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We define the notion of an oracle branching program in order to investigate 
space-bounded computation. Within this new framework we examine the P-com- 
plete problem GEN which consists of determining membership in a subalgebra of 
a general (not necessarily associative) binary algebra (input as a multiplication 
table). Our work begins with the statement of a conceptually simple conjecture 
highlighting the combinatorics which underlie the relationship between Logspace 
and P. We show that natural subclasses of P can be expressed as natural 
subproblems for GEN. Finally, we -prove optimal lower bounds on the size 
of branching programs for GEN with certain natural oracles. ‘T1 1991 Academic _ 
Press, Inc. 

1. INTRODUCTION 

A long-standing open question in complexity theory is that of deter- 
mining whether indeed DSPACE(log n) # P (see Hopcroft and Ullman, 
1979). The following problem, denoted GEN, is P-complete (Jones and 
Laaser, 1977) and therefore unlikely to belong to DSPACE((log n)k) for 
any k: 

Giuen: an n x n table filled with entries from { 1, 2, . . . . n}, which 
we interpret as the multiplication table of an n-element 
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groupoid, and a subset S of { 1,2, . . . . n} which includes 
element 1. 
Determine : whether the subgroupoid (S), defined as the 
closure of S under the groupoid product, includes element n. 

In this paper we consider the space complexity of GEN. We start by 
making the following strong conjecture (see the next section for the 
definition of a branching program). This conjecture is justified by the 
empirical observation that any branching program efficiently solving all 
n x n instances of GEN appears to require a “separate region” verifying 
the closure under the groupoid product of Tu { 1) for each 
Tc (2, 3, . . . . n - 1 }: 

Conjecture. For each n > 1, a branching program in which each node 
can only evaluate a binary product within an n-element groupoid, branching 
n ways according to the n possible outcomes, must have at least 2” ~ 2 nodes 
to solve all n x n GEN instances with singleton starting set S. 

Our conjecture implies GEN$ DSPACE((log n)k) for any k, and we 
have not succeeded in proving it. However, thinking of the branching 
programs in our conjecture as accessing a “PRODUCT oracle” (using the 
word oracle in the sense of Karp et al. (1988), we are led to the following 
questions: What are other “natural” oracles for GEN? How do such 
oracles relate to the PRODUCT oracles in terms of space efficiency? What 
can be learned about the relationship between polylog space and P by 
varying the available oracle? What would be an “NSPACE(log n)-smart” 
oracle suitable for studying the relationship between NSPACE(log n) and 
P? In this paper we set up a framework for such investigations and merely 
begin a detailed study within it. 

In Section 2 we define Oracle branching programs formally and inde- 
pendently from problem GEN: instead of branching at each node 
according to individual input bits, an oracle branching program accesses 
its input via an “oracle. ” “Oracle branching programs” thus generalize the 
“R-way branching programs” introduced in Borodin and Cook (1982). 
We contend that the flexible model which results is well-suited for testing 
one’s intuition about the naturalness and effectiveness of various strategies 
for the resolution of a problem when space is restricted. 

In Section 3 we exhibit GEN subproblems complete for standard sub- 
classes of P, justifying the choice of GEN as a particularly appropriate 
P-complete problem to study. Bearing in mind the inclusion chain 

NC’cLcNLcNC’s... GNCGP. 

(where L and NL denote DSPACE(log n) and NSPACE(log n), respec- 
tively, as in Cook, 1985), we describe natural L-complete and NL-complete 
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subproblems of GEN, and we exhibit a close relationship between circuit 
depth within the NC complexity class and “bracketing depth” (defined 
precisely in Section 2) of groupoid elements in a groupoid instance. We 
also discuss a subproblem of GEN naturally solved by a nondeterministic 
algorithm operating simultaneously in small space and in polynomial time, 
thus belonging to a nondeterministic version of the class SC defined in 
Cook (1981) (see Monien and Sudborough, 1981). 

In Section 4 we study oracle branching programs for problem GEN 
with singleton starting set S, hereafter denoted GEN( { l}). Consider for 
example the following oracle: when queried with a subset T of groupoid 
elements, the oracle delivers in one step the least groupoid element in 
(T)\T (or 0 if T is already closed). Using nodes labelled with queries to 
this oracle it is easy to construct a branching program of size 2”-2 which 
solves all nxn GEN((1)) ms antes. t We prove as Theorem 4.1 that this 
construction is optimal: a branching program whose nodes can only query 
such an oracle requires 2”P2 nodes to sove all n x n GEN instances. 
(Theorem 4.1 does not prove our main conjecture because, as we shall see 
and perhaps contrary to one’s first intuition, the oracle in Theorem 4.1 is 
much weaker than the PRODUCT oracle in our conjecture.) We then turn 
to more powerful “natural” oracles (for example to oracles which deliver 
subsets of elements from (T)\T in one step) and in each case we describe 
upper and lower bounds on the sizes of the various oracle branching 
programs solving GEN. 

We conclude in Section 5 with a discussion of the issues raised by these 
results and with a number of open problems. 

