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a  b  s  t  r  a  c  t

Building  energy  conservation  measures  (ECMs)  can  significantly  lower  greenhouse  gas  (GHG)  emissions
from  urban  areas;  however,  uncertainties  regarding  not  only  ECM eligibility,  but  also  associated  costs  and
energy  savings  have  slowed  adoption  of  ECMs.  To  encourage  ECM  implementation,  local  governments
have  implemented  a  range  of  policies  designed  to increase  the  available  information  on building  energy
use.  Energy  audit  mandates,  such  as  New  York  City  (NYC)’s  Local  Law  87 (LL87),  require  energy  consul-
tants  to  analyze  installed  building  systems  and provide  building  stakeholders  with  cost  effective  ECM
recommendations  on a multi-year  cycle.  However,  complete  audits  are  costly  and  time  consuming.  To
accelerate  ECM  implementation,  policymakers  are  exploring  ways  to  utilize  available  data  to  target  ECMs
across a city’s  entire  building  stock.  In this  study,  energy  audit  data  for over  1100  buildings  in  NYC,  sub-
mitted  in  compliance  with  LL87,  are  analyzed  to identify  opportunities  for ECMs  across  building  system
categories  (e.g.  distribution  system,  domestic  hot  water,  etc.).  A machine  learning  classifier,  specifically
a  user-facing  falling  rule  list  (FRL)  classifier  based  on  binary  features  derived  from  LL87  data,  is devel-
oped  here  to predict  ECM  eligibility  given  a specific  set of  building  characteristics.  Overall,  the  trained
FRL  classifier  performs  well  (ROC  AUC  0.72–0.86)  for predicting  cooling  system,  distribution  system,
domestic  hot  water,  fuel  switching,  lighting,  and  motors  ECM  opportunities,  which  represent  a majority
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of  the  auditor-recommended  ECMs  in the  sample.  Additionally,  linear  decision  lists  developed  by the
model  allow  building  stakeholders  to easily  conduct  streamlined  audits  of building  systems  and  identify
possible  ECM  opportunities  by limiting  input to the  most  relevant  factors  and  prioritizing  likely  retrofit
candidates.  The  implications  of  this  work  are  significant  in  accelerating  the  adoption  of  building  ECMs
and  catalyzing  energy  use  and  GHG  emissions  reductions  from  buildings.

©  2016  The  Author(s).  Published  by Elsevier  B.V.  This  is an  open  access  article  under  the CC
. Introduction

The United Nations Framework Convention on Climate Change
UNFCCC) estimates that developed countries must reduce green-

ouse gas (GHG) emissions by 80% from 1990 levels by 2050 to
revent the most devastating impacts of climate change [33,36].
o achieve this goal, mitigation efforts must focus on existing com-

Abbreviations: BMS, building management system; DHW, domestic hot water;
CM, energy conservation measure; EER, energy efficiency report; EMS, energy
anagement system; FRL, falling rule list; GGBP, New York City’s Greener Greater

uildings Plan; HWH, hot water heater; LL84, New York City’s Local Law 84; LL87,
ew York City’s Local Law 87; MOS, New York City’s Mayor’s Office of Sustainabil-

ty;  NYC, New York City; ROC AUC, receiver operating characteristic – area under
he  curve; TRV, thermostatic radiator valve; VFD, variable frequency drive.
∗ Corresponding author.
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BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mercial and residential buildings, both of which provide ample
opportunities for energy efficiency improvements [37]. The U.S.
Energy Information Adminstration [35] estimates that residential
and commercial buildings are responsible for 40% of total U.S.
energy use and produce an equivalent percentage of GHG emis-
sions. In dense urban areas like New York City, existing buildings
can account for 75% of emissions [33]. Reducing building energy
usage would not only significantly lower GHG  emissions, but also
stimulate economic growth, encourage clean technology innova-
tion, and help to mitigate numerous environmental and public
health impacts [6,15].

Numerous U.S. cities, including New York, San Francisco, and
Washington, have committed to drastically cutting building energy
consumption as part of strategies developed to improve urban sus-

tainability and resilience [27]. For example, New York City has
pledged to reduce GHG emissions by 80% from 2005 levels by
2050 in-line with the UNFCCC target [33]. Implementation of build-
ing energy conservation measures (ECMs) in existing buildings
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ould significantly lower emissions; however, adoption of ECMs
as been slow due to uncertainties regarding implementation costs
nd energy savings [12].

