
INFORMATION AND COMPUTATION 95, 96-115 (1991)

Oracle Branching Programs and Logspace versus P*

DAVID A. MIX BARRINGTON’

Department of Computer and Information Science,
University of Massachusetts, Amherst, Massachusetts 01003

AND

PIERRE MCKENZIE~

DPpartement d’informatique et de recherche optrationelle,
Universite de MontrPal, C.P. 6128 “A,” MontrPal, Q&bee, Canada H3C 3J7

We define the notion of an oracle branching program in order to investigate
space-bounded computation. Within this new framework we examine the P-com-
plete problem GEN which consists of determining membership in a subalgebra of
a general (not necessarily associative) binary algebra (input as a multiplication
table). Our work begins with the statement of a conceptually simple conjecture
highlighting the combinatorics which underlie the relationship between Logspace
and P. We show that natural subclasses of P can be expressed as natural
subproblems for GEN. Finally, we -prove optimal lower bounds on the size
of branching programs for GEN with certain natural oracles. ‘T1 1991 Academic _
Press, Inc.

1. INTRODUCTION

A long-standing open question in complexity theory is that of deter-
mining whether indeed DSPACE(log n) # P (see Hopcroft and Ullman,
1979). The following problem, denoted GEN, is P-complete (Jones and
Laaser, 1977) and therefore unlikely to belong to DSPACE((log n)k) for
any k:

Giuen: an n x n table filled with entries from { 1, 2, n}, which
we interpret as the multiplication table of an n-element

* An extended abstract of this paper appeared under the same title in “Proceedings of the
14th Conference on Mathematical Foundations of Computer Science,” pp. 370-379, Lecture
Notes in Computer Science, Vol. 379, Springer-Verlag, Berlin/New York, 1989.

+ Supported by NSF Computer and Computation Theory Grant CCR-8714714.
* Supported by NSERC of Canada Grant A9979 and by Quebec FCAR Grant 89-EQ-2933.

96
0890-5401/91 $3.00
Copyright 0 1991 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82284818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ORACLE BRANCHING PROGRAMS AND L VS P 97

groupoid, and a subset S of { 1,2, n} which includes
element 1.
Determine : whether the subgroupoid (S), defined as the
closure of S under the groupoid product, includes element n.

In this paper we consider the space complexity of GEN. We start by
making the following strong conjecture (see the next section for the
definition of a branching program). This conjecture is justified by the
empirical observation that any branching program efficiently solving all
n x n instances of GEN appears to require a “separate region” verifying
the closure under the groupoid product of Tu { 1) for each
Tc (2, 3, n - 1 }:

Conjecture. For each n > 1, a branching program in which each node
can only evaluate a binary product within an n-element groupoid, branching
n ways according to the n possible outcomes, must have at least 2” ~ 2 nodes
to solve all n x n GEN instances with singleton starting set S.

Our conjecture implies GEN$ DSPACE((log n)k) for any k, and we
have not succeeded in proving it. However, thinking of the branching
programs in our conjecture as accessing a “PRODUCT oracle” (using the
word oracle in the sense of Karp et al. (1988), we are led to the following
questions: What are other “natural” oracles for GEN? How do such
oracles relate to the PRODUCT oracles in terms of space efficiency? What
can be learned about the relationship between polylog space and P by
varying the available oracle? What would be an “NSPACE(log n)-smart”
oracle suitable for studying the relationship between NSPACE(log n) and
P? In this paper we set up a framework for such investigations and merely
begin a detailed study within it.

In Section 2 we define Oracle branching programs formally and inde-
pendently from problem GEN: instead of branching at each node
according to individual input bits, an oracle branching program accesses
its input via an “oracle. ” “Oracle branching programs” thus generalize the
“R-way branching programs” introduced in Borodin and Cook (1982).
We contend that the flexible model which results is well-suited for testing
one’s intuition about the naturalness and effectiveness of various strategies
for the resolution of a problem when space is restricted.

In Section 3 we exhibit GEN subproblems complete for standard sub-
classes of P, justifying the choice of GEN as a particularly appropriate
P-complete problem to study. Bearing in mind the inclusion chain

NC’cLcNLcNC’s... GNCGP.

(where L and NL denote DSPACE(log n) and NSPACE(log n), respec-
tively, as in Cook, 1985), we describe natural L-complete and NL-complete

98 BARRINGTON AND MCKENZIE

subproblems of GEN, and we exhibit a close relationship between circuit
depth within the NC complexity class and “bracketing depth” (defined
precisely in Section 2) of groupoid elements in a groupoid instance. We
also discuss a subproblem of GEN naturally solved by a nondeterministic
algorithm operating simultaneously in small space and in polynomial time,
thus belonging to a nondeterministic version of the class SC defined in
Cook (1981) (see Monien and Sudborough, 1981).

In Section 4 we study oracle branching programs for problem GEN
with singleton starting set S, hereafter denoted GEN({ l}). Consider for
example the following oracle: when queried with a subset T of groupoid
elements, the oracle delivers in one step the least groupoid element in
(T)\T (or 0 if T is already closed). Using nodes labelled with queries to
this oracle it is easy to construct a branching program of size 2”-2 which
solves all nxn GEN((1)) ms antes. t We prove as Theorem 4.1 that this
construction is optimal: a branching program whose nodes can only query
such an oracle requires 2”P2 nodes to sove all n x n GEN instances.
(Theorem 4.1 does not prove our main conjecture because, as we shall see
and perhaps contrary to one’s first intuition, the oracle in Theorem 4.1 is
much weaker than the PRODUCT oracle in our conjecture.) We then turn
to more powerful “natural” oracles (for example to oracles which deliver
subsets of elements from (T)\T in one step) and in each case we describe
upper and lower bounds on the sizes of the various oracle branching
programs solving GEN.

We conclude in Section 5 with a discussion of the issues raised by these
results and with a number of open problems.