2. BACKGROUND AND DEFINITIONS 

For each integer n>O let [n] stand for { 1,2, . . . . H}. We use “c” to 
denote proper set inclusion. A groupoid is a finite set [n] equipped with a 
binary operation denoted “ *.” Fix a groupoid G and let T E G. As men- 
tioned earlier, (T) denotes the smallest groupoid containing T and closed 
under multiplication. We also refer to the left closure of T, denoted 
LCL( T), which is the smallest subset of G containing T and closed under 
multiplication on the left by elements of T. Observe that if G is not 
associative then LCL(T) will in general not include all of (T). We also 
write TZ for (X * y (x, y E T}. If x E (T) then an expression for x in terms 
of elements of T can be represented as a binary tree with leaves from T, 
and we call the depth of this tree the bracketing depth of the expression. 
Now x can generally be expressed in many different ways as a product of 
elements of T, and we define the bracketing depth of x with respect to T to 
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be the minimum bracketing depth of such an expression. Given a GEN 
instance, the bracketing depth of the GEN instance is defined as the 
maximum bracketing depth of any x E (S ) with respect to S. 

2.1. Complexity Theory 

Throughout this paper we mostly consider subclasses of the class P of 
problems solvable in polynomial time, with the (likely) exceptions of the 
complexity classes DSPACE((log 12)~) of problems solvable in space 
(log n)k on a deterministic multitape Turing machine when k > 1. Class L 
(NL) denotes the class of languages accepted in logarithmic space on a 
deterministic (nondeterministic) Turing machine. Class NC is defined as 
IJk NCk, where NCk is the set of languages accepted by a uniform family 
of indegree two Boolean circuits of depth O((log n)k) and of polynomial 
size (Pippenger, 1979). All completeness results in this paper are under 
NC’-reducibility: problem f NC’-reduces to problem g if a uniform circuit 
family of logarithmic depth (hence of polynomial size) can solve f given 
the use of oracle gates solving g. (See Cook, 1985, for technicalities omitted 
from our definitions of NCk and of NC ‘-reducibility; in particular, 
although the exact notion of uniformity will not play a role in this paper, 
for detinitebess assume log space uniformity of circuit families. Supple- 
mented with Hopcroft and Ullman (1979), Cook (1985) provides an 
excellent overview of the known relationships between the complexity 
classes mentioned in this paragraph.) 

The graph accessibility problem consists of determining whether a path 
joins node 1 and node m in a graph ([ml, E). This problem is denoted 
DGAP, UGAP, or DGAPl if the graph is a directed graph, an undirected 
graph, or a directed graph of outdegree 1, respectively. DGAP and DGAPl 
are NL-complete and L-complete, respectively (Jones, 1975), and UGAP 
appears to lie somewhere in between (see Aleliunas et al., 1979). 

2.2. Traditional Branching Programs 

Branching programs (abbreviated BPS) for the computation of Boolean 
functions were studied by several authors (see for example Lee (1959), 
Masek (1976), Borodin et al. (1979, 1983), Chandra et al. (1983), 
Barrington (1989). Traditionally an m-input branching program compo- 
nent’ is a directed acyclic rooted graph, with two nodes of outdegree zero 
(labelled ZERO and ONE, respectively), with all other nodes of outdegree 
two (each labelled with some integer j, 1 <j < m), and with the pair of out- 
edges from any node labelled ZERO and ONE, respectively. Such a BP 

’ Most authors refer to “BP components” as “BPS”. We prefer to think of a branching 

program as a family (B,),, t N in which B,, is an m-input BP component. 
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component computes, on input x1 x2, . . . . x, E (0, 1 }“, the Boolean value 
given by the label of the unique sink node reached by starting at the root 
and, once at a node labelled j, traversing edge ZERO or ONE depending 
on the Boolean value of input bit xi. The Boolean function computed is 
often viewed as the characteristic function of a subset L c {O, 1 }“, the 
language accepted by the BP component. 

As is the case in circuit complexity, an infinite subset of (0, 1 }* requires 
an infinite family of BP components for its recognition (each input length 
being handled by a separate component), and the question of uniformity 
arises. In this paper we impose no uniformity condition on BPS. Note also 
that we use BPS to solve problems where only some of the possible input 
sizes (measured in bits) are of interest. In this case many of the BP com- 
ponents will be trivial. 

Taking the size of a BP component to be its number of nodes, denote by 
SZZE(s(m)) the set of languages accepted by a BP whose mth component 
has size at most s(m). The following fact, which is folklore from the sixties 
(for example Cobham, 1966, see Borodin et al., 1983), follows from viewing 
the computation graph of a Turing machine on inputs of a given length as 
a BP component. 

Fact 2.1. D,SPACE(s(m)) s UC SZZE(c”‘“‘). 

The following conjecture, widely believed to apply to any P-complete 
problem, therefore implies the nonexistence of a (log n)k space solution to 
GEN for any k. (Consequences of Conjecture 2.2 thus include NC c P since 
for each k NCk E DSPACE((log H)~) (Borodin, 1977)) 

Conjecture 2.2. For each k > 0, GEN $ SZZE(2”“g n)k). 

Note that Conjecture 2.2 is apparently stronger than the statement that 
no (log n)k space GEN solution exists for any k because of the uniformity 
issue. Indeed suppose that Conjecture 2.2 is false and (say) that a polyno- 
mial size BP exists which solves GEN. For such a BP to be useful to a 
space-bounded Turing machine attempting to solve GEN, it is necessary 
that the machine on input w  of length IwI be able to construct enough of 
the description of the 1~~1 th BP component to carry out the step by step 
simulation of the component on MI. Since no bound is imposed on the com- 
plexity of the function which maps a binary string w  to an encoding of the 
(WI th BP component (indeed this function need not be recursive), this 
construction might not be doable in space (log n)” for any k. 