The difference between existing and potential energy use (after
mplementation of cost-effective ECMs) has been termed the
energy efficiency gap” [7]. Sorrell et al. [29] classified the barri-
rs to implementing ECMs into the following categories: imperfect
nformation, hidden costs, risk, access to capital, split incentives,
nd bounded rationality. City energy efficiency policies designed to
vercome these barriers include energy management obligations,
nancial incentives, energy labeling schemes, minimum standards,
udit subsidies and requirements, and energy disclosure laws
7,15,17].

Energy disclosure laws are a promising public policy tool in
hich data analytics can be applied to accelerate the adoption

f energy efficient building strategies, design practices, and tech-
ologies in residential and commercial buildings. Municipal energy
isclosure laws generally mandate annual building energy bench-
arking, and such policies have also been implemented as part of

 more robust energy reduction plans that include audits and man-
ates [12,33]. Benchmarking laws, such as New York City’s Local
aw 84 (LL84), require that building owners report utility energy
ata and basic building characteristics. Buildings are then com-
ared based on their energy use intensity, defined as yearly energy
sage in kWh  or kBTU normalized by total gross floor space (in
eters squared or square feet) [34]. To complement benchmarking

ata, audit laws, like New York City’s Local Law 87 (LL87), require an
nergy consultant to conduct a more detailed analysis of building
nergy systems and make ECM recommendations [12,31].

Disclosed building energy data can reveal important informa-
ion for owners, investors, residents, policymakers, and researchers
25]. These data reduce uncertainty in building energy usage pat-
erns and expected savings from ECMs, and overcome information
symmetries. Governments can use these data not only to set stan-
ards for energy efficiency based on the performance of the existing
uilding stock, but also to target policies and incentives towards
lusters of high-consumption buildings [14]. In the private sector,
uilding owners, investors, and tenants can benefit by using dis-
losure data to inform investment decisions in ECMs and energy
fficient buildings. These energy disclosure laws can also facili-
ate the movement towards effective performance-based energy
odes and standards, as opposed to those based on generic ECM
ecommendations and guidelines.

Energy audits performed in compliance with LL87, in particular,
rovide building stakeholders with clear ECM recommendations,
long with expected cost and energy savings. For New York City’s
L87, compliance is rolling, with 10% of LL84 covered buildings
equiring an audit each year, equivalent to once over a ten-year
ycle. However, a full energy audit is costly and time consuming.
o increase the impact of energy audits conducted on a subset of
uildings and accelerate the insights gained from the graduated
imeline, municipal governments are exploring ways to apply col-
ected data to encourage implementation of cost-effective ECMs
cross the entire building stock. As described in the One City: Built
o Last plan, NYC is developing a Retrofit Accelerator program to
ncourage ECM implementation in privately owned buildings. The
rogram will use data-driven analysis to focus energy improve-
ent outreach and technical assistance efforts to buildings with

igh potential for energy savings [33].
This study attempts to increase the impact of building energy

udit data collected in compliance with municipal disclosure laws
y utilizing the first year of building, systems, and ECM recom-

endation data from New York City’s Energy Auditing and Retro

ommissioning Law, LL87, to develop a user-facing model of energy
etrofit eligibility and predicted impact. A falling rule list classifier
39] is applied to predict building-specific eligibility across ECM
nd Buildings 128 (2016) 431–441

categories (e.g. distribution system, domestic hot water, etc.), as
defined by the American Society of Heating, Refrigeration, and Air-
Conditioning Engineers (ASHRAE), for different building typologies.
The classifier, based on binary features derived from audit records,
will allow stakeholders to estimate a building’s ECM eligibility
based on a simple survey of building systems, thus providing an
early screening tool that can either enhance or potentially replace
the need for a full energy audit.

The remainder of the paper is organized as follows: Section
2 provides a review of relevant background literature. This is
followed by a description of the data and methods. Results are
provided in Section 4. Section 5 discusses the results and policy
implications of this study. Section 6 concludes.

