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Abstract. Many m-flow phase algorithms use the Dinic algorithm to generate an acyclic network 
in the iirst phase, and then solve the maximal flow problem in such a network in the second phase. 
This process is then repeated until the maximum value flow is found in the original network. In 
this paper a class of networks is presented where the Dinic algorithm always attains it’s worst ca8e 
bound. The Dinic algorithm requires (n - 1) network generations, where n is the number of nodes 
in the original network for finding the maximum value flow in the original network. 

1. INTRODUCTION 

‘G--d. 

Dinic [l] presented in 1970 an algorithm to solve the maximum flow problem by repeating a two 
phase process. In the first phase, Phase I, the Dinic algorithm generates an acyclic (or layered) 
network. In the second phase, Phase II, a maximal flow algorithm is applied to such an acyclic 
layered network. For the maximum value flow these two phases are repeated until the maximum 
value flow in the original network has been found. Several maximal flow algorithms (e.g., [l-9]) 
use this two phase approach to solve the maximum value problem. 

The referenced maximal flow algorithms, when using the Dinic algorithm, have achieved an 
overall computational worst case complexity of 0(n3) for the maximum value flow problem in 
dense networks with m NN n2. This worst case complexity of 0(n3), is still the best that has been 
achieved for dense networks. 

This paper sssumes familiarity with the two phase approach when solving single commodity 
maximum flow problems in networks. It is also assumed that the reader is familiar with the Dinic 
algorithm [l]. Several of the references discuss, or refer to, the Dinic algorithm, and a reader is 
referred to those for review and reference, for example [l-9]. 

2. THE PROBLEM 

Let an original, directed, single commodity network be G = (N, A, X, c, s, t). Here N denotes 
the set of nodes, A the set of arcs, X a vector (Xi,j : (i,j) E A) of lower bounds for flows on the 
arcs, c a vector (Ci,j : (i, j) E A) of capacities for flows on the arcs, and s, t the specified source 
and sink nodes. Each arc in the network is an ordered pair (i,j), i # j, with i, j E N. Nodes 
i, j are called the tail and head nodes of arc (i, j). The arc (i, j) is available for shipping the 
commodity from node i to node j. The problem is to send as much flow as possible from s to t 
without violating the flow feasibility and flow conservation constraints. 

2.1. Flow Feasibility and Flow Conservation 
A flow vector in G is a vector f = (fi,j : (i, j) E A), where fi,j denotes the units of commodity 

shipped from node i along the arc (i, j) E A to node j. Given the flow vector f = (fid) in G, 
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f(in, i) = C (fj,i : over j such that (j, i) E A), 

f(i, out) = c (fi,j : over j such that (i,j) E A). 

The flow vector f is said to be a feasible flow vector if 

f(s, out) - f(in, s) = f(in, t) - f(t, out), 

f(in,i) = f(i,out), for all i E N, and i # s or t, 

x 5 f<c. 

The first two constraints are called the flow conservation constraints and the third the flow 
bound constraint. When the second constraint holds for some node, say node i, then the flow 
vector f satisfies flow conservation at node i. If f is a feasible flow vector in G, the common 
value of the quantities in the first equation is called the value of the flow vector f, and denoted 

by v(f). 

2.2. Flow Augmenting Path 

A flow augmenting path (FA P) is a simple path from node s to a node, say i, if the flow can be 
increased on each forward arc, and decreased on each reverse arc, of the path. A flow augmenting 
path is defined with respect to a feasible flow vector f. 

2.3. Acyclic Network 

Let H = (V, E, 0, n, s, t) be an acyclic layered network constructed from the network G using 
for example the Dinic algorithm. Here V denotes the set of nodes, E the set of arcs, zero lower 
bound for flow on the arcs, tc the vector of capacities for flows on the arcs, s the source node, 
and t the sink node. 

A directed network H is said to be acyclic if the nodes in V can be numbered in such a way 
that for every arc (i, j) E E, i < j. Such a numbering of nodes is referred to as acyclic node 
numbering. 