2.3. Oracle Branching Programs 

Classical branching program nodes branch two ways according to the 
answer to a question of the type “what is the value of input bit i?” Nodes 
of an “R-way branching program” (Borodin and Cook, 1982) branch 2” 
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ways according to the answer to a question involving k contiguous input 
bits. (Note that the branching programs involved in the conjecture of Sec- 
tion 1 can be thought of as R-way branching programs if we assume a 
natural encoding of GEN multiplication tables.) Oracle branching 
programs will be defined to allow nodes to “ask” more general questions. 

We take C = (0, 1 }, though our definitions apply to any finite alphabet. 
For m E N, Z”’ denotes the set of all strings of length m over Z, and (Z”‘)* 
the set of all strings of length km over Z for some k EN. For WEC*, 1~’ 
denotes wu’ . . . w  (k occurrences of ~1). 

DEFINITIONS. An m-input oracle BP component is a deterministic finite 
automaton A = (Q, C”, 6, qO, F) in which each final state is a sink state. 
The size of A is IQ\. An oracle branching program is a family (A,),, N of 
m-input oracle BP components. The size of the BP is a function describing 
for each m the size of A,. 

DEFINITIONS. The language accepted by oracle BP component 
A=(Q,Cm,6,q0,F) is L?(A)= {wEL’~I~(~~, ullQ1)~F), where 8 denotes 
as in Hopcroft and Ullman (1979) the natural extension of 6: Q x C” -+ Q 
to the domain* Q x (Zm)*. The language accepted by (Am)mtN is 
U msN aAm). 

Any subset of L* is therefore accepted by some oracle BP of size 2. The 
notion of an oracle BP becomes interesting only when we restrict the 
“power” of the transition function in each BP component. We do this by 
restricting the “local partitions” 7c,., of C” defined for each state q E Q, of 
each BP component A, = (Qm, Cm, 6,, qo, F,,,) as follows: rr,., is the 
partition induced by the equivalence relation -m,y defined on Z” as 
U-m,yU-L(q, u)=6,(q, u). 

DEFINITIONS. An oracle is a class of partitions of C” for various m. 
A BP with oracle 0 (or an 0 BP) is an oracle BP ((Q, , 2”‘) 6,) qo, F,,,)), t N 
in which for each m E N and for each qE Qm the local partition x,,~ is 
refined by some partition of L’” in 0. 

EXAMPLE (BIT oracle). Consider for each m E N and for each ie [m] 
the partition B,,i induced on C” by relating words ur u2 ... u, and 
v,v*... v, whenever ui = ui. Define the BIT oracle as the class of all such 
partitions B,,j. BIT BPS model (nonuniform) Turing machines with input 
alphabet Z and random access to their input tapes. 

*The input w’, which to the automaton is a single letter of the alphabet, is given to the 
automaton repeatedly, until the automaton reaches a sink state or will definitely never do so. 
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We now introduce several “natural” oracles which one might consider 
critically helpful in solving problem GEN( { 1 }). Denote by Z, the set of all 
rz”* groupoids with elements [n]. Once and for all we agree on a reasonable 
O(n* log n) length encoding of Z, over C such that, for each n, words of 
equal length encode all groupoids from I,. Via this encoding we can view 
Z, itself as the input alphabet of a BP component. 

DEFINITION (PRODUCT oracle). Fix n E N, in [n], j6 En], and con- 
sider the partition of Z, induced by relating g, E Z, and g, E Z, whenever 
i * j is the same in both groupoids g, and g,. The PRODUCT oracle is the 
class of all such partitions. 

Note that we have chosen to allow cycles in oracle BPS. Standard techni- 
ques to eliminate such cycles (credited to Pippenger in Borodin et al., 1979) 
imply that to within roughly a squaring of their sizes BIT BPS, PRODUCT 
BPS, and traditional BPS are equivalent with respect to their ability to 
solve GEN ( { 1 } ) efficiently in terms of BP size. Hence each of these models 
provides a fair measure of Turing machine space. As we will see, this will 
no longer be true for the oracles defined in the remainder of this section. 

It is convenient to view oracles by considering a question about the 
input which is answered at each node. For example, a node of a 
PRODUCT BP as defined above asks “what is the product i * j in the 
input groupoid ?” Assuming the usual ordering on [n], we now define the 
WITNESS BP, whose nodes are conceptually labelled with questions of the 
type “what is the least new groupoid element which can be generated from 
a given subset Tc [n] of groupoid elements?’ 

DEFINITION (WITNESS oracle). Fix n E N, Tc [n], and consider the 
partition induced on Z, by relating g, and g, whenever (T)\T evaluated 
in each groupoid either contains the same smallest element or in both cases 
yields the empty set. The WITNESS oracle is the set of all such partitions. 

Define for any ke N and Ts [n] the set minck)( T) to be the 
lexicographically least k-subset of T if ITI > k, and T if 1 TI <k (for 
example {1,3}<{1,n}<{3,4}). 

DEFINITION (k-WITNESS Oracle). Fix n EN, TG [n], and consider the 
partition induced on Z, by relating g, and g, whenever minck’( ( T)\T) 
evaluated in each groupoid yields the same set. The k-WITNESS oracle is 
the set of all such partitions. 

Finally we define two more oracles which ask essentially the same ques- 
tions as the last two, but do not look as hard to find a new groupoid 
element to return. 
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DEFINITION (PARTIALWITNESS and k-PARTIALWITNESS oracles). 
Defined as the WITNESS and k-WITNESS oracles respectively, except 
based on the evaluation of T2\T rather than (T)\T. 

