
Appl. Math. Leif. Vol. 4, No. 5, pp. 57-60, 1991
Printed in Great Britain. All rights reserved

089%X59/91 $3.00 + 0.00
Copyright@ 1991 Pergamon Press plc

Worst Case Behavior of the Dinic Algorithm

GARY R. WAISSI

School of Management, University of Michigan at Dearborn

(Received April 1991)

Abstract. Many m-flow phase algorithms use the Dinic algorithm to generate an acyclic network
in the iirst phase, and then solve the maximal flow problem in such a network in the second phase.
This process is then repeated until the maximum value flow is found in the original network. In
this paper a class of networks is presented where the Dinic algorithm always attains it’s worst ca8e
bound. The Dinic algorithm requires (n - 1) network generations, where n is the number of nodes
in the original network for finding the maximum value flow in the original network.

1. INTRODUCTION

‘G--d.

Dinic [l] presented in 1970 an algorithm to solve the maximum flow problem by repeating a two
phase process. In the first phase, Phase I, the Dinic algorithm generates an acyclic (or layered)
network. In the second phase, Phase II, a maximal flow algorithm is applied to such an acyclic
layered network. For the maximum value flow these two phases are repeated until the maximum
value flow in the original network has been found. Several maximal flow algorithms (e.g., [l-9])
use this two phase approach to solve the maximum value problem.

The referenced maximal flow algorithms, when using the Dinic algorithm, have achieved an
overall computational worst case complexity of 0(n3) for the maximum value flow problem in
dense networks with m NN n2. This worst case complexity of 0(n3), is still the best that has been
achieved for dense networks.

This paper sssumes familiarity with the two phase approach when solving single commodity
maximum flow problems in networks. It is also assumed that the reader is familiar with the Dinic
algorithm [l]. Several of the references discuss, or refer to, the Dinic algorithm, and a reader is
referred to those for review and reference, for example [l-9].

2. THE PROBLEM

Let an original, directed, single commodity network be G = (N, A, X, c, s, t). Here N denotes
the set of nodes, A the set of arcs, X a vector (Xi,j : (i,j) E A) of lower bounds for flows on the
arcs, c a vector (Ci,j : (i, j) E A) of capacities for flows on the arcs, and s, t the specified source
and sink nodes. Each arc in the network is an ordered pair (i,j), i # j, with i, j E N. Nodes
i, j are called the tail and head nodes of arc (i, j). The arc (i, j) is available for shipping the
commodity from node i to node j. The problem is to send as much flow as possible from s to t
without violating the flow feasibility and flow conservation constraints.

2.1. Flow Feasibility and Flow Conservation
A flow vector in G is a vector f = (fi,j : (i, j) E A), where fi,j denotes the units of commodity

shipped from node i along the arc (i, j) E A to node j. Given the flow vector f = (fid) in G,

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82284825?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

58

define

G.R. WAISSI

f(in, i) = C (fj,i : over j such that (j, i) E A),

f(i, out) = c (fi,j : over j such that (i,j) E A).

The flow vector f is said to be a feasible flow vector if

f(s, out) - f(in, s) = f(in, t) - f(t, out),

f(in,i) = f(i,out), for all i E N, and i # s or t,

x 5 f<c.

The first two constraints are called the flow conservation constraints and the third the flow
bound constraint. When the second constraint holds for some node, say node i, then the flow
vector f satisfies flow conservation at node i. If f is a feasible flow vector in G, the common
value of the quantities in the first equation is called the value of the flow vector f, and denoted

by v(f).

2.2. Flow Augmenting Path

A flow augmenting path (FA P) is a simple path from node s to a node, say i, if the flow can be
increased on each forward arc, and decreased on each reverse arc, of the path. A flow augmenting
path is defined with respect to a feasible flow vector f.

2.3. Acyclic Network

Let H = (V, E, 0, n, s, t) be an acyclic layered network constructed from the network G using
for example the Dinic algorithm. Here V denotes the set of nodes, E the set of arcs, zero lower
bound for flow on the arcs, tc the vector of capacities for flows on the arcs, s the source node,
and t the sink node.

A directed network H is said to be acyclic if the nodes in V can be numbered in such a way
that for every arc (i, j) E E, i < j. Such a numbering of nodes is referred to as acyclic node
numbering.

In a Dinic network, the nodes in V are partitioned into mutually exclusive sets Lo,&, . . .,
L num , with Lo = {s} and L,,, = {t}. Each arc (i, j) E E is such that, if i E L, and j E L,
for some r, then p = r + 1. The sets of nodes LO, LI, . . . , L,,, are called the layers of the Dinic

network. The number of layers, num, is called the length of the network H. Each arc in E join
a node in a layer to a node in the next layer.

The Dinic algorithm constructs an acyclic network by determining FAPs from the source to
the sink in the original network G. In the Dinic network the reverse arcs of a FAP are converted
to forward arcs to maintain acyclicity of the network. Hence, in the Dinic network all arcs of an
FAP are directed from s to t. Because of this property these paths form, actually, chains from s
to t. These chains are called flow augmenting chains (FAC).

