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Abstract

Wireless sensor networks (WSNs) are composed of small sensing and actuating devices that collaboratively mon-

itor a phenomena, process and reason about sensor measurements, and provide adequate feedback or take actions.

One of WSNs tasks is event detection, in which occurrence of events of interest is detected in situ whenever and

wherever they occur. Some examples of these events include environmental (e.g. fire), personal (e.g. activities), and

data-related (e.g. outlier) events. Simply speaking, event detection is a classification process, in which membership

of data measurements to each event class is determined. Neural network is one of the classifiers that have often been

used for detecting events with known patterns. One of the techniques to maximise the neural network performance

during classification process is enabling a learning process. Through this learning process, neural network can learn

from errors generated in each round of classification to gradually improve its performance. In this paper we investi-

gate applicability of Brain Emotional Based Intelligent Controller (BELBIC) to improve neural network performance.

Empirical results show that incorporating the BELBIC with neural networks improves the accuracy of event detection

in many circumstances.
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1. Introduction

With the proliferation in Micro-Electro-Mechanical Systems technology, which has facilitated the development

of smart sensors, wireless sensor networks (WSNs) have gained worldwide popularity in recent years. WSNs are

composed of small sensing and actuating devices that collaboratively monitor a phenomena, process and reason about

sensor measurements, and provide adequate feedback or take actions. One of WSNs tasks is event detection, in which

occurrence of events of interest is detected in situ whenever and wherever they occur. Some examples of these events

include environmental (e.g. fire), personal (e.g. activities), and data-related (e.g. outlier) events. Event detection

can be considered as a classification process, which can be performed both supervised and unsupervised. The former

refers to identification of event classes with known patterns, while the latter refers to identification of event classes

with unknown patterns.

Neural networks are one of the classifiers which have been extensively used for classification purposes. Recently,

they have also found application in WSNs [1, 2, 3, 4, 5, 6]. One of the techniques to maximise the neural network

performance during classification process is enabling a learning process. This learning process utilises a feedback

mechanism through which the neural network learns about its classification performance and gradually improves it.
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One of the computational models, which has the potential to be used for this purpose, is the Brain Emotional Based

Intelligent Controller (BELBIC). BELBIC is a computational model based on the limbic system in the mammalian

brain developed by Lucas et al. [7]. The model uses the network model developed by Moren and Balkenius [8] to

model emotional part of the brain.

The block diagram of the BELBIC is illustrated in Figure 1. BELBIC has been employed as a feedback controller

in control design problems [9]. Lucas and his colleagues use the term emotional learning for the emotional control

process of the BELBIC model. In emotional learning, emotions are produced by the performance of the output and

are used as a reinforcement mechanism to the learning process. The emotional learning algorithm has three distinctive

properties in comparison with other learning methodologies [10]. Firstly, one can use very complicated definitions for

emotional signal without increasing the computational complexity of algorithm or worrying about differentiability or

renderability into recursive formulation problems. Secondly, the parameters can be adjusted in a simple intuitive way

to obtain the best performance. Finally, the training is very fast and efficient [10].

Figure 1: Block diagram of BELBIC [11]

Generally speaking, BELBIC is an error reduction system that can be incorporated to any system to reduce the

system error. In this paper, we investigate its applicability for WSNs. Specifically, we aim to investigate impact of

combining BELBIC with the neural networks on event detection accuracy. The remainder of this paper is organised

as follows: Section 2 presents related work on use of emotional learning as a feedback mechanim, while Section 3

explains our method. Section 4 presents the experiment results followed by a discussion. Finally, Section 5 provides

some concluding remarks.

2. Related Work on Emotional Learning

Jalili-Kharaajoo et al. [12] apply intelligent controller to traffic control of ATM networks. First, the dynamics of

the network is modeled by a locally linear neuro-fuzzy model. Then, an intelligent controller based on brain emo-

tional learning algorithm is applied to the identified model. Simulation results show that the proposed fuzzy traffic

controller can outperform the traditional usage parameter control mechanisms in terms of better selectivity and ef-

fectiveness. Mehrabian et al. [13] present a theoretical analysis of online autonomous intelligent adaptive tracking

controller based on BELBIC for aerospace launch vehicle. The algorithm is very robust and fast in terms of adapting

to dynamic change in the plant, due to its online learning ability. Development and application of this algorithm for an

aerospace launch vehicle during atmospheric flight in an experimental setting is presented to illustrate the performance

of the control algorithm. Rouhani et al. [14] propose a BELBIC based control to govern the dynamics of electrically

heated micro-heat exchanger plant. First, the dynamics of the micro-heat exchanger, which acts as a nonlinear plant,

is identified using a neuro-fuzzy network. To build the neuro-fuzzy model, a locally linear learning algorithm, called