3. COMPLEXITY OF GEN SUBPROBLEMS 

Observe that a straightforward algorithm solves GEN in polynomial 
time. It is known that GEN and GEN (commutative) (even with a 
singleton starting set) are P-complete (Jones and Laaser, 1977), whereas 
GEN (associative) is NL-complete (Jones et al., 1976). We begin this 
section with a new and simple P-hardness proof for GEN, starting from 
the circuit value problem (Ladner, 1975). The new proof will be used in 
Proposition 3.2 to relate circuit depth within class NC to bracketing depth 
of GEN instances. Recall the P-complete problem CVP (Ladner, 1975): 

Given: A Boolean circuit, that is, a sequence (a,, . . . . a,) where 
each ai is either a Boolean input, a gate AND(j, k), a gate 
OR(j, k), or a gate NOT(j), where in each case j 6 k < i. 
Determine : The Boolean value computed at the output gate c(, . 

THEOREM 3.1. GEN is P-complete under NC’-reducibility (Jones and 
Laaser, 1977). 

Proof: For each i we assume that if ai is either AND(j, k) or OR(j, k) 
then neither 0~~ nor c(~ appear as input to any gate in the circuit other than 
tci. (This condition can be achieved by replacing each “wire” in the original 
circuit by two consecutive NOT gates.) To each circuit gate cli will 
correspond two groupoid elements i and i, whose function is to implement 
double rail logic as in Goldschlager (1977): i (respectively i) will belong to 
the subgroupoid generated by the starting set if and only if gate cli takes on 
the value 1 (respectively 0). Additional groupoid elements correspond to 
the “wires” into NOT gates; that is, they are 

E= {e,, I ui= NOT(j)}. 

These additional elements are part of the starting set S, which is defined as 

S = E u (i ( input gate cl; is assigned I} u {i 1 input gate LX, is assigned O}. 

Then gate di = AND( j, k) is simulated by defining 

i=j*k; i=j* j; i=R*fi, 

gate CQ= OR(j, k) by 

i=j*E; i=j* j; i=k*k; 
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and gate C(~ = NOT(j) by 

i=e,,* j; i = eji * j. 

Observe that each groupoid product defined so far is uniquely defined. To 
complete the construction, pick any element in the starting set S, say g, 
and define any remaining groupoid product as yielding g (an easy 
modification here would yield a commutative groupoid, proving that GEN 
in the commutative case remains P-complete as was noted in Jones and 
Laaser, 1977). 

The above construction yields a groupoid whose subgroupoid (S) 
contains m if and only if output gate tx, computes 1. 1 

Our next proposition makes precise the correspondence between 
bracketing depth of a GEN instance and depth of a polynomial size 
Boolean circuit solving GEN. Note that GEN (associative) instances 
have bracketing depths at most log n. 

PROPOSITION 3.2. GEN instances with bracketing depth (log n)” are hard 
for NCk and can be done in NCk f ‘. 

ProoJ Feeding an NCk circuit through the groupoid construction 
described in the proof of Theorem 3.1 produces a groupoid with bracketing 
depth in O((log n)k), which proves the hardness claim. The NCk+’ upper 
bound follows from cascading (log n)k stages of logarithmic depth each 
computing 

{i * j ) i and j were obtained at some previous stage} 

and eliminating duplicates, with S the elements available at stage 0. i 

Now define problem GEN(r(n)-rows) for a function r(n) d n to be the 
subcase of GEN in which at most r(n) rows of an n x n multiplication table 
contain elements other than 1. 

LEMMA 3.3. Let T be the set of (indices of) nontrivial rows in the multi- 
plication table of some groupoid G and suppose 1 E T. Then ( T) = LCL( T). 

Proof: Trivially LCL( T) G (T ). We prove the reverse inclusion by 
induction on the bracketing depth of x E (T) with respect to T. In the 
induction step we must have x = y * z for y and z of depths smaller than 
that of x, thus for y and z in LCL(T) by the induction hypothesis. If y is 
in T then x is in LCL( T). If y is not in T then the y th row is trivial and 
-v * z = 1, so that .r = 1 and x is in T. 1 
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THEOREM 3.4. NSPACE(max{log n, r(n)}) n DSPACE(max{(log n)‘, 
r(n)}) contains the problem GEN (r(n)-rows). 

Proof The following nondeterministic algorithm determines mem- 
bership of n in (S): 

T + {X E S ) x is the index of a nontrivial row) 
for i+- 1 to r(n) 

guess a nontrivial row j 
if jELCL(T) then Tc Tu {j} 

if II E LCL( T) then accept. 

This algorithm never accepts incorrectly, and Lemma 3.3 together with an 
induction imply that the for loop is able to compute 

{x E (S) / x is the index of a nontrivial row}. 

Another application of Lemma 3.3 justifies the last instruction. As to the 
space claims, without loss of generality we can assume that the nontrivial 
rows are the first r(n) rows since the index of each nontrivial row can be 
computed in log n deterministic space. Hence a bit map of length r(n) can 
represent T. Testing membership in LCL( T) nondeterministically requires 
remembering only one element and thus uses at most log rr space (and thus 
at most (log n)’ space deterministically by Savitch, 1970). 1 

Note that unless r(n) is in O(log n) the deterministic version of the above 
algorithm does not run in polynomial time, although of course a different 
algorithm solves even the general problem in polynomial time. An 
interesting aspect of problem GEN((log n)k-rows) is that the above non- 
deterministic algorithm solves the problem simultaneously in space 
O((log n)k) and in polynomial time. The class of problems solvable non- 
deterministically in space f(n) and polynomial time was introduced in 
Monien and Sudborough (1981) and denoted NTZ,SP(poly, f(n)). Inter- 
estingly, known members of NTZ,SP(poly, (log n)“) were obtained by 
imposing natural “bandwith constraints” on various NP-complete 
problems; here we are led to the same class by restricting a problem in P. 