2. Literature review

Building energy audits can reveal important information about
building energy usage patterns and expected savings from ECMs
[12,20]. McKinsey & Company [21] predicted, that by 2020, the
commercial and residential building sector in the United States
could reduce baseline energy usage by 29% through cost effective
energy investments. Lam and Chan [18] determined that, for a sam-
ple of commercial buildings in sub-tropical Hong Kong, HVAC was
responsible for 40–60% of total electricity consumption, while light-
ing accounted for 20–30% of consumption. It was also found that
operational changes (e.g. thermostat adjustment) could provide
no-cost energy improvements in buildings.

While energy audits can be a valuable tool accelerating the adop-
tion of ECMs, high ECM implementation costs and incomplete or
incorrect energy efficiency reports can greatly reduce the impact
of energy audits [28]. Fleiter et al. [7] analyzed barriers to adoption
of ECMs by small and medium sized enterprises in Germany and
determined that high initial investment costs impeded adoption of
cost-effective ECMS. Additionally, results showed that high-quality,
more detailed energy audits resulted in more frequent ECM imple-
mentation. Shapiro [28] conducted a detailed case study of 30
commercial and residential energy audits to determine common
issues. These problems included missed ECMs, limited ECM scope,
limited or missing cost assessment, inadequate building analysis,
and overestimated savings. Additionally, results showed that audits
conducted as part of government of utility company energy pro-
grams were less likely to have similar problems and issues. Shapiro
also suggested a number of ways to improve the impact of energy
audits: standardized templates, enhanced auditor training, clear
standards, quality control, funding programs, and validation of pro-
posed savings. Palmer et al. [23] surveyed 479 residential energy
auditors in the United States and concluded that auditors were only
partially filling the information gap. Specifically, auditors rarely val-
idated projected energy savings, customers were uninformed about
energy audits, and high initial investments and low energy costs
discouraged adoption. Furthermore, The Building Energy Exchange
[6] concluded that, in preparing LL87 audit reports, energy audi-
tors may  have provided conservative estimates of overall energy
savings potential, omitting experimental or expensive ECMs which
could greatly reduce energy use. Flourentzou and Roulet [8] devel-
oped a software tool and analysis methodology to improve audit
accuracy and quality, and evaluate retrofit scenarios.

A number of studies have applied energy audit and bench-
marking data to understand factors influencing energy use in
buildings, ECM implementation decisions, and ECM eligibility.
Gamtessa [9] analyzed records from the Canadian government’s

EnerGuide for Houses program, which provided financial incentives
for ECM implementations in residences. Results from an economet-
ric analysis showed that energy savings, financial incentives, and
implementation costs were important factors behind retrofit deci-
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ions given other residence and demographic properties. In a study
f the drivers of energy performance in commercial buildings, Kon-
okosta [14] integrated LL84 benchmarking data, land use and tax
ssessment data, and CoStar Group data to understand the primary
actors affecting energy use in office buildings. The study identified
everal limitations of current benchmarking methods and found
uilding occupant rates and type to have important implications for
nergy efficiency. Similarly, Hsu [12] developed a multilevel regres-
ion model from energy benchmarking and audit data in order to
redict energy use in buildings in New York. Results showed that
here was significant variation in building energy usage intensity
EUI) regardless of input building properties, indicating that oper-
tional efficiency improvements may  be more cost effective than
echnical or system upgrades.

Villoria-Siegert et al. [38] applied commonly available data sets
o infer residential building properties and energy system charac-
eristics without the use of detailed on-site audits. Monthly utility
nd local temperature data were applied along with real estate
ecords to estimate wall and window insulation values, leakage,
nd heating system efficiency. These values were then applied to
rioritize building ECMs by targeting the least efficient residences
rst. Results showed that the studied community in the United
tates could achieve an overall reduction in HVAC energy use of
2% at a cost of $0.10 per mmBTU.

Using a dataset similar to the one used here, the Building Energy
xchange [6] analyzed ECM recommendations and building char-
cteristics from the multifamily portion of the 2013 LL87 data.
uildings were grouped into ECM market segments by building
eight, period of construction, and fuel source. These segments
ere used to predict ECM implementations and savings in all mul-

ifamily buildings covered by LL84. The authors concluded that full
mplementation of ECMs could reduce total multifamily building
nergy use by 10% and greenhouse gas emissions by 11%. The anal-
sis also showed that ECMs were cost effective, with 77% of ECMs
aving less than 10 years payback, 50% less than 5 years, and 26%

ess than three years. Additionally, results showed that over 50% of
otal greenhouse gas reductions came from post-war (i.e. built after
946) buildings, which represented less than 38% of the area and
0% of total ECM costs. Furthermore, ECMs classified as distribu-
ion system, domestic hot water, or heating system improvements
ccounted for half of the energy savings potential.