LoLiMoT, is used. Then, a BELBIC based controller is applied to the identified model. The impact of BELBIC in

improving the control system performance is shown by comparing the results obtained from classic PID controller

without BELBIC. The results demonstrate excellent improvements of control action without any considerable increase

of control effort. Khorramabadi et al. [15] describe the design and evaluation of a reactor core power control based

on emotional learning. The controller includes a neuro-fuzzy system with power error and its derivative as inputs. A

fuzzy critic evaluates the current situation and provides the emotional signal (stress). The controller modifies its char-

acteristics so that the critical stress is reduced. Simulation results show that the controller has good convergence and
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performance robustness characteristics over a wide range of operational parameters. Jamali et al. [16] utilise a model

driven development approach for implementation of emotional learning as a bio-inspired algorithm. They implement

the BELBIC model on FPGA. They then use the obtained embedded emotional controller, called E-BELBIC, for con-

trolling cranes. Dehkordi et al. [11] develop a BELBIC based control mechanism for the switched reluctance motor

(SRM) speed. Motor parameter changes, operating point changes, measurement noise, open circuit fault in one phase

and asymmetric phases in SRM are also simulated to show the robustness and superior performance of BELBIC. To

compare the BELBIC performance with other intelligent controllers, Fuzzy Logic Controller (FLC) is developed and

system responses with BELBIC and FLC are compared.

3. Improving Neural Network Performance using BELBIC

Situational awareness and fast and reliable detection of events of interests whenever and wherever they occur

require bringing intelligence as close as possible to the point of action. Transmission of huge volume of sensed data

is neither feasible not useful as it wastes network limited resources in terms of bandwidth, energy, and processing

capability. Artificial intelligence and machine learning techniques have proved to be suitable to be used on wireless

sensor nodes to detect events and activities fast and reliably [2, 6]. To this end, one of the often used techniques is

the neural network. Main problems of using the neural network for event detection in WSNs are complexity of the

training phase and lack of its adaptability to dynamic nature of events.

Due to inherent errors in sensor data, training phase of a neural network always suffers from some degrees of

error. This in turn leads to lowering down the event detection and classification accuracy. To compensate this error,

we propose to use a feedback mechanism and more specifically to use BELBIC.

As it can be seen from Figure 1, output of BELBIC (E) is the difference between all the excitatory Amygdala and

inhibitory Orbitofrontal Cortex nodal outputs [16]. We calculate E by using
∑

i Ai −∑i Oi formula.

For each sensory input S i received by the model, there is one corresponding Amygdala node Ai and one Or-

bitofrontal Cortex node Oi, which generate the nodal Amygdala and Orbitofrontal Cortex outputs [16]. We use the

Ai = Vi · S i and Oi = Wi · S i formulas to calculate these outputs. Vi and Wi are the adaptive gains of the Amygdala

and Orbitofrontal Cortex, respectively.

Our adaptation rules are ΔVi = α ·max[0, S Ii · (S i − A)] and ΔWi = β · S Ii ·∑i(Oi − S TRES S ) where STRESS is

the emotional signal or reinforcing signal, α is adjusting term for learning speed in Amygdala, and β is learning rate

factor in Orbitofrontal Cortex. It can be seen that Amygdala gain cannot be negative because of the max function [11].

One may notice that Orbitofrontal learning rule is very similar to the Amygdala rule. The only difference is that the

orbitofrontal connection weight can increase or decrease as needed to track the required inhibition [16].

3.1. Finding the Correct Configuration for BELBIC

Finding the correct configuration for BELBIC is of utmost importance. The correct configuration is found em-

pirically. We have performed many experiments with different parameters (e.g., sensory input, stress signal, and

learning rate constant values) and different combinations of BELBIC and neural network. Figure 2 illustrates the error

produced by the best configuration we found.

Figure 2: Error results of running BELBIC with suitable parameter configuration



Tahir Emre Kalayci et al. / Procedia Computer Science 5 (2011) 216–223 219

As it can be seen from the figure, error first gradually decreases until around 60th iteration, at which it starts to

increase very quickly. After the 70th iteration error reaches 1. This is because BELBIC tends to produce values that

approaches to 1. The BELBIC iteration which produced output with the best error rate is used to improve the neural

network performance.