2. BACKGROUND AND DEFINITIONS

For each integer n>O let [n] stand for { 1,2, H}. We use “c” to
denote proper set inclusion. A groupoid is a finite set [n] equipped with a
binary operation denoted “ *.” Fix a groupoid G and let T E G. As men-
tioned earlier, (T) denotes the smallest groupoid containing T and closed
under multiplication. We also refer to the left closure of T, denoted
LCL(T), which is the smallest subset of G containing T and closed under
multiplication on the left by elements of T. Observe that if G is not
associative then LCL(T) will in general not include all of (T). We also
write TZ for (X * y (x, y E T}. If x E (T) then an expression for x in terms
of elements of T can be represented as a binary tree with leaves from T,
and we call the depth of this tree the bracketing depth of the expression.
Now x can generally be expressed in many different ways as a product of
elements of T, and we define the bracketing depth of x with respect to T to

ORACLE BRANCHING PROGRAMS AND L VS P 99

be the minimum bracketing depth of such an expression. Given a GEN
instance, the bracketing depth of the GEN instance is defined as the
maximum bracketing depth of any x E (S) with respect to S.

2.1. Complexity Theory

Throughout this paper we mostly consider subclasses of the class P of
problems solvable in polynomial time, with the (likely) exceptions of the
complexity classes DSPACE((log 12)~) of problems solvable in space
(log n)k on a deterministic multitape Turing machine when k > 1. Class L
(NL) denotes the class of languages accepted in logarithmic space on a
deterministic (nondeterministic) Turing machine. Class NC is defined as
IJk NCk, where NCk is the set of languages accepted by a uniform family
of indegree two Boolean circuits of depth O((log n)k) and of polynomial
size (Pippenger, 1979). All completeness results in this paper are under
NC’-reducibility: problem f NC’-reduces to problem g if a uniform circuit
family of logarithmic depth (hence of polynomial size) can solve f given
the use of oracle gates solving g. (See Cook, 1985, for technicalities omitted
from our definitions of NCk and of NC ‘-reducibility; in particular,
although the exact notion of uniformity will not play a role in this paper,
for detinitebess assume log space uniformity of circuit families. Supple-
mented with Hopcroft and Ullman (1979), Cook (1985) provides an
excellent overview of the known relationships between the complexity
classes mentioned in this paragraph.)

The graph accessibility problem consists of determining whether a path
joins node 1 and node m in a graph ([ml, E). This problem is denoted
DGAP, UGAP, or DGAPl if the graph is a directed graph, an undirected
graph, or a directed graph of outdegree 1, respectively. DGAP and DGAPl
are NL-complete and L-complete, respectively (Jones, 1975), and UGAP
appears to lie somewhere in between (see Aleliunas et al., 1979).

2.2. Traditional Branching Programs

Branching programs (abbreviated BPS) for the computation of Boolean
functions were studied by several authors (see for example Lee (1959),
Masek (1976), Borodin et al. (1979, 1983), Chandra et al. (1983),
Barrington (1989). Traditionally an m-input branching program compo-
nent’ is a directed acyclic rooted graph, with two nodes of outdegree zero
(labelled ZERO and ONE, respectively), with all other nodes of outdegree
two (each labelled with some integer j, 1 <j < m), and with the pair of out-
edges from any node labelled ZERO and ONE, respectively. Such a BP

’ Most authors refer to “BP components” as “BPS”. We prefer to think of a branching

program as a family (B,),, t N in which B,, is an m-input BP component.

100 BARRINGTON AND MCKENZIE

component computes, on input x1 x2, x, E (0, 1 }“, the Boolean value
given by the label of the unique sink node reached by starting at the root
and, once at a node labelled j, traversing edge ZERO or ONE depending
on the Boolean value of input bit xi. The Boolean function computed is
often viewed as the characteristic function of a subset L c {O, 1 }“, the
language accepted by the BP component.

As is the case in circuit complexity, an infinite subset of (0, 1 }* requires
an infinite family of BP components for its recognition (each input length
being handled by a separate component), and the question of uniformity
arises. In this paper we impose no uniformity condition on BPS. Note also
that we use BPS to solve problems where only some of the possible input
sizes (measured in bits) are of interest. In this case many of the BP com-
ponents will be trivial.

Taking the size of a BP component to be its number of nodes, denote by
SZZE(s(m)) the set of languages accepted by a BP whose mth component
has size at most s(m). The following fact, which is folklore from the sixties
(for example Cobham, 1966, see Borodin et al., 1983), follows from viewing
the computation graph of a Turing machine on inputs of a given length as
a BP component.

Fact 2.1. D,SPACE(s(m)) s UC SZZE(c”‘“‘).

The following conjecture, widely believed to apply to any P-complete
problem, therefore implies the nonexistence of a (log n)k space solution to
GEN for any k. (Consequences of Conjecture 2.2 thus include NC c P since
for each k NCk E DSPACE((log H)~) (Borodin, 1977))

Conjecture 2.2. For each k > 0, GEN $ SZZE(2”“g n)k).

Note that Conjecture 2.2 is apparently stronger than the statement that
no (log n)k space GEN solution exists for any k because of the uniformity
issue. Indeed suppose that Conjecture 2.2 is false and (say) that a polyno-
mial size BP exists which solves GEN. For such a BP to be useful to a
space-bounded Turing machine attempting to solve GEN, it is necessary
that the machine on input w of length IwI be able to construct enough of
the description of the 1~~1 th BP component to carry out the step by step
simulation of the component on MI. Since no bound is imposed on the com-
plexity of the function which maps a binary string w to an encoding of the
(WI th BP component (indeed this function need not be recursive), this
construction might not be doable in space (log n)” for any k.

2.3. Oracle Branching Programs

Classical branching program nodes branch two ways according to the
answer to a question of the type “what is the value of input bit i?” Nodes
of an “R-way branching program” (Borodin and Cook, 1982) branch 2”

ORACLE BRANCHING PROGRAMS AND L VS P 101

ways according to the answer to a question involving k contiguous input
bits. (Note that the branching programs involved in the conjecture of Sec-
tion 1 can be thought of as R-way branching programs if we assume a
natural encoding of GEN multiplication tables.) Oracle branching
programs will be defined to allow nodes to “ask” more general questions.

We take C = (0, 1 }, though our definitions apply to any finite alphabet.
For m E N, Z”’ denotes the set of all strings of length m over Z, and (Z”‘)*
the set of all strings of length km over Z for some k EN. For WEC*, 1~’
denotes wu’ . . . w (k occurrences of ~1).