Most often, energy consultants estimate potential ECM energy
nd cost savings according to ASHRAE specifications [2]. Tools for
stimating savings include building energy simulations, subject
atter expertise, equipment specifications, and ASHRAE defined

nverse modeling techniques [2,24,30]. Neto and Fiorelli [22] deter-
ined that an artificial neural network provided similar energy use

redictions to a physically based model simulation. However, the
uthors state that consultants can more easily evaluate different
etrofit scenarios using the model simulation. To better understand
avings and impact, a number of academic studies have focused on
tudying specific ECM implementations [26] as well as estimat-
ng total savings from performance based ECMs across a selected
uilding stock [19,24]. Mata et al. [19] estimated, using building
nvelope, space, systems, and occupancy data from a 1400 build-
ng sample, a 53% reduction in energy demand can be achieved
cross Sweden’s building stock by implementing twelve generic
CMs. However, the study was focused on generic performance
ased ECMs (e.g. reduction in 50% of power for lighting) and not
rescriptive ECMs specific to the building stock (e.g. upgrade to
ED), where savings would be determined by specific building
roperties (e.g. number of lighting fixtures, installed lighting types,

tc.). Ballarini et al. [3] used reference building typologies defined
rom Intelligent Energy Europe’s Typology Approach for Building
tock Energy Assessment (TABULA) project, to assess energy sav-
ngs potential of the existing residential building stock. Reference
nd Buildings 128 (2016) 431–441 433

typologies were based on location, construction period, and hous-
ing type. Results show that, defining reference buildings types helps
define energy savings potential for a region’s residential building
stock, even while considering generic envelope and heating system
ECMs.

3. Data and methods

3.1. Data collection

With the goal of reducing building GHG emissions, New York
City (NYC) enacted the Greener, Greater Buildings Plan (GGBP) in
2009. A major objective of this plan was to provide informa-
tion to building decision makers (e.g. building owners, managers,
superintendents, board members, buyers, sellers, and residents)
to encourage investment in energy conservation measures. The
GGBP included two data disclosure ordinances: (1) Local Law 84:
Benchmarking (LL84) and (2) Local Law 87: Auditing and Retro
Commissioning (LL87), which cover buildings with a gross floor
area greater than 50,000 ft2 (4,645.2 m2) or lots with a combined
building gross floor area of greater than 100,000 ft2 (9,290.3 m2)
[34]. LL84 requires buildings to document and disclose yearly
energy use and building characteristics (e.g. floor area, use type,
heating system), using the U.S. Environmental Protection Agency’s
(EPA) Portfolio Manager website. Building stakeholders can also
use Portfolio Manager to calculate weather normalized and source
energy usage, useful for comparing energy use across buildings and
time periods. To complement benchmarking data, LL87 requires an
energy consultant to conduct a more detailed analysis of build-
ing energy systems and make ECM recommendations [12]. The
“audit” portion of LL87 requires covered buildings to undergo the
equivalent of an American Society of Heating, Refrigeration, and
Air-Conditioning Engineers (ASHRAE) Level-2 Audit once every ten
years [2,12,13]. Compliance is rolling with approximately 10% of
lots reporting each year, beginning at the end of 2013. Analyses in
this study are based on the first year of reported LL87 data from
building audits conducted in 2013, most often based on energy use
data from 2012. Certified energy consultants conduct audits by sur-
veying the building systems and space uses which can influence
building energy use, benchmarking energy usage by end-use, and
making recommendations for ECMs [32].

In addition to reporting audit results and recommendations to
building stakeholders, energy consultants must enter collected data
into the NYC Mayor’s Office of Sustainability’s (MOS) standardized
Energy Audit Data Collection Tool. Consultants then submit the
completed tool to the New York City Department of Buildings as
part of an Energy Efficiency Report (EER) [32]. MOS  then compiles
data from the submissions for analysis.