COROLLARY 3.5. Problems GEN(2-rows) and GEN(log n-rows) are 
NL-complete. 

Proof: By Theorem 3.4 it s&ices to prove that GEN(Zrows) is NL- 
hard. Consider a directed graph (In], E) of outdegree two which includes 
edge (1,2). Then a directed path exists from node 1 to node n if and only 
if element n belongs to the subgroupoid ({ 1,2) ) of the groupoid with 
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elements [n] defined as follows: for each je [n], with outgoing edges (j, k) 
and(j,/),set l*j=kand2*j=l. 1 

THEOREM 3.6. Problem GEN(l-row) is L-complete. 

Proof Starting from DGAPl, a reduction almost identical to 
that in Corollary 3.5 proves that GEN(l-row) is L-hard. To see 
that GEN( l-row) E L, let i be. the unique nontrivial row. Then, because 
j * k = 1 whenever j # i, the following holds: n E (S) if and only if either 
nES, or ieS and nE{j*kl jELCL({i}), kES}. Now LCL(T) can be 
computed in L for any singleton T. 1 

An easy reduction from GEN proves: 

PROPOSITION 3.7. GEN( { 1 }) is P-complete. 

The following is also clear: 

PROPOSITION 3.8. GEN( { 1 } and associative) E L. 

Hence unlike GEN, GEN (associative) apparently becomes easier when 
the starting set S is { 11. We suspect GEN( { l> and associative) to be 
L-hard but cannot yet prove this. By contrast the proof of Theorem 3.6 
implies: 

PROPOSITION 3.9. GEN( { 1) and l-row) is L-complete. 

This last problem remains L-complete even if we further insist that all 
elements of [n] appear in the only non-trivial row. This is seen by a reduc- 
tion from the L-complete problem (Cook and McKenzie, 1987) of deter- 
mining whether points 1 and n belong to the same cycle of a permutation 
n of [n] which is input as a sequence n(l), 7c(2), . . . . rc(n). Finally, 

PROPOSITION 3.10. GEN( { 1 } and 2-rows) is NL-complete. 

4. ORACLE BRANCHING PROGRAMS SOLVING GEN 

Fix n and say that a BP component is o&id if it solves all n x n 
GEN( { 1 } ) instances. 

THEOREM 4.1. The size of a valid WITNESS BP component is at least 
2”-2. 

Proof: For each of the 2”-2 sets Tc [n - l] which contain element 1 
we will exhibit two groupoids g, (T) and g- (T) with the properties 
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(subscripts “+” and “-” distinguish between the two groupoids under 
consideration) 

1. nE(l)+ 

2. n$(l>- 

3. (~QEII~I)[(TZQ)~(~~~+((Q>\Q)=~~~-((Q>\Q))I, 

where we take the min of an empty set to be zero. In words these condi- 
tions state that g, (T) must travel to a final state, that g- (T) must not 
travel to a final state, and yet that the only WITNESS oracle query which 
can tell g + ( T) apart from g _ ( T) is T. Necessarily all 2” ~ ’ distinct queries 
T must therefore appear in a valid BP component. 

Fixing T= (1, x2, xj, . . . . xi). E [n - 11, where the relative order of the 
elements in T is immaterial, we now describe groupoids g, (T) and g ~ (T). 
All entries other than those in the first row of the respective multiplication 
tables are set to 1. Letting { yi+ ,, ,v~+~, . . . . y,_ ,, n} = [n]\T and 
permuting columns of the multiplication tables for ease of presentation, 
we define the first row of g, (T) as 

and the first row of g _ (T) as 

Groupoids g, (T) and g- (T) clearly satisfy conditions 1 and 2 above. 
To verify condition 3, pick a nonempty set Q G [n] other than T. Observe 
that by definition of both groupoids 1 E (Q) and thus Tu Q E (Q) c 
TuQu {n}. 

Case 1. T\Q # 0. 
min( T\Q). 

Then min+(<Q>\Q) = min-((Q>\Q) = 

Case2 TcQ. Then min+((Q)\Q)=min_((Q)\Q)=y, where y=O 
if n E Q and y =n otherwise (since any element outside T generates n by 
construction in both groupoids). 1 

We note that it is not difficult to construct a valid WITNESS BP 
component using 2”-2 nodes, showing that Theorem 4.1 is optimal. 

A more realistic oracle than WITNESS is PARTIALWITNESS, which 
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for a query set Q returns the least element in Q’\Q. Such an oracle can be 
constructed out of a polynomial number of PRODUCT nodes, and one’s 
intuition might be that PARTIALWITNESS and PRODUCT oracles are 
equally helpful in constructing size-efficient valid BPS. The next theorem 
shatters this intuition. 

THEOREM 4.2. The size of a valid PARTIAL WITNESS BP component is 
at least 2” ~ 2. 