DEFINITIONS. An m-input oracle BP component is a deterministic finite
automaton A = (Q, C”, 6, qO, F) in which each final state is a sink state.
The size of A is IQ\. An oracle branching program is a family (A,),, N of
m-input oracle BP components. The size of the BP is a function describing
for each m the size of A,.

DEFINITIONS. The language accepted by oracle BP component
A=(Q,Cm,6,q0,F) is L?(A)= {wEL’~I~(~~, ullQ1)~F), where 8 denotes
as in Hopcroft and Ullman (1979) the natural extension of 6: Q x C” -+ Q
to the domain* Q x (Zm)*. The language accepted by (Am)mtN is
U msN aAm).

Any subset of L* is therefore accepted by some oracle BP of size 2. The
notion of an oracle BP becomes interesting only when we restrict the
“power” of the transition function in each BP component. We do this by
restricting the “local partitions” 7c,., of C” defined for each state q E Q, of
each BP component A, = (Qm, Cm, 6,, qo, F,,,) as follows: rr,., is the
partition induced by the equivalence relation -m,y defined on Z” as
U-m,yU-L(q, u)=6,(q, u).

DEFINITIONS. An oracle is a class of partitions of C” for various m.
A BP with oracle 0 (or an 0 BP) is an oracle BP ((Q, , 2”‘) 6,) qo, F,,,)), t N
in which for each m E N and for each qE Qm the local partition x,,~ is
refined by some partition of L’” in 0.

EXAMPLE (BIT oracle). Consider for each m E N and for each ie [m]
the partition B,,i induced on C” by relating words ur u2 ... u, and
v,v*... v, whenever ui = ui. Define the BIT oracle as the class of all such
partitions B,,j. BIT BPS model (nonuniform) Turing machines with input
alphabet Z and random access to their input tapes.

*The input w’, which to the automaton is a single letter of the alphabet, is given to the
automaton repeatedly, until the automaton reaches a sink state or will definitely never do so.

102 BARRINGTON AND MCKENZIE

We now introduce several “natural” oracles which one might consider
critically helpful in solving problem GEN({ 1 }). Denote by Z, the set of all
rz”* groupoids with elements [n]. Once and for all we agree on a reasonable
O(n* log n) length encoding of Z, over C such that, for each n, words of
equal length encode all groupoids from I,. Via this encoding we can view
Z, itself as the input alphabet of a BP component.

DEFINITION (PRODUCT oracle). Fix n E N, in [n], j6 En], and con-
sider the partition of Z, induced by relating g, E Z, and g, E Z, whenever
i * j is the same in both groupoids g, and g,. The PRODUCT oracle is the
class of all such partitions.

Note that we have chosen to allow cycles in oracle BPS. Standard techni-
ques to eliminate such cycles (credited to Pippenger in Borodin et al., 1979)
imply that to within roughly a squaring of their sizes BIT BPS, PRODUCT
BPS, and traditional BPS are equivalent with respect to their ability to
solve GEN ({ 1 }) efficiently in terms of BP size. Hence each of these models
provides a fair measure of Turing machine space. As we will see, this will
no longer be true for the oracles defined in the remainder of this section.

It is convenient to view oracles by considering a question about the
input which is answered at each node. For example, a node of a
PRODUCT BP as defined above asks “what is the product i * j in the
input groupoid ?” Assuming the usual ordering on [n], we now define the
WITNESS BP, whose nodes are conceptually labelled with questions of the
type “what is the least new groupoid element which can be generated from
a given subset Tc [n] of groupoid elements?’

DEFINITION (WITNESS oracle). Fix n E N, Tc [n], and consider the
partition induced on Z, by relating g, and g, whenever (T)\T evaluated
in each groupoid either contains the same smallest element or in both cases
yields the empty set. The WITNESS oracle is the set of all such partitions.

Define for any ke N and Ts [n] the set minck)(T) to be the
lexicographically least k-subset of T if ITI > k, and T if 1 TI <k (for
example {1,3}<{1,n}<{3,4}).

DEFINITION (k-WITNESS Oracle). Fix n EN, TG [n], and consider the
partition induced on Z, by relating g, and g, whenever minck’((T)\T)
evaluated in each groupoid yields the same set. The k-WITNESS oracle is
the set of all such partitions.

Finally we define two more oracles which ask essentially the same ques-
tions as the last two, but do not look as hard to find a new groupoid
element to return.

ORACLE BRANCHING PROGRAMS AND L VS P 103

DEFINITION (PARTIALWITNESS and k-PARTIALWITNESS oracles).
Defined as the WITNESS and k-WITNESS oracles respectively, except
based on the evaluation of T2\T rather than (T)\T.

3. COMPLEXITY OF GEN SUBPROBLEMS

Observe that a straightforward algorithm solves GEN in polynomial
time. It is known that GEN and GEN (commutative) (even with a
singleton starting set) are P-complete (Jones and Laaser, 1977), whereas
GEN (associative) is NL-complete (Jones et al., 1976). We begin this
section with a new and simple P-hardness proof for GEN, starting from
the circuit value problem (Ladner, 1975). The new proof will be used in
Proposition 3.2 to relate circuit depth within class NC to bracketing depth
of GEN instances. Recall the P-complete problem CVP (Ladner, 1975):

Given: A Boolean circuit, that is, a sequence (a,, a,) where
each ai is either a Boolean input, a gate AND(j, k), a gate
OR(j, k), or a gate NOT(j), where in each case j 6 k < i.
Determine : The Boolean value computed at the output gate c(, .

THEOREM 3.1. GEN is P-complete under NC’-reducibility (Jones and
Laaser, 1977).

Proof: For each i we assume that if ai is either AND(j, k) or OR(j, k)
then neither 0~~ nor c(~ appear as input to any gate in the circuit other than
tci. (This condition can be achieved by replacing each “wire” in the original
circuit by two consecutive NOT gates.) To each circuit gate cli will
correspond two groupoid elements i and i, whose function is to implement
double rail logic as in Goldschlager (1977): i (respectively i) will belong to
the subgroupoid generated by the starting set if and only if gate cli takes on
the value 1 (respectively 0). Additional groupoid elements correspond to
the “wires” into NOT gates; that is, they are

E= {e,, I ui= NOT(j)}.