Each audit record in the compiled dataset contains all infor-
mation entered in the Energy Audit Data Collection Tool as part
of an EER: (a) Submittal Information, (b) Team Information, (c)
Building Information, (d) Equipment Inventory, (e) ECMs, and (f)
End Use Breakdown. The Submittal and Team Information sections
of the EER include the building’s tax lot information and energy
consultant details, respectively. The Building Information section
contains information on the building owner, size, space types,
metering configuration, and building systems and EPA Portfolio
manager energy use data. The Equipment Inventory section pro-
vides information on building systems and characteristics related
to energy use, including heating, cooling and domestic hot water
systems, ventilation, lighting, and building envelope details. The

ECM portion contains a detailed list of conservation measures rec-
ommended by energy consultants, assigned with generic systems
and usage based Categories and Measure Names, to provide unity
between audit reports. For each ECM, the consultant also estimated
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nergy savings, cost savings, and implementation cost based on
nergy simulations, inverse modeling, subject matter expertise,
nd equipment specifications. Lastly, the End Use Breakdown sec-
ion contains information on current energy use, and proposed
nergy use (if ECMs are incorporated) split by fuel use and end
se (space heating, space cooling, lighting, etc.).

.2. Data selection and preparation

Each record in the compiled LL87 audit dataset consisted of
 row of entries, where features represented the fields from the
nergy Audit Data Collection Tool. For proper analysis, data needed
o be extracted, cleaned, and transformed. The focus of this anal-
sis was on features defined as either continuous, primarily Build
ear, or categorical, such as Facility Type and ECM Category. Less

ocus was placed on open text fields, such as “ECM Description”
nd “Building System Spaces Served”, due to variations in auditor
ntries. From the categorical and numerical features in the LL87
ata, the features described in Table 1 were applied for the final
odel due to their applicability and completeness.
Because energy consultants entered numeric and categori-

al data manually, features were cleaned to identify and correct
mproper and missing entries. Non-numeric records that could not
e directly converted to numbers were stripped of spaces, commas,
nd appropriate units (e.g. kBTU for Energy Savings). The remain-
ng non-numeric records, which consisted of symbols, comments,
nd indications that the data was unavailable, were identified as
issing data for the purpose of analysis.
Categorical data was also cleaned and manipulated for input

n models. For certain categorical inputs, specifically Heating Sys-
em Type and Exterior Wall Type, there were significant differences
etween how individual auditors entered data. For example, in
he Heating System Type field, where the Fuel Source was  district
team, some auditors entered the Heating System Type as Steam
oiler while others listed it as Other. To unify these data, a new
eating System Type, District Steam, was added for all systems
here Fuel Source was defined as “District Steam”. For Exterior
all Type, many auditors with Mass walls listed wall type as Other

nd described the wall as masonry, concrete, or brick in the com-
ents field. For all exterior walls that had one of these words in the

omments, the wall type was changed to Mass. Additionally, the
ear of construction of the building was recoded to categorical bins
f Before 1901, 1901–1920, 1921–1946, 1947–1970, 1971–1990,
nd After 1990. The Build Period divide in 1947 represents the
bserved separation of “Pre-War” and “Post-War” buildings. The
ear of construction field was recoded to account for observed non-
inearity in the effects of build year on energy use and efficiency
14,16].

The Energy Audit Data Collection Tool permitted energy consul-
ants to enter information for multiple energy systems. To account
or this in model input data, the presence of each system type, fuel
ource, etc., in any of the categorical features of system entries
as noted for each building. For example, if a consultant entered

nformation for two separate heating systems that service different
reas of the building, both system types and fuel sources would be
ecorded as “present” in that building.

All categorical features were then encoded as “One-Hot” binary
eatures for each category, excluding undefined and other, if appli-
able. For “One-Hot” encoding, each categorical feature is split into

 separate feature for each category, where each feature indicates
he presence of that specific category. For example, the feature
eating System Fuel Source was encoded as separate features for

ach fuel, (for instance, Heating System Fuel Source IS Natural Gas,
eating System Fuel Source IS #6 Oil, etc.). The selected features,
escribed in (Table 1) resulted in 136 “One-Hot” binary features for

nput in the FRL classifier.
nd Buildings 128 (2016) 431–441

The focus of this study is on predicting building-specific eli-
gibility for various categories of ECMs, as grouped in accordance
with the Energy Audit Data Collection Tool, rather than specific
ECMs. ECM recommendations were converted in a similar manner
to systems data. For each property (identified by the Borough-
Block-Lot number or “BBL”), the number of recommendations in
each category and the sum of energy savings, cost savings, and
implementation cost are calculated. Finally, for each BBL, the pres-
ence of an ECM recommendation in each category is determined
for each building in the dataset.