Prooj The argument is almost identical to that in the proof of 
Theorem 4.1. Fix T = { 1, x2, x3, . . . . , I , Y.} this time choosing the labels 
so that 1 < x2 < .x3 < . . . <xi, and construct g, (T) and g-(T) exactly 
as before. To verify that no PARTIALWITNESS oracle query Q can 
distinguish g, (T) from g- (7’) unless Q = T, simply observe that for 
each such set Q c [n] the minimal element of (Q)\Q is also in Q2\Q for 
both groupoids. 1 

Again here Theorem 4.2 is easily seen to be optimal. 
In defining WITNESS and PARTIALWITNESS BPS we chose to have 

an oracle query Q return the least element among the set of possible 
answers. This may seem unfairly biased against the BP because n is only 
returned when no other new element is available. Consider then modifying 
the WITNESS and PARTIALWITNESS oracles to consistently return the 
largest element among the set of possible answers. Although WITNESS 
oracles modified in this way become so powerful as to solve GEN with the 
single oracle query { 1 }, an exponential size lower bound still holds in the 
case of PARTIALWITNESS oracles. 

LEMMA 4.3. Fix any total order 71, < a, < .. . < x,, on [n]. In a valid BP 
component with PARTIAL WITNESS oracle mod$ed to consistently choose 
its least element according to the new order, each query T containing 1 but 
not n and satisfying 

I{.xE T:max([n]\T)<x}1<2 

must appear, where max is taken with respect to <. 

(1) 

ProoJ It is easy to show that in a valid BP the query T= ( 1 > must 
appear. For the rest we proceed as in the proof of Theorem 4.1. Pick 
T={ xl, x2, x3, . . . . xi}, ITI 22, with 1 E T but n 4 T satisfying condition 
(l), whence we can write x, <x2< ... <xipz<m for m =max([n]\T). 
Writing {yi+,, Y~+~, . . . . y,-i, m} = [n]\T, we now construct g+(T) 
and g- (T). All entries other than those in row xi- i of the respective 
multiplication tables are set to xi except 1 * 1 = x, _ i if 1 # xi_ i Again 
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permuting columns of the multiplication tables, row xi-, of g, (T) is 
defined as 

x-, x2 xj “’ x, m m m .” m n 

and row x~, of g- (T) as 

x-, x2 xj “’ x, X, m ??I “’ VI n 

Groupoids g+(T) and g-(T) satisfy nE (l), and n$ (l)-. We must 
now verify that no query Q other than T itself can distinguish g, (T) from 
g-(T). Pick and Qs[n], Q#T. 

Case 1. X&,$Q or xi+ Q. Then computing Q2 does not involve the 
only table entry which distinguishes g + ( T) from g _ (T). 

Case 2. {x-i, xi} E Q and T\Q # 0. Let x be the minimal element 
of T\Q under <. We have x<m since x~T\{x,~,,x~}. Then 
min+(Q’\Q)=min-(Q2\Q)=y, where y=x if m$Q and y=min(x,n) 
otherwise. 

Cuse3. TcQ. Then min+(Q2\Q)=min_(Q2\Q)=y, where y=O if 
rnEQ and nEQ, y=n if rnEQ and n$Q, y=m if m$Q. 1 

THEOREM 4.4. Fix any total order x1 < x2 < . . 4 n, on [n]. The size 
of a valid BP component with PARTIAL WITNESS oracle modlyied to 
consistently choose its least element according to the new order is at least 
2”-2 if7~,_~ <n and at least ($)2”p2 otherwise. 

Proof: Using Lemma 4.3 it suffices to count the number of distinct 
candidates satisfying condition (1). (A candidate is a set T with 1 E T and 
n # T.) If rc,- 3 <n then all 2”-2 candidates satisfy the condition since at 
most two elements of [n], and hence of any candidate T, are larger than 
n E [n] \T. Condition (1) can now fail only if all three of the elements 
17%29 n,- I? 71,) are in T. Normally this will not be the case for g of the 
T’s but there is the possibility that 1 is in this set and then only i of the 
T’s omit one of the other two. 1 

Our best upper bound for the size of a valid BP component with the 
oracle of Theorem 4.4, regardless of the ordering <, is the obvious 2”- 2. 
Except when element n happens to be the largest, the second largest, or the 
third largest element under the ordering, our upper and lower bounds 
therefore do not quite match. 
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Now recall the k-WITNESS BP, whose nodes can be thought of as 
branching CkZO (1) ways according to the set minck’( (T)\T) as defined 
in Section 2. Let us write f(k, m) = CbzgkJ (z) for the number of subsets 
of [m] whose cardinalities are a multiple of k. Note that f(k, m) is 
approximately 2”‘/k for m much larger than k. For any fixed k, it is easy 
to construct a valid k-WITNESS BP component of size f(k, n - 2). 

THEOREM 4.5. The size of a valid k-WITNESS BP component is at least 
2n-2/nk--1 

Proof It suffices to oberve that, upon having constructed g + (T) and 
g- (T) exactly as in the proof of Theorem 4.1, any query set Q for which 
IT\Qj Zk or Q\T#@ is such that min~‘((Q)\Q)=min’k’((Q)\Q). 
Hence although several queries Q are capable of telling g + (T) apart from 
g- (T), any single query Q can only take care of those sets T for which 
Q G T and 1 T\Ql 6 k - 1. Since there are at most nk ~ ’ such sets T for any 
Q, the result follows. 1 

Consider finally the more realistic k-PARTIALWITNESS oracle, which 
“computes” minck’( Q’\Q). 