These additional elements are part of the starting set S, which is defined as

S = E u (i (input gate cl; is assigned I} u {i 1 input gate LX, is assigned O}.

Then gate di = AND(j, k) is simulated by defining

i=j*k; i=j* j; i=R*fi,

gate CQ= OR(j, k) by

i=j*E; i=j* j; i=k*k;

104 BARRINGTON AND MCKENZIE

and gate C(~ = NOT(j) by

i=e,,* j; i = eji * j.

Observe that each groupoid product defined so far is uniquely defined. To
complete the construction, pick any element in the starting set S, say g,
and define any remaining groupoid product as yielding g (an easy
modification here would yield a commutative groupoid, proving that GEN
in the commutative case remains P-complete as was noted in Jones and
Laaser, 1977).

The above construction yields a groupoid whose subgroupoid (S)
contains m if and only if output gate tx, computes 1. 1

Our next proposition makes precise the correspondence between
bracketing depth of a GEN instance and depth of a polynomial size
Boolean circuit solving GEN. Note that GEN (associative) instances
have bracketing depths at most log n.

PROPOSITION 3.2. GEN instances with bracketing depth (log n)” are hard
for NCk and can be done in NCk f ‘.

ProoJ Feeding an NCk circuit through the groupoid construction
described in the proof of Theorem 3.1 produces a groupoid with bracketing
depth in O((log n)k), which proves the hardness claim. The NCk+’ upper
bound follows from cascading (log n)k stages of logarithmic depth each
computing

{i * j) i and j were obtained at some previous stage}

and eliminating duplicates, with S the elements available at stage 0. i

Now define problem GEN(r(n)-rows) for a function r(n) d n to be the
subcase of GEN in which at most r(n) rows of an n x n multiplication table
contain elements other than 1.

LEMMA 3.3. Let T be the set of (indices of) nontrivial rows in the multi-
plication table of some groupoid G and suppose 1 E T. Then (T) = LCL(T).

Proof: Trivially LCL(T) G (T). We prove the reverse inclusion by
induction on the bracketing depth of x E (T) with respect to T. In the
induction step we must have x = y * z for y and z of depths smaller than
that of x, thus for y and z in LCL(T) by the induction hypothesis. If y is
in T then x is in LCL(T). If y is not in T then the y th row is trivial and
-v * z = 1, so that .r = 1 and x is in T. 1

ORACLEBRANCHING PROCRAMSANDL VS P 105

THEOREM 3.4. NSPACE(max{log n, r(n)}) n DSPACE(max{(log n)‘,
r(n)}) contains the problem GEN (r(n)-rows).

Proof The following nondeterministic algorithm determines mem-
bership of n in (S):

T + {X E S) x is the index of a nontrivial row)
for i+- 1 to r(n)

guess a nontrivial row j
if jELCL(T) then Tc Tu {j}

if II E LCL(T) then accept.

This algorithm never accepts incorrectly, and Lemma 3.3 together with an
induction imply that the for loop is able to compute

{x E (S) / x is the index of a nontrivial row}.

Another application of Lemma 3.3 justifies the last instruction. As to the
space claims, without loss of generality we can assume that the nontrivial
rows are the first r(n) rows since the index of each nontrivial row can be
computed in log n deterministic space. Hence a bit map of length r(n) can
represent T. Testing membership in LCL(T) nondeterministically requires
remembering only one element and thus uses at most log rr space (and thus
at most (log n)’ space deterministically by Savitch, 1970). 1

Note that unless r(n) is in O(log n) the deterministic version of the above
algorithm does not run in polynomial time, although of course a different
algorithm solves even the general problem in polynomial time. An
interesting aspect of problem GEN((log n)k-rows) is that the above non-
deterministic algorithm solves the problem simultaneously in space
O((log n)k) and in polynomial time. The class of problems solvable non-
deterministically in space f(n) and polynomial time was introduced in
Monien and Sudborough (1981) and denoted NTZ,SP(poly, f(n)). Inter-
estingly, known members of NTZ,SP(poly, (log n)“) were obtained by
imposing natural “bandwith constraints” on various NP-complete
problems; here we are led to the same class by restricting a problem in P.

COROLLARY 3.5. Problems GEN(2-rows) and GEN(log n-rows) are
NL-complete.

Proof: By Theorem 3.4 it s&ices to prove that GEN(Zrows) is NL-
hard. Consider a directed graph (In], E) of outdegree two which includes
edge (1,2). Then a directed path exists from node 1 to node n if and only
if element n belongs to the subgroupoid ({ 1,2)) of the groupoid with

106 BARRINGTON AND MCKENZIE

elements [n] defined as follows: for each je [n], with outgoing edges (j, k)
and(j,/),set l*j=kand2*j=l. 1

THEOREM 3.6. Problem GEN(l-row) is L-complete.

Proof Starting from DGAPl, a reduction almost identical to
that in Corollary 3.5 proves that GEN(l-row) is L-hard. To see
that GEN(l-row) E L, let i be. the unique nontrivial row. Then, because
j * k = 1 whenever j # i, the following holds: n E (S) if and only if either
nES, or ieS and nE{j*kl jELCL({i}), kES}. Now LCL(T) can be
computed in L for any singleton T. 1

An easy reduction from GEN proves:

PROPOSITION 3.7. GEN({ 1 }) is P-complete.

The following is also clear:

PROPOSITION 3.8. GEN({ 1 } and associative) E L.

Hence unlike GEN, GEN (associative) apparently becomes easier when
the starting set S is { 11. We suspect GEN({ l> and associative) to be
L-hard but cannot yet prove this. By contrast the proof of Theorem 3.6
implies:

PROPOSITION 3.9. GEN({ 1) and l-row) is L-complete.