In our experiments with different sensory input and stress signals (which is always error-dependent), BELBIC

output has been forced to stay between zero and one. Experimental results show that using error as sensory input and

errorxerror as stress signal is the best configuration. Learning rate constant values define the dependency of current

BELBIC output to the previous iteration output and adjust the gap between these outputs. As a result, they adjust

performance speed of the BELBIC. We empirically found out that 0.001 creates a reasonable performance speed

improvement without generating a serious gap between iteration BELBIC outputs. In addition to these parameters,

finding an appropriate number of nodes is also important. Using large number of nodes does not change output but

increases running time of the error correction loop. Using small number of nodes, on the other hand, does not lead to

good results.

3.2. Integrating BELBIC with Neural Network
BELBIC’s ouput can be integrated with the neural network in the following ways:

• before the input layer, as illustrated in Figure 3 left. In this case BELBIC’s output is summed up with the input

of the neural network.

• after the output layer, as illustrated in Figure 3 middle. In this case BELBIC’s output is summed up with the

output of the neural network.

• before input layer and after the output layer, as illustrated in Figure 3 right. In this case two BELBICs are used.

Output of one of them is summed up with the output of the neural network, while output of the other is summed

up with input of the neural network.

Figure 3: Integration of BELBIC with Neural Network: (left) as input, (middle) as output, and (right) as both input and output of the neural network

4. Experiments

To investigate impact of BELBIC on event detection and classification of neural network, we perform experiments

on three datasets. Neural networks used in these experiments have the same properties and parameters. They are feed

forward back-propagation neural networks which have been trained for 100 epochs and have five hidden layer neurons.

We train them by gradient descent back-propagation training algorithm. We chose this node number and training

algorithm for a fast creation and training of the networks. BELBIC parameters are also the same in all our experiments.

We use 10 nodes, 100 as iteration limit, and 0.001 as learning rate constant for amygdala and orbitofrontal cortex.

Sensory input is equal to error, while stress signal equals to square of the sensory input (errorxerror). Error is the

difference between neural network classification accuracy and the actual classification.

4.1. Forest Fire Dataset
This data set is obtained from UCI machine learning repository (http://archive.ics.uci.edu/ml/). Forest fire dataset [17]

is reduced to eight features: FFMC, DMC, DC, ISI indexes from FWI system 1, temperature in Celsius degrees, rel-

ative humidity, wind speed, and outside rain. There are two classes, i.e., fire and no-fire, and 517 instances in the

1Canadian Forest Fire Weather Index System, http://cwfis.cfs.nrcan.gc.ca/background/summary/fwi
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dataset. The dataset suffers from a small number of fire incidents with a large burned area. Statistical information2

of the dataset is presented in Table 1. Figure 4 illustrates the overlap between different classes. The more classes

overlap, the more complicated the classification.

Table 1: Forest fire dataset (517 instances, 2 classes: fire, no-fire)

input min max mean std

FFMC index from the FWI system 18.7 96.2 90.6447 5.5201

DMC index from the FWI system 1.1 291.3 110.8723 64.0465

DC index from the FWI system 7.9 860.6 547.94 248.0662

ISI index from the FWI system 0 56.1 9.0217 4.5595

temperature in Celcius degrees 2.2 33.3 18.8892 5.8066

relative humidity in % 15 100 44.2882 16.3175

wind speed in km/h 0.4 9.4 4.0176 1.7917

outside rain in mm/m2 0 6.4 0.0217 0.296

(a) FFMC (b) DMC (c) DC (d) ISI

(e) temperature (f) relative humidity (g) wind speed (h) outside rain

Figure 4: Forest fire data histogram (red: no-fire, blue: fire)

4.2. Residential Fire Dataset
This data set is produced by NIST group (http://www.nist.gov/). Residential fire data set contains temperature,

ion, photoelectric, and carbon monoxide (CO) sensor values. There are two classes, i.e., fire and no-fire, and 2506

instances in the dataset. Statistical information of the dataset is presented in Table 2. Figure 5 illustrates the overlap

between different classes. The more classes overlap, the more complicated the classification.