A feasible flow vector f is said to be a maximal (or blocking) flow if there exists no FAP from

s to t with respect to f in the original network G. This FA P in an original network corresponds to
a FACin the Dinic network. It has to be pointed out, that only the shortest FAPs are determined
at any network generation. Clearly, f is a maximal flow if and only if there exists at least one
saturated arc on every chain from s to t in the Dinic network.

3. A CLASS OF WORST CASE DINIC NETWORKS

Figure 1 gives an example of a class of problems, where the Dinic algorithm attains the worst
case bound. This worst case behavior occurs regardless of the maximal flow algorithm applied to
Dinic networks. The original network is an acyclic network with n nodes and 2n - 3 arcs. In the
example network each node i is connected by an arc (i, j) to node j, where j = i + 1, and to the
sink node t with an arc (i, t). The capacity ci,j of each arc (i, j), where j = i + 1 and j # t, is

Dinic algorithm 69

Figure 1. Example network.

set to ci,j 1 1~. The capacity cij of all other arcs (i,j), where i = t, is set to ci,t = 1. The lower
bound of flow in all arcs is set equal to zero.

The initial feasible flow vector is f = 0. The Dinic algorithm generates (ra - 1) layered
networks for finding the maximum value flow of v = n - 1 in this class of networks. There exists

only one FAC in each layered network with a flow of one unit on each arc of the FAC, and zero
flow on all other arcs. The value of the maximal flow in each layered network is one implying
that the value of the flow vector increases by exactly one unit in each iteration.

The Dinic algorithm requires the generation of exactly (n - 1) layered networks to solve this
class of networks. This computational effort corresponds to the algorithm’s worst case bound
with respect to the number of auxiliary problems that must be solved, as proved by Dinic. The
first, second, third, and (n - l)st Dinic networks are shown in Figure 2.

Dinic Networks

Figure 2. Iterations and layered networks obtained
by the Dinic algorithm for the example network.

4. CONCLUSION

One of the main reasons for presenting this worst case network class is an attempt to improve
the algorithm with respect to the number of network generations required for maximum value
flow. This could be accomplished, for example, by changing the decision rules so that an attempt
is made to maximize the number of arcs in each Dinic network. The Dinic algorithm limits the
arcs in each network such that they connect only nodes from one layer to the adjacent next layer.
This implies that only shortest FAPs are generated in each iteration.

The max-flow algorithms that use the Dinic algorithm do not imply any such limitation to
the acyclic layered network. Hence, for example, if simply the acyclic node numbering is used

60 G.R. WAlSSI

for the presented network to generate an acyclic layered network, only one network generation is
required. The acyclic node nunabering generates the entire network, with all arcs and all n nodes,
where the nodes are assigned to n layers one node per layer. The maximum value flow can be
found in this single layered network, because it contains all the arcs and nodes.

The author’s current research concentrates on studying decision rules of a Dinic-type network
generator. The goal is to find a generator, which requires strictly less than n auxiliary networks
for the maximum value flow problem without added computational penalty.

REFERENCES

1. E.A. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation, Soviet
Math. Doll. 11 (5), 1277-1280, (1970). (English translation by RF. Rinehart).

2. B.V. Cherkasky, Algorithm of construction of maximal flow in networks with complexity of O(V’fl) op-

erations, Math. Meih. Solution Econ. PTob., 7, 117-125, (1977) (in R ussian, English translation in [3] by
Z. Galil).

3. Z. Gal& An O(V(5/3) E(2/3)) algorithm for maximal flow problem, Acta Injormutico 14, Springer-Verlag,
221-242, (1980).

4. Z. Galil and ,A. Naamad, An O(E V(log V)2) algorithm for the maximal flow problem, Journal of Computer
and System Sciences 21, 203-217, (1980).

5. V.A. K arzanov, Determining the maximal flow in a network by the method of pretlows, Soviei Math. Doklodg
15 (2), 434-437, (1974). (English translation by RF. Rinehart.)

6. V.M. Malhotra, M.P. Kumar and S.N. Maheswari, An 0(V3) algorithm for finding maximum flows in networks,
InjOrmation Procerding Letter6 7 (6), (1978).

7. Y. Shiloach and U. Vi&kin, An 0(n2 log(n)) parallel max-flow algorithm, Journal of Algorithm6 3,128146,
(1982).

8. R.E. Tarjan, A simple version of Karzan ov’s blocking flow algorithm, Operaiions Research Metiers 2 (6),
265-268, (1984).

9. G.R. Waissi, Acyclic network generation and maximal flow algorithms for single commodity flow, Ph.D. Thesis,
The University of Michigan, Arm Arbor, Michigan, (1985).

School of Management, The University of Michigan at Dearborn, Dearborn, Michigan 481281491, U.S.A.