This last problem remains L-complete even if we further insist that all
elements of [n] appear in the only non-trivial row. This is seen by a reduc-
tion from the L-complete problem (Cook and McKenzie, 1987) of deter-
mining whether points 1 and n belong to the same cycle of a permutation
n of [n] which is input as a sequence n(l), 7c(2), rc(n). Finally,

PROPOSITION 3.10. GEN({ 1 } and 2-rows) is NL-complete.

4. ORACLE BRANCHING PROGRAMS SOLVING GEN

Fix n and say that a BP component is o&id if it solves all n x n
GEN({ 1 }) instances.

THEOREM 4.1. The size of a valid WITNESS BP component is at least
2”-2.

Proof: For each of the 2”-2 sets Tc [n - l] which contain element 1
we will exhibit two groupoids g, (T) and g- (T) with the properties

ORACLE BRANCHING PROGRAMS AND L VS P 107

(subscripts “+” and “-” distinguish between the two groupoids under
consideration)

1. nE(l)+

2. n$(l>-

3. (~QEII~I)[(TZQ)~(~~~+((Q>\Q)=~~~-((Q>\Q))I,

where we take the min of an empty set to be zero. In words these condi-
tions state that g, (T) must travel to a final state, that g- (T) must not
travel to a final state, and yet that the only WITNESS oracle query which
can tell g + (T) apart from g _ (T) is T. Necessarily all 2” ~ ’ distinct queries
T must therefore appear in a valid BP component.

Fixing T= (1, x2, xj, xi). E [n - 11, where the relative order of the
elements in T is immaterial, we now describe groupoids g, (T) and g ~ (T).
All entries other than those in the first row of the respective multiplication
tables are set to 1. Letting { yi+ ,, ,v~+~, y,_ ,, n} = [n]\T and
permuting columns of the multiplication tables for ease of presentation,
we define the first row of g, (T) as

and the first row of g _ (T) as

Groupoids g, (T) and g- (T) clearly satisfy conditions 1 and 2 above.
To verify condition 3, pick a nonempty set Q G [n] other than T. Observe
that by definition of both groupoids 1 E (Q) and thus Tu Q E (Q) c
TuQu {n}.

Case 1. T\Q # 0.
min(T\Q).

Then min+(<Q>\Q) = min-((Q>\Q) =

Case2 TcQ. Then min+((Q)\Q)=min_((Q)\Q)=y, where y=O
if n E Q and y =n otherwise (since any element outside T generates n by
construction in both groupoids). 1

We note that it is not difficult to construct a valid WITNESS BP
component using 2”-2 nodes, showing that Theorem 4.1 is optimal.

A more realistic oracle than WITNESS is PARTIALWITNESS, which

108 BARRINGTON AND MCKENZIE

for a query set Q returns the least element in Q’\Q. Such an oracle can be
constructed out of a polynomial number of PRODUCT nodes, and one’s
intuition might be that PARTIALWITNESS and PRODUCT oracles are
equally helpful in constructing size-efficient valid BPS. The next theorem
shatters this intuition.

THEOREM 4.2. The size of a valid PARTIAL WITNESS BP component is
at least 2” ~ 2.

Prooj The argument is almost identical to that in the proof of
Theorem 4.1. Fix T = { 1, x2, x3, , I , Y.} this time choosing the labels
so that 1 < x2 < .x3 < . . . <xi, and construct g, (T) and g-(T) exactly
as before. To verify that no PARTIALWITNESS oracle query Q can
distinguish g, (T) from g- (7’) unless Q = T, simply observe that for
each such set Q c [n] the minimal element of (Q)\Q is also in Q2\Q for
both groupoids. 1

Again here Theorem 4.2 is easily seen to be optimal.
In defining WITNESS and PARTIALWITNESS BPS we chose to have

an oracle query Q return the least element among the set of possible
answers. This may seem unfairly biased against the BP because n is only
returned when no other new element is available. Consider then modifying
the WITNESS and PARTIALWITNESS oracles to consistently return the
largest element among the set of possible answers. Although WITNESS
oracles modified in this way become so powerful as to solve GEN with the
single oracle query { 1 }, an exponential size lower bound still holds in the
case of PARTIALWITNESS oracles.

LEMMA 4.3. Fix any total order 71, < a, < .. . < x,, on [n]. In a valid BP
component with PARTIAL WITNESS oracle mod$ed to consistently choose
its least element according to the new order, each query T containing 1 but
not n and satisfying

I{.xE T:max([n]\T)<x}1<2

must appear, where max is taken with respect to <.

(1)

ProoJ It is easy to show that in a valid BP the query T= (1 > must
appear. For the rest we proceed as in the proof of Theorem 4.1. Pick
T={ xl, x2, x3, xi}, ITI 22, with 1 E T but n 4 T satisfying condition
(l), whence we can write x, <x2< ... <xipz<m for m =max([n]\T).
Writing {yi+,, Y~+~, y,-i, m} = [n]\T, we now construct g+(T)
and g- (T). All entries other than those in row xi- i of the respective
multiplication tables are set to xi except 1 * 1 = x, _ i if 1 # xi_ i Again

ORACLE BRANCHING PROGRAMS AND L VS P 109

permuting columns of the multiplication tables, row xi-, of g, (T) is
defined as

x-, x2 xj “’ x, m m m .” m n

and row x~, of g- (T) as

x-, x2 xj “’ x, X, m ??I “’ VI n

Groupoids g+(T) and g-(T) satisfy nE (l), and n$ (l)-. We must
now verify that no query Q other than T itself can distinguish g, (T) from
g-(T). Pick and Qs[n], Q#T.

Case 1. X&,$Q or xi+ Q. Then computing Q2 does not involve the
only table entry which distinguishes g + (T) from g _ (T).

Case 2. {x-i, xi} E Q and T\Q # 0. Let x be the minimal element
of T\Q under <. We have x<m since x~T\{x,~,,x~}. Then
min+(Q’\Q)=min-(Q2\Q)=y, where y=x if m$Q and y=min(x,n)
otherwise.

Cuse3. TcQ. Then min+(Q2\Q)=min_(Q2\Q)=y, where y=O if
rnEQ and nEQ, y=n if rnEQ and n$Q, y=m if m$Q. 1

THEOREM 4.4. Fix any total order x1 < x2 < . . 4 n, on [n]. The size
of a valid BP component with PARTIAL WITNESS oracle modlyied to
consistently choose its least element according to the new order is at least
2”-2 if7~,_~ <n and at least ($)2”p2 otherwise.