After data was transformed as previously discussed, records
were removed based on the following rules: (1) the BBL was  dupli-
cated in the LL87 dataset; and (2) the auditor recommended no
ECMs. It should be noted that due to the guidelines for entering data
in the Energy Audit Data Collection Tool, it is possible for multiple
buildings on the same lot to report individual audits and records.
In this case, duplicate BBLs could represent different buildings;
however, this could not be determined with sufficient certainty for
this study. Audits without ECM recommendations were considered
incomplete thus were removed for this analysis. Of the 1131 ini-
tial records (accounting for 1089 BBLs), 1064 records had unique
BBLs, and a further 956 had at least one ECM recommendation. Of
these buildings, 647 were classified as Multifamily, 159 as Office,
42 were not defined, and the remaining 108 were other categories
of buildings, including Retail, Hotel, and Warehouse.

3.3. Energy conservation measures

When submitting an EER, an auditor can recommend ECMs in
15 system and usage based categories (Table 2). Auditors recom-
mended a total of 6813 ECMs in the 15 EER specified categories
across the entire dataset, and 6204 ECMs in the analysis sample
of 956 BBLs. ECMs were then grouped by category for each BBL,
resulting in 3829 integrated ECM records. Additionally, out of the
remaining ECMs, 874 had incomplete descriptions of Implementa-
tion costs, cost savings, and energy savings. Missing values were
primarily associated with the energy savings field; only 5 ECMs
were missing cost data, but included energy savings. A further 63
ECMs had zero energy or cost savings. Incomplete and zero savings
ECMs were included in the primary ECM recommendation analysis,
but excluded from the cost and energy estimates.

A number of predefined ECMs were available for selection in
each ECM category and the most often recommended ones are
listed under “Example Measures” in Table 2. The most commonly
recommended ECM category was  lighting, recommended in 95% of
buildings, followed by domestic hot water, recommended in 51%
of buildings. Submetering and on site generation were both only
recommended in 5% of buildings, possibly due to complex installa-
tions, uncertainty in savings, and in the case of on-site generation,
high implementation costs.

The subset of ECM recommendations where auditors included
implementation cost and annual cost and energy savings were eval-
uated to understand cost and energy savings potential (Table 2).
Median simple payback period (i.e. the implementation cost
divided by the annual cost savings) was lowest for distribution sys-
tem improvements (2.07 Years). The most common distribution
system ECM recommendation was the straightforward insulation
of heat distribution pipes. Conversely, improvements to the build-
ing envelope, such as sealing leaks and improving roof insulation,
were the least cost effective ECMs, with a median simple pay-
back of 13.42 years. Additionally, ECM categories were compared
based on the median ratio of their implementation cost in U.S.

dollars to annual energy savings ($/kWh). Distribution system
ECM recommendations also showed the lowest ratio, $0.10/kWh
($0.03/kBTU) of the categories, indicating a first cost of just ten cents
per kWh  saved. However, fuel switching (generally fuel oil to nat-
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Table  1
Building Properties and Systems for input in model, as defined in the Energy Audit Data Collection Tool, based on ASHRAE [2]. Properties are grouped by system where
applicable.

Feature Example Values Notes

Build Year 1920, 1946, 1970, 1990 Year of primary construction
Facility  Type Multifamily, Office, Retail, Hotel Primary end use type

Exterior Walls:
Type Mass, Steel-Framed, Wood-Framed Defined by ASHRAE [1]

Windows:
# of Panes Single, Double
Framing Material Aluminum, Wood, Fiberglass

Roof:
Type Insulation Entirely Above Deck, Metal Building Defined by ASHRAE [1]

Heating System:
Type Steam Boiler, Hot Water Boiler
Fuel Source Natural Gas, #6 Oil, District Steam
Controls None, Central BMS/EMS

Burners:
Type On/Off, Full Modulation – Set to Modulating Heating system fuel burners

