC non-standard ν-nucleus pro-
cesses with realistic nuclear structure calculations. As a first step,
we evaluated cross sections for the dominant coherent channel
(incoming neutrino energies 0 � Eν � 150 MeV, which include
stopped pion–muon neutrinos, supernova neutrinos, etc). We have
examined partial, integrated and total coherent cross sections and
determined constraints for the ratios Rνα→νβ of all relevant reac-
tion channels with respect to the SM cross section. Furthermore,
we provided results for the differential event rates and the total
number of events assuming one ton of 48Ti as ν-detector ma-
terial. In view of operation of the muon-to-electron conversion
experiments, searching for the exotic μ− → e− conversion, we
concentrated on the 48Ti nucleus previously used as stopping tar-
get by the PSI experiment and recently proposed to be used by the
PRIME experiment at J-PARC. Similarly we have studied the 27Al
as ν-detector, proposed to be used as muon stopping target in the
sensitive Mu2e and COMET experiments.

New stringent upper limits (up to even three orders of mag-
nitude lower than those previously put) on the NSI (FC) param-
eters ε

f V
μe are extracted by using the experimental sensitivity of

the μ− → e− conversion experiments and our present results. By
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comparing our results with those of other methods we concluded
that the nuclear physics aspects (reflecting the reliability and ac-
curacy of the cross sections), largely affect the coherent gs → gs
transition rate, a result especially useful for supernova ν-detection
probes and low-energy laboratory neutrinos.

Finally, we would like to remark that, μ− → e− transition ex-
periments at sensitivities down to 10−16–10−18 have excellent ca-
pabilities to search for evidence of new physics and to study its
flavour structure. These well designed experiments at Fermilab and
at J-PARC, could be the starting point of such a new effort, which
would complement the neutrino programs. They have significant
potential for constraining the NSI parameters and shed light on
FCNC processes in the leptonic sector and specifically on the exis-
tence of the charged-lepton mixing.
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