Proof: Using Lemma 4.3 it suffices to count the number of distinct
candidates satisfying condition (1). (A candidate is a set T with 1 E T and
n # T.) If rc,- 3 <n then all 2”-2 candidates satisfy the condition since at
most two elements of [n], and hence of any candidate T, are larger than
n E [n] \T. Condition (1) can now fail only if all three of the elements
17%29 n,- I? 71,) are in T. Normally this will not be the case for g of the
T’s but there is the possibility that 1 is in this set and then only i of the
T’s omit one of the other two. 1

Our best upper bound for the size of a valid BP component with the
oracle of Theorem 4.4, regardless of the ordering <, is the obvious 2”- 2.
Except when element n happens to be the largest, the second largest, or the
third largest element under the ordering, our upper and lower bounds
therefore do not quite match.

110 BARRINGTON AND MCKENZIE

Now recall the k-WITNESS BP, whose nodes can be thought of as
branching CkZO (1) ways according to the set minck’((T)\T) as defined
in Section 2. Let us write f(k, m) = CbzgkJ (z) for the number of subsets
of [m] whose cardinalities are a multiple of k. Note that f(k, m) is
approximately 2”‘/k for m much larger than k. For any fixed k, it is easy
to construct a valid k-WITNESS BP component of size f(k, n - 2).

THEOREM 4.5. The size of a valid k-WITNESS BP component is at least
2n-2/nk--1

Proof It suffices to oberve that, upon having constructed g + (T) and
g- (T) exactly as in the proof of Theorem 4.1, any query set Q for which
IT\Qj Zk or Q\T#@ is such that min~‘((Q)\Q)=min’k’((Q)\Q).
Hence although several queries Q are capable of telling g + (T) apart from
g- (T), any single query Q can only take care of those sets T for which
Q G T and 1 T\Ql 6 k - 1. Since there are at most nk ~ ’ such sets T for any
Q, the result follows. 1

Consider finally the more realistic k-PARTIALWITNESS oracle, which
“computes” minck’(Q’\Q).

THEOREM 4.6. The following holds for k = 1, 2, 3: a valid k-PAR-
TIAL WITNESS BP component has size at least 2”p2/nk- I.

ProoJ: For k = 1 this is the content of Theorem 4.2. Consider k = 2.
For any T= { 1, x2, xX, xi} C [n- l] with 1 <x2<x3< ... <xi and
{Yi+l, Yi+27***9 y,- i, n} = [n] \T, define the nontrivial rows of g, (T)
and of g- (T) to be

1 x2 X3 -r4 “. x,-2 X,-l x, YL,, .” n

1 X2 x3 X.3 x5 ... x,_, x, * n n

X, -x3 -x4 X5 X6 .” x, x, X‘ n n

where * stands for n in the definition of g + (T) and for xi in that of g- (T).
Then a 2-PARTIALWITNESS oracle query Q can tell g, (T) apart from
g- (T) only if { 1, xi} E Q E T. Moreover, such a query Q fails whenever
) T\Ql > 1 since in that case miny’(Q2\Q) = minc2’(T\Q) = min’?(Q2\Q)
by construction. This means that a query Q can succeed for at most n
distinct sets T, and the bound for k = 2 follows.

Now let k= 3. For any T= { 1, x2, x3, xi} G [n - l] with
1 <xZ<X~< ... <xi and {yi+i, yi+2, ynwl, n} = [n]\T, define the
nontrivial rows of g + (T) and of g ~ (T) to be

ORACLEBRANCHINGPROGRAMSANDLVS P 111

where as before * stands for n in the definition of g, (T) and for xi in that
of g- (T). (Note that for 1 TI Q 4 these definitions of g + (T) and of g- (T)
still apply with the understanding that xj= xlT, for j> I rl.) We claim that
a query Q can only tell g+(T) apart from g-(T) if {l,xi}cQ~Tand
1 r\QI 6 2. Since the first condition is clear, pick Q such that
(l,xi}~Q,sr and IT\Ql > 2. If x2 E Q then it is easily seen that
miny’(Q*\Q) = min”‘(T\Q) = min?‘(Q’\Q). So assume x2 $ Q. Then
x2 E Q’\Q, which in g, (T) and g- (T) also includes the second and third
smallest elements of T\Q since the definition of xi * .‘ci as .x4 takes care of
the critical cases in which {x3, x4} n Q = a: this means once again that Q
cannot tell g + (T) apart from g _ (T), proving our claim and implying our
lower bound in the case k = 3. 1

Our lower bound strategy in this section has been to define pairs of
groupoids which differ in a single entry. We cannot directly extend
this strategy to the case of 4-PARTIALWITNESS oracles. Suppose for
example that i * j = k in groupoid g, and i * j = I in groupoid g_ .
A 4-PARTIALWITNESS query {i, j} will correctly return the set
(i * i, i * j, j * i, j * j}\ { i, j}. It is difficult to imagine how these sets could
be the same in groupoids which have significantly different computation
properties.

5. DISCUSSION AND OPEN PROBLEMS

It is tempting to view the lower bounds of Section 4 as evidence
supporting our conjecture of Section 1. These lower bounds reflect instead
the weakness of the oracles studied. Indeed we have seen in Section 3 that
GEN(l-row) E L and yet the proofs of Theorems 4.1 and 4.2 show that
WITNESS and PARTIALWITNESS BPS solving GEN({ 1 } and l-row)
require 2”-* nodes. This suggests that the obvious resolution method for
GEN in which no attention is paid to the origin of the new element
generated at each step is indeed a poor strategy in terms of space usage. In
thisconnection it is interesting to scrutinize the way in which PRODUCT
oracles manage to bypass this strategy when solving GEN((1 > and l-row)
in polynomial size and GEN({ 1 } and 2-rows) in size nlog” (which is
possible by Savitch’s theorem (Savitch, 1970)). Naturally we expect to be

112 BARRINGTON AND MCKENZIE

unable to mimic these shortcuts in solving GEN({ 1)) because of the over-
whelming amount of information which would in effect need storing within
the BP “topology”.