4.3. Activity Dataset
This dataset contains accelerometer and gyroscope data generated by a number of sensor nodes attached to a

person performing various activities. The dataset was made available to us by the Medisch Centrum Twente (MST)

(http://www.mst.nl/). The dataset contains four features as: Z vector of gyroscope installed on the right foot, Y vector

of accelerometer installed on trunk, Z vector of accelerometer installed on trunk, and X vector of accelerometer

installed on left foot. There are three classes, i.e., standing still, walking, and sitting, and 8330 instances in the

dataset. Statistical information of the dataset is presented in Table 3 and Figure 6 illustrates the overlap between

different classes.

2For all histograms x axis shows values and y-axis shows sample count



Tahir Emre Kalayci et al. / Procedia Computer Science 5 (2011) 216–223 221

Table 2: Residential fire dataset (2506 instances, 2 classes: fire, no-fire)

input min max mean std

temperature 22.88 445 41.05 49.3469

ion -9.0614 4.2826 0.2841 0.8568

photoelectric -100 0.471 -11.4929 31.962

CO -4 36 0.4462 2.3687

(a) temperature (b) ion (c) photoelectric (d) CO

Figure 5: Residential fire data histogram (red: no-fire, blue: fire)

Table 3: Activity dataset (8360 instances, 3 classes: standing still, walking, sitting)

input min max mean std

right foot gyroscope Z vector -9.233 10.7756 -0.040 1.4355

trunk accelerometer Y vector -78.7644 50.0057 -3.9921 6.942

trunk accelerometer Z vector -24.5415 20.3732 -2.8579 2.2486

left foot gyroscope X vector -29.8074 1.8017 -4.4615 2.753

(a) right foot gyroscope Z (b) trunk accelerometer Y (c) trunk accelerometer Z (d) left foot gyroscope X

Figure 6: Activity data histogram (red: standing still, green: walking, blue: sitting)

4.4. Experimental Results

We performed 10 experiments (Specs. of the computer: 2.8 GHz Core 2 Duo CPU, 4 GB memory, Ubuntu

GNU/Linux) using MATLAB 7.11 (R2010b) for each dataset and we presented mean of these experiments below.

Neural network creation, training and finding BELBIC timing for forest fire dataset are shown in Table 4. Average

detection error of neural network with and without BELBIC on the forest fire dataset is illustrated in Figure 7.

Table 4: Forest fire dataset task timings

Task Time for plain data (seconds) Time for normalized data (seconds)

Neural network creation 2.1 2.0329

Finding the best BELBIC 3.4795 3.4436

Timing of the creating neural network and finding the best BELBIC for residential fire dataset is shown in Table

5. Average detection error of neural network with and without BELBIC on the residential fire dataset is illustrated in
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Figure 7: Average detection error of neural network with and without BELBIC on forest fire dataset

Figure 8.

Table 5: Residential fire dataset task timings

Task Time for plain data (seconds) Time for normalized data (seconds)

Neural network creation 4.9107 4.8058

Finding the best BELBIC 3.3819 3.3487

Figure 8: Average detection error of neural network with and without BELBIC on residential fire dataset

Timing of creating neural network and finding the best BELBIC for activity dataset are shown in Table 6. Average

detection error of neural network with and without BELBIC on the activity dataset is illustrated in Figure 9.

Table 6: Activity dataset task timings

Task Time for plain data (seconds) Time for normalized data (seconds)

Neural network creation 11.3189 10.4885

Finding the best BELBIC 4.2399 4.5216

Figure 9: Average detection error of neural network with and without BELBIC on activity dataset

4.5. Discussion
Looking at the experimental results, we can draw the following conclusions:

• BELBIC improvement strongly relies on dataset properties. Some datasets can be easily classified by neural

network, as the overlap between features and classes is low. Sine neural network already generates a good

detection accuracy for such datasets, using BELBIC with this kind of datasets does not lead to considerable

improvement. In our experiments, residential fire dataset is an example of datasets with low overlap between

features and classes.

• Execution time of finding the best BELBIC strongly depends on number of iterations and slightly on size of the

dataset.
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• Neural network creation and training time depends on size of dataset used in these phases and the parameters

chosen.

• The most accurate BELBIC parameters are found empirically and are application/problem specific.

5. Conclusion

In this paper we investigate impact of BELBIC, a feedback and reinforcement mechanism, on event detection and

classification accuracy of neural networks. BELBIC and neural networks are both computationally light and hence

good candidates to be implemented on the wireless sensor node platforms to enable situational awareness at the point

of action. Our experimental results show that neural network event detection error can be reduced by using BELBIC.
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