Central  Distribution:
Type Forced Air, 1-Pipe Steam, 2-Pipe Steam Heating distribution system

Heating Terminals:
Type Radiator, Duct
Controls None, Direct Digital Control

Cooling System:
Type Window A/C, Chiller – Absorption
Fuel Source Electric, Natural Gas
Air/Water Cooled? Air Cooled, Water Cooled
Controls Direct Digital Control, Central BMS/EMS

Domestic Hot Water:
Type Tankless Coil, Separate Hot Water Boiler with Storage Tank
Fuel Source Natural Gas, #6 Oil
From Space Heating Boiler? Yes – Year Round, Yes – Heating Season Only, No
Controls Aquastat Based, Timer Based, Demand Based

Lighting:
Lamp Type LED, Incandescent, Compact Fluorescent
Ballast Type Magnetic, Electronic
Interior/Exterior Controls None, Timer, Photo/Daylight Sensor

Table 2
Summary of Energy Conservation Measure (ECM) Categories (Category Name), Most Often Recommended Measures (Example Measures), Number of total recommended
ECMs  and ECMs with cost and savings information in parentheses (Count), Median Implementation Cost divided by annual cost savings (Simple Payback), and Median
Implementation Cost per Unit Annual Energy Saved in U.S. Dollars per kWh  (Cost/Energy). 1 $/kWh equals 0.29 $/kBTU. ECMs were grouped by Category for each BBL to get
Count,  Payback Years, and Cost/Energy. For Simple Payback and Cost/Energy, lower is more cost effective.

Category Name Example Measures Count (Buildings) Simple Payback (Years) Cost/Energy ($/kWh)

Conveying Systems Upgrade Motors, Add Elevator Regenerative Drives 59(35) 11.2 2.01
Cooling  System Replace Packaged Units, Add or Upgrade Cooling Tower 158(105) 7.32 1.06
Distribution System Insulate Pipes, Upgrade Pumps 393(352) 2.07 0.10
Domestic Hot Water Separate DHW From Heating, Install Low-Flow Aerators 489(397) 3.78 0.20
Envelope Sealing – Door, Increase Insulation – Roof 335(273) 13.42 0.82
Fuel  Switching #6 Oil or #4 Oil to Natural Gas, #2 Oil to Natural Gas 176(102) 3.78 3.75
HVAC  Controls and Sensors Install or Upgrade EMS/BMS, Install TRVs 343(260) 2.13 0.14
Heating System Upgrade Burner, Replace Boiler 356(234) 5.45 0.24
Lighting Upgrade to LED, Install Occupancy/Vacancy Sensors 910(717) 3.46 0.68
Motors Upgrade Motors, Install VFDs 236(183) 5.83 1.06
On  Site Generation Install Solar/Photovoltaic, Install Cogeneration Plant 45(38) 7.21 1.36
Other  Install VFDs, Electric HWH  Installation 67(35) 2.39 0.17
Process and Plug Loads Replace Washing Machines, Install Solar/Photovoltaic 66(49) 5.91 0.85
Submetering Install Submetering 44(13) 2.25 0.41

/Air H

u
(
c
d

Ventilation Install Demand Control Ventilation, Upgrade Fan

ral gas) showed the highest median cost/energy ratio, $3.75/kWh
$1.10/kBTU), because these improvements, while having signifi-

ant cost and greenhouse gas emissions benefits, generally do not
irectly reduce energy consumption.
andlers 152(99) 3.92 0.31

3.4. Falling rule list
Falling rule lists are classification models comprised of a series
of if-then conditional decision statements, subject to the following
constraints: (a) the order of decision statements or “rules” must be



4 ergy and Buildings 128 (2016) 431–441

f
i
f
m
R
a
t
H
d
a
a
r
d
a
t
l

i
t
F
m
B
o
m

a
i
a
e
h
d
�
r
t
u
t
l

o
w
(
s
d
t
h
f

W
e
u
m
i
I
r
i
r
R
e
c
f
a
C
i
e
l
P

Table 3
Test data ROC AUC scores for each ECM Category.