Our investigation of GEN subproblems has uncovered interesting ques-
tions concerning the effect of imposing the algebraic condition of
associativity together with other restrictions. Given a group and a set of
generators, the Cayley graph of the group is a graph with one vertex per
group element and, for each generator g and each element x, an edge
labelled g from element x to element xg. The Cayley graph of a group
is easily constructed from the group’s multiplication table, so that
GEN(groups) NC-reduces to UGAP by including only the Cayley graph
edges corresponding to elements in the starting set S and by asking
whether a path joins the group identity and element n. Does GEN(groups)
belong to L? We doubt that this is the case: we believe rather that
GEN(groups) is complete for the NC’-closure of UGAP, though we do not
yet see how to apply the techniques in Cook and McKenzie (1987) to
prove that GEN(groups) is even L-hard. A further restriction is GEN-
(cyclic groups): this problem is clearly in L, but is it in NC’? Another
interesting algebraic problem is GEN(commutative and associative): how
does it relate to UGAP or to L? Developing the appropriate hardness
proofs for these problems will yield further insight into the expanding con-
nections between algebra and low level complexity classes (Barrington,
1989; Barrington and Therien, 1988; McKenzie and Thtrien, 1989).

The restricted version of GEN with only (log n)” nontrivial rows further
led us to the class NTZ,SP(poly, (log n)“) (Monien and Sudborough, 1981)
of problems solvable by nondeterministic machines with simultaneous
bounds of polynomial time and O((log H)~) space. By analogy with Cook’s
class SCk (Cook, 1981) let us call this class NSC”. NSC’ is of course just
NL and is thus within P, but we know little about even NSC2. It it equal
to NSPACE((logn)‘)? (This would imply NSPACE((logn’)& NP.) Is it
within P? Is is closed under complement? In this last case the recent proof
by Immerman (1988) and Szelepcsenyi (1987) that nondeterministic space
classes are closed under complement does not appear to apply, because
the nondeterministic algorithm used there to solve a problem in
co-NSPACE(f(n)) uses time 2/(“).

A plethora of open questions concerns oracle branching programs for
GEN. Theorem 4.4 and the discussion preceding it reveal crucial differences
between the WITNESS and PARTIALWITNESS oracles. The WITNESS
oracle’s ability to choose its output from (Q) is a two-sided coin: a bad
choice function hinders progress (relative to the PARTIALWITNESS
oracle which has fewer bad answers to choose from) and a good choice
function solves GEN trivially. PARTIALWITNESS oracles on the other
hand are hardly dependent on the choice function provided that this func-

ORACLE BRANCHING PROGRAMS AND L VS P 113

tion returns the smallest element (in Q’\Q) according to a total order fixed
in advance. PARTIALWITNESS oracles are also realistic in that they are
easily simulated by the PRODUCT oracle. Observe that both types of
oracle (as well as PRODUCT and BIT oracles, though somewhat artifi-
cially) are in effect prescribed by a family of functions eval,, : Z, x 2!, + 2 Cnl
and choice, : 2’“’ ---f 2[“‘. Fixing n and query Q E 4, a partition is
induced on I,, by relating g, and g, whenever choice,(eual,(g,, Q)) =
choice, (eval,(g,, Q)), and formally the oracle is the class of all such parti-
tions. The interplay between meaningful eval and choice functions affects
the behavior of resulting oracles dramatically and deserves further study.

Theorem 4.6 suggests taking a closer look at 4-PARTIALWITNESS
oracles. Are these equivalent to the PRODUCT oracles? Will lower bound
techniques applicable to these also apply to PRODUCT oracle BPS for
GEN?

Future research on oracle BPS for GEN should also involve oracles
whose power is intermediate between that of the PRODUCT and that of
the WITNESS or PARTIALWITNESS oracles. In particular, upper
bounds for BPS with oracles as “powerful” as L, NL, NSCk, or NCk should
be investigated. The results in Section 3 suggest defining such oracles as
having the ability to extract all the information from one complete row of
a multiplication table (“L-smart oracle”), from two complete rows (“NL-
smart oracle”), from a (log n)k size subset of rows (“NSCk-smart oracles”),
or from all expressions of bracketing depth at most (log n)k in terms of the
elements in a query set Q (“NCk-smart oracles”).

All oracles discussed in this paper (including the fundamental BIT and
PRODUCT oracles) are nonadaptive in the sense that the answer to oracle
query Q does not depend on the “history” of the “algorithm”. Consider
instead an adaptive PARTIALWITNESS oracle which returns the least
element in Q2\Q among those which the algorithm has not yet seen: can we
prove an exponential size lower bound for a valid BP component in that
case? Note that under this new definition one can construct a size 0(n2)
PARTIALWITNESS oracle BP component correctly solving all GEN
instances used in proving Theorem 4.1. Of course in an algorithm using
adaptive oracles the number of nodes no longer yields a fair measure of
memory usage and thus will no longer be related to Turing machine space.

In yet a different vein nondeterminism could be allowed. Consider letting
a node with oracle query Q pick its output nondeterministically from the
arising sets (Q)\Q. For suck nondeterministic WITNESS and PAR-
TIALWITNESS oracles the lower bounds in Theorems 4.1 and 4.2 still
apply. Another possible modification is to assume “friendly” oracles which
pick their outputs in the interest of the shortest possible computation of
({ 1 }) for each groupoid: can we prove lower bounds for generalized
WITNESS and PARTIALWITNESS oracles of this type?

114 BARRINGTON AND MCKENZIE

All investigations of oracle BPS in this paper stopped short of con-
sidering restrictions imposed by the underlying graph of a BP component.
Although valuable intuition was distilled from our results, it is clear that no
such simple-minded analysis will prove GEN 4 DSPACE((log n)k). It
would be desirable to develop lower bound techniques gradually taking
care of more and more such “topological” restrictions. One possible
starting point might be to reexamine the pebbling argumenis so pervasive
to former work (for example, Cook, 1974, Kozen, 1977) on relating space
and time complexities.