THEOREM 4.6. The following holds for k = 1, 2, 3: a valid k-PAR- 
TIAL WITNESS BP component has size at least 2”p2/nk- I. 

ProoJ: For k = 1 this is the content of Theorem 4.2. Consider k = 2. 
For any T= { 1, x2, xX, . . . . xi} C [n- l] with 1 <x2<x3< ... <xi and 
{Yi+l, Yi+27***9 y,- i, n} = [n] \T, define the nontrivial rows of g, (T) 
and of g- (T) to be 

1 x2 X3 -r4 “. x,-2 X,-l x, YL,, .” n 

1 X2 x3 X.3 x5 ... x,_, x, * n n 

X, -x3 -x4 X5 X6 .” x, x, X‘ n n 

where * stands for n in the definition of g + (T) and for xi in that of g- (T). 
Then a 2-PARTIALWITNESS oracle query Q can tell g, (T) apart from 
g- (T) only if { 1, xi} E Q E T. Moreover, such a query Q fails whenever 
) T\Ql > 1 since in that case miny’(Q2\Q) = minc2’( T\Q) = min’?(Q2\Q) 
by construction. This means that a query Q can succeed for at most n 
distinct sets T, and the bound for k = 2 follows. 

Now let k= 3. For any T= { 1, x2, x3, . . . . xi} G [n - l] with 
1 <xZ<X~< ... <xi and {yi+i, yi+2, . . . . ynwl, n} = [n]\T, define the 
nontrivial rows of g + (T) and of g ~ (T) to be 
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where as before * stands for n in the definition of g, (T) and for xi in that 
of g- (T). (Note that for 1 TI Q 4 these definitions of g + (T) and of g- (T) 
still apply with the understanding that xj= xlT, for j> I rl.) We claim that 
a query Q can only tell g+(T) apart from g-(T) if {l,xi}cQ~Tand 
1 r\QI 6 2. Since the first condition is clear, pick Q such that 
(l,xi}~Q,sr and IT\Ql > 2. If x2 E Q then it is easily seen that 
miny’(Q*\Q) = min”‘(T\Q) = min?‘(Q’\Q). So assume x2 $ Q. Then 
x2 E Q’\Q, which in g, (T) and g- (T) also includes the second and third 
smallest elements of T\Q since the definition of xi * .‘ci as .x4 takes care of 
the critical cases in which {x3, x4} n Q = a: this means once again that Q 
cannot tell g + (T) apart from g _ (T), proving our claim and implying our 
lower bound in the case k = 3. 1 

Our lower bound strategy in this section has been to define pairs of 
groupoids which differ in a single entry. We cannot directly extend 
this strategy to the case of 4-PARTIALWITNESS oracles. Suppose for 
example that i * j = k in groupoid g, and i * j = I in groupoid g_ . 
A 4-PARTIALWITNESS query {i, j} will correctly return the set 
(i * i, i * j, j * i, j * j}\ { i, j}. It is difficult to imagine how these sets could 
be the same in groupoids which have significantly different computation 
properties. 

5. DISCUSSION AND OPEN PROBLEMS 

It is tempting to view the lower bounds of Section 4 as evidence 
supporting our conjecture of Section 1. These lower bounds reflect instead 
the weakness of the oracles studied. Indeed we have seen in Section 3 that 
GEN( l-row) E L and yet the proofs of Theorems 4.1 and 4.2 show that 
WITNESS and PARTIALWITNESS BPS solving GEN( { 1 } and l-row) 
require 2”-* nodes. This suggests that the obvious resolution method for 
GEN in which no attention is paid to the origin of the new element 
generated at each step is indeed a poor strategy in terms of space usage. In 
thisconnection it is interesting to scrutinize the way in which PRODUCT 
oracles manage to bypass this strategy when solving GEN( ( 1 > and l-row) 
in polynomial size and GEN( { 1 } and 2-rows) in size nlog” (which is 
possible by Savitch’s theorem (Savitch, 1970)). Naturally we expect to be 
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unable to mimic these shortcuts in solving GEN({ 1)) because of the over- 
whelming amount of information which would in effect need storing within 
the BP “topology”. 

Our investigation of GEN subproblems has uncovered interesting ques- 
tions concerning the effect of imposing the algebraic condition of 
associativity together with other restrictions. Given a group and a set of 
generators, the Cayley graph of the group is a graph with one vertex per 
group element and, for each generator g and each element x, an edge 
labelled g from element x to element xg. The Cayley graph of a group 
is easily constructed from the group’s multiplication table, so that 
GEN(groups) NC-reduces to UGAP by including only the Cayley graph 
edges corresponding to elements in the starting set S and by asking 
whether a path joins the group identity and element n. Does GEN(groups) 
belong to L? We doubt that this is the case: we believe rather that 
GEN(groups) is complete for the NC’-closure of UGAP, though we do not 
yet see how to apply the techniques in Cook and McKenzie (1987) to 
prove that GEN(groups) is even L-hard. A further restriction is GEN- 
(cyclic groups): this problem is clearly in L, but is it in NC’? Another 
interesting algebraic problem is GEN(commutative and associative): how 
does it relate to UGAP or to L? Developing the appropriate hardness 
proofs for these problems will yield further insight into the expanding con- 
nections between algebra and low level complexity classes (Barrington, 
1989; Barrington and Therien, 1988; McKenzie and Thtrien, 1989). 