In a Dinic network, the nodes in V are partitioned into mutually exclusive sets Lo,&, . . ., 
L num , with Lo = {s} and L,,, = {t}. Each arc (i, j) E E is such that, if i E L, and j E L, 
for some r, then p = r + 1. The sets of nodes LO, LI, . . . , L,,, are called the layers of the Dinic 

network. The number of layers, num, is called the length of the network H. Each arc in E join 
a node in a layer to a node in the next layer. 

The Dinic algorithm constructs an acyclic network by determining FAPs from the source to 
the sink in the original network G. In the Dinic network the reverse arcs of a FAP are converted 
to forward arcs to maintain acyclicity of the network. Hence, in the Dinic network all arcs of an 
FAP are directed from s to t. Because of this property these paths form, actually, chains from s 
to t. These chains are called flow augmenting chains (FAC). 

A feasible flow vector f is said to be a maximal (or blocking) flow if there exists no FAP from 

s to t with respect to f in the original network G. This FA P in an original network corresponds to 
a FACin the Dinic network. It has to be pointed out, that only the shortest FAPs are determined 
at any network generation. Clearly, f is a maximal flow if and only if there exists at least one 
saturated arc on every chain from s to t in the Dinic network. 

3. A CLASS OF WORST CASE DINIC NETWORKS 

Figure 1 gives an example of a class of problems, where the Dinic algorithm attains the worst 
case bound. This worst case behavior occurs regardless of the maximal flow algorithm applied to 
Dinic networks. The original network is an acyclic network with n nodes and 2n - 3 arcs. In the 
example network each node i is connected by an arc (i, j) to node j, where j = i + 1, and to the 
sink node t with an arc (i, t). The capacity ci,j of each arc (i, j), where j = i + 1 and j # t, is 
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Figure 1. Example network. 

set to ci,j 1 1~. The capacity cij of all other arcs (i,j), where i = t, is set to ci,t = 1. The lower 
bound of flow in all arcs is set equal to zero. 

The initial feasible flow vector is f = 0. The Dinic algorithm generates (ra - 1) layered 
networks for finding the maximum value flow of v = n - 1 in this class of networks. There exists 

only one FAC in each layered network with a flow of one unit on each arc of the FAC, and zero 
flow on all other arcs. The value of the maximal flow in each layered network is one implying 
that the value of the flow vector increases by exactly one unit in each iteration. 

The Dinic algorithm requires the generation of exactly (n - 1) layered networks to solve this 
class of networks. This computational effort corresponds to the algorithm’s worst case bound 
with respect to the number of auxiliary problems that must be solved, as proved by Dinic. The 
first, second, third, and (n - l)st Dinic networks are shown in Figure 2. 

Dinic Networks 

Figure 2. Iterations and layered networks obtained 
by the Dinic algorithm for the example network. 

4. CONCLUSION 

One of the main reasons for presenting this worst case network class is an attempt to improve 
the algorithm with respect to the number of network generations required for maximum value 
flow. This could be accomplished, for example, by changing the decision rules so that an attempt 
is made to maximize the number of arcs in each Dinic network. The Dinic algorithm limits the 
arcs in each network such that they connect only nodes from one layer to the adjacent next layer. 
This implies that only shortest FAPs are generated in each iteration. 

The max-flow algorithms that use the Dinic algorithm do not imply any such limitation to 
the acyclic layered network. Hence, for example, if simply the acyclic node numbering is used 
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for the presented network to generate an acyclic layered network, only one network generation is 
required. The acyclic node nunabering generates the entire network, with all arcs and all n nodes, 
where the nodes are assigned to n layers one node per layer. The maximum value flow can be 
found in this single layered network, because it contains all the arcs and nodes. 

The author’s current research concentrates on studying decision rules of a Dinic-type network 
generator. The goal is to find a generator, which requires strictly less than n auxiliary networks 
for the maximum value flow problem without added computational penalty. 
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