We were led to the tantalizing conjecture in Section 1 by studying the
P-complete problem which in our opinion provides the most transparent
view of the fundamental combinatorics underlying the reltionship between
polylogarithmic space and P. We venture the claim that this relationship
will not be elucidated without a resolution of our main conjecture (of
course partial results are possible: for example any nonpolynomial size
lower bound in our conjecture implies L c P). In the hope of attracting the
attention of combinatoricists we conclude with a challenge to the reader:
for some n > 1, work out the exact number S(H)E 0(n22n) of
PRODUCT BP nodes needed to solve all n x n GEN({ 1)) instances in the
obvious way, and then exhibit a PRODUCT BP component solving these
n x n instances using only s(n) - 1 nodes.

ACKNOWLEDGMENTS

We thank Francois Lemieux for identifying an omission in an earlier version of the proof
of Theorem 3.1 and Eric Allendeer for pointing out Monien and Sudborough (1981) to us. We
also thank the anonymous referee for a very careful reading of our manuscript.

RECEIVED October 27, 1989; FINAL MANUSCRIPT RECEIVED March 20, 1990

REFERENCES

ALELIUNAS, R., KARP, R., LIPTON, R., LOVASZ, L., AND RACKOFF, C. (1979), Random walks,
universal traversal sequences, and the complexity of maze problems, in “Proceedings of the
20th IEEE Symposium on the Foundations of Computer Science,” pp. 218-233.

BARRINGTON, D. A. (1989), Bounded-width polynomial-size branching programs recognize
exactly those languages in NC’, J. Compur. System Sci. 38, 150-164.

BARRINGTON, D. A. M. AND T&RIEN, D. (1988), Finite monoids and the tine structure of
NC’, J. Assoc. Comput. Mach. 35 (4). 941-952.

BORODIN, A. (1977), On relating time and space to size and depth, SIAM J. Compur. 6
733-744.

BORODIN, A. AND COOK, S. (1982), A time-space tradeoff for sorting on a general sequential
model of computation, SIAM J. Comput. 11 (2), 287-297.

B~RODIN, A., DOLEV, D., FICH, F., AND PAUL, W. (1983), Bounds for width-two branching

ORACLE BRANCHING PROGRAMS AND L VS P 115

programs, in “Proceedings of the 15th ACM Symposium on the Theory of Computing,”

pp. 87-93.
BORODIN, A., FISHER, M. J., KIRKPATRICK. D. G., LYNCH, N. A., AND TOMPA, M. (1979), A

time-space tradeoff for sorting on non-oblivious machines, in “Proceeding of the 20th IEEE
Symposium on the Foundations of Computer Science,” pp. 319-327.

CHANDRA. A., FURST. M., AND LIPTON, R. (1983), Multi-party protocols, in “Proceedings of
the 15th ACM Symposium on the Theory of Computing,” pp. 94-99.

COBHAM, A. (1966), “The Recognition Problem for the Set of Perfect Squares, “Research
Paper RC-1704, IBM Watson Research Center, Yorktown Hkights, New York.

COOK, S. A. (1974), An observation on time-storage trade-off, J. Comput. System Sci. 9,
308-316.

COOK, S. A. (1981), Towards a complexity theory of synchronous parallel computation.
Enseign. math. (2) 27, l-2.

COOK. S. A. (1985). A taxonomy of problems with fast parallel algorithms, Inform. Control
64, 2-22.

COOK, S. A. AND MCKENZIE, P. (1987), Problems complete for deterministic logarithmic
space, J. Algorithms 8, 385-394.

GOLDSCHLAGER, L. M. (1977), The monotone and planar circuit value problems are log space
complete for I’, SIGACT News 9 (2), 25-29.

HOPCROFT, J. E. AND ULLMAN. J. D. (1974), “Introduction to Automata Theory, Languages,
and Computation,” Addison-Wesley, Reading, MA.

IMMERMAN, N. (1988), Nondeterministic space is closed under complement, SIAM J. Comput.
17 (5), 935-938.

JONES, N. D. (1975), Space-bounded reducibility among combinatorial problems, J. Comput.
Sysrem. Sci. 11, 68-85.

JONES, N. D. AND LAASER, W. T. (1977). Complete problems for deterministic polynomial
time, Theoret. Comput. Sci. 3, 105-117.

JONES, N. D., LIEN. E., AND LAASER, W. T. (1976), New problems complete for nondeter-
ministic log space, Murh. Systems Theory 10, l-17.

KARP, R.. UPFAL, E., AND WIGDERSON, A. (1988), The complexity of parallel search,
J. Comput. System. Sri. 36. 225-253.

KOZEN, D. (1977), Lower bounds for natural proof systems, in “Proceedings of the 18tlr ACM
Symposium on the Theory of Computing,” pp. 254-266.

LADNER, R. E. (1975), The circuit value problem is log space complete for P, SIGACT News
7 (1). 18-20.

LEE, C. Y. (1959), Representation of switching functions by binary decision programs, Bell
Systems Techn. J. 38, 985-999.

MASEK. W. (1976), “A Fast Algorithm for the String Editing Problem and Decision Graph
Complexity,” M. SC. Thesis, M.I.T.

MCKENZIE, P. AND T&RIEN, D. (1989), Automata theory meets circuit complexity, in
“Proceedings of the 16th International Colloquium on Automata, Languages and
Programming,” pp. 589-602, Lecture Notes in Computer Science, Vol. 372, Springer-
Verlag, Berlin/New York.

MONIEN, B. AND SUDBOROUGH, H. (1981), Bandwith constrained NP-complete problems, ;n
“Proceedings of the 13th ACM Symposium on the Theory of Computing, pp. 207-217.

PIPPENGER, N. (1979), On simultaneous resource bounds, in “Proceedings of the 20th IEEE
Symposium on the Foundations of Computer Science,” pp. 307-311.

SAVITCH. W. J. (1970), Relationships between nondeterministic and deterministic tape com-
plexities, J. Comput. System. Sci. 4, 177-192.

SZELEPCS~NYI. R. (1987), The method of forcing for nondeterministic automata, &/I.
European Assoc. Theoret. Compur. Sci., 96-100.

Printed in Belgium