The restricted version of GEN with only (log n)” nontrivial rows further 
led us to the class NTZ,SP(poly, (log n)“) (Monien and Sudborough, 1981) 
of problems solvable by nondeterministic machines with simultaneous 
bounds of polynomial time and O((log H)~) space. By analogy with Cook’s 
class SCk (Cook, 1981) let us call this class NSC”. NSC’ is of course just 
NL and is thus within P, but we know little about even NSC2. It it equal 
to NSPACE((logn)‘)? (This would imply NSPACE((logn’)& NP.) Is it 
within P? Is is closed under complement? In this last case the recent proof 
by Immerman (1988) and Szelepcsenyi (1987) that nondeterministic space 
classes are closed under complement does not appear to apply, because 
the nondeterministic algorithm used there to solve a problem in 
co-NSPACE(f(n)) uses time 2/(“). 

A plethora of open questions concerns oracle branching programs for 
GEN. Theorem 4.4 and the discussion preceding it reveal crucial differences 
between the WITNESS and PARTIALWITNESS oracles. The WITNESS 
oracle’s ability to choose its output from (Q) is a two-sided coin: a bad 
choice function hinders progress (relative to the PARTIALWITNESS 
oracle which has fewer bad answers to choose from) and a good choice 
function solves GEN trivially. PARTIALWITNESS oracles on the other 
hand are hardly dependent on the choice function provided that this func- 
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tion returns the smallest element (in Q’\Q) according to a total order fixed 
in advance. PARTIALWITNESS oracles are also realistic in that they are 
easily simulated by the PRODUCT oracle. Observe that both types of 
oracle (as well as PRODUCT and BIT oracles, though somewhat artifi- 
cially) are in effect prescribed by a family of functions eval,, : Z, x 2!, + 2 Cnl 
and choice, : 2’“’ ---f 2[“‘. Fixing n and query Q E 4, a partition is 
induced on I,, by relating g, and g, whenever choice,(eual,( g,, Q)) = 
choice, (eval,( g,, Q)), and formally the oracle is the class of all such parti- 
tions. The interplay between meaningful eval and choice functions affects 
the behavior of resulting oracles dramatically and deserves further study. 

Theorem 4.6 suggests taking a closer look at 4-PARTIALWITNESS 
oracles. Are these equivalent to the PRODUCT oracles? Will lower bound 
techniques applicable to these also apply to PRODUCT oracle BPS for 
GEN? 

Future research on oracle BPS for GEN should also involve oracles 
whose power is intermediate between that of the PRODUCT and that of 
the WITNESS or PARTIALWITNESS oracles. In particular, upper 
bounds for BPS with oracles as “powerful” as L, NL, NSCk, or NCk should 
be investigated. The results in Section 3 suggest defining such oracles as 
having the ability to extract all the information from one complete row of 
a multiplication table (“L-smart oracle”), from two complete rows (“NL- 
smart oracle”), from a (log n)k size subset of rows (“NSCk-smart oracles”), 
or from all expressions of bracketing depth at most (log n)k in terms of the 
elements in a query set Q (“NCk-smart oracles”). 

All oracles discussed in this paper (including the fundamental BIT and 
PRODUCT oracles) are nonadaptive in the sense that the answer to oracle 
query Q does not depend on the “history” of the “algorithm”. Consider 
instead an adaptive PARTIALWITNESS oracle which returns the least 
element in Q2\Q among those which the algorithm has not yet seen: can we 
prove an exponential size lower bound for a valid BP component in that 
case? Note that under this new definition one can construct a size 0(n2) 
PARTIALWITNESS oracle BP component correctly solving all GEN 
instances used in proving Theorem 4.1. Of course in an algorithm using 
adaptive oracles the number of nodes no longer yields a fair measure of 
memory usage and thus will no longer be related to Turing machine space. 

In yet a different vein nondeterminism could be allowed. Consider letting 
a node with oracle query Q pick its output nondeterministically from the 
arising sets (Q)\Q. For suck nondeterministic WITNESS and PAR- 
TIALWITNESS oracles the lower bounds in Theorems 4.1 and 4.2 still 
apply. Another possible modification is to assume “friendly” oracles which 
pick their outputs in the interest of the shortest possible computation of 
({ 1 }) for each groupoid: can we prove lower bounds for generalized 
WITNESS and PARTIALWITNESS oracles of this type? 
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All investigations of oracle BPS in this paper stopped short of con- 
sidering restrictions imposed by the underlying graph of a BP component. 
Although valuable intuition was distilled from our results, it is clear that no 
such simple-minded analysis will prove GEN 4 DSPACE((log n)k). It 
would be desirable to develop lower bound techniques gradually taking 
care of more and more such “topological” restrictions. One possible 
starting point might be to reexamine the pebbling argumenis so pervasive 
to former work (for example, Cook, 1974, Kozen, 1977) on relating space 
and time complexities. 

We were led to the tantalizing conjecture in Section 1 by studying the 
P-complete problem which in our opinion provides the most transparent 
view of the fundamental combinatorics underlying the reltionship between 
polylogarithmic space and P. We venture the claim that this relationship 
will not be elucidated without a resolution of our main conjecture (of 
course partial results are possible: for example any nonpolynomial size 
lower bound in our conjecture implies L c P). In the hope of attracting the 
attention of combinatoricists we conclude with a challenge to the reader: 
for some n > 1, work out the exact number S(H)E 0(n22n) of 
PRODUCT BP nodes needed to solve all n x n GEN( { 1)) instances in the 
obvious way, and then exhibit a PRODUCT BP component solving these 
n x n instances using only s(n) - 1 nodes. 
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