System ROC AUC

Conveying Systems 0.6559
Cooling System 0.8055
Distribution System 0.7590
Domestic Hot Water 0.7170
Envelope 0.5566
Fuel Switching 0.8553
HVAC Controls and Sensors 0.6779
Heating System 0.6155
Lighting 0.7969
Motors 0.7851
On Site Generation 0.5951
Other 0.4661
Process and Plug Loads 0.5568
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ollowed for classification and (b) the estimated positive probabil-
ty decreases monotonically down the list [39]. Subsequently, the
alling rule list follows the decision making process, whereby the

ost “at-risk” or “likely” candidates are classified first. Wang and
udin developed the falling rule list classifier to be interpretable
nd prioritize high probability candidates, initially with applica-
ions to risk assessment and patient triage in the medical field.
owever, the design goals of the model are important for applied
ata science in various fields. Fitted falling rule lists can be printed
nd distributed, making them a data-driven alternative to manu-
lly generated assessment tools. For example, in reference to ECM
ecommendations, a falling rule list may  state, based on the training
ata, buildings with single-pane windows have a 60% likelihood of
n energy auditor recommending an envelope retrofit. Otherwise,
he remaining Pre-War (Build Year before 1947) buildings are 40%
ikely, and buildings that meet neither condition are 20% likely.

Wang and Rudin’s falling rule list methodology provides an
nterpretable model without sacrificing accuracy or computation
ime. First, a frequent item set mining algorithm, specifically
PGrowth [5], is applied to identify subgroups with a specified
aximum number of clauses and minimum support. Afterwards, a

ayesian modeling approach determines a subset and permutation
f the clauses to define the rules in the decision list, while enforcing
onotonicity.
The model requires a number of user-selected parameters that

ffect final decision lists. For frequent item set mining, users spec-
fy the maximum number of clauses for each decision list rule,
nd the minimum sample on buildings meeting these criteria. In
stablishing the prior decision list, the prior length mean is the
yperparameter, �, defining a Poisson distribution from which to
raw an initial rule set length. Additionally, the hyperparameters

 and � define a Gamma  distribution which influences the model’s
ule set preferences. These parameters allow the user to configure
he model to best satisfy the desired use case. Furthermore, the
ser may  specify the number of simulated annealing steps and the
emperature value For fitting the model and creating the decision
ist [39].

The falling rule list has been shown to have comparable receiver
perating characteristic – area under the curve (ROC AUC) scores
hen compared to a number of prominent classification models

e.g. support vector machines, random forests, and logistic regres-
ion) applied to University of California – Irvine published public
ata sets [11,39]. The ROC AUC score is equivalent to the likelihood
hat a classifier will rank a randomly chosen “positive” instance
igher than a randomly chosen “negative” one, and is often used

or machine learning model comparison [10].
In this study, falling rule list classifiers were generated with

ang and Rudin’s published falling rule list Python package for
ach category of ECM. To reduce the effects of variance during eval-
ation and simulate how the model performs on new data, the FRL
odel was trained on a randomly selected 80% sample of records

n the binary encoded LL87 data, and tested on the remaining 20%.
n order to maximize the applicability and interpretability of the
esults, the maximum number of clauses was set to 2 and the min-
mum support set to 5% of the data for input into the FPGrowth
ule mining algorithm. Default values recommended by Wang and
udin [39] were used for the remaining parameters so that no pref-
rences were given for decision list structure, while optimizing
omputation time. These values were 8 for prior length mean, 1
or gamma  �, 0.1 for gamma �, 5000 for simulated annealing steps,
nd 1 for temperature. To limit variance, FRL classifiers for ECM
ategories were limited to features relevant to the specific build-
ng system. Primarily, lighting features were excluded from other
nergy systems models, and the lighting ECM model was limited to
ighting and building characteristics (Exterior Wall, Windows, Build
eriod, and Facility Type). Additionally, the envelope model was
Submetering 0.5791
Ventilation 0.6564

restricted to building characteristics and a separate model specifi-
cation included all inputs.

The performance of each model was evaluated through its
receiver operating characteristic—area under the curve (ROC AUC)
score [4]. The ROC AUC is calculated as the integral of the curve
of the true positive rate against the false positive rate through the
range of classification threshold settings. This score is equal to the
probability that the classifier will rank a randomly selected positive
instance higher than a randomly selected negative instance.

4. Results

4.1. Prediction of ECM eligibility

For each of the 15 ECM categories, a FRL classifier was  fit
based on the training sample of the data (764 buildings), and
evaluated against a test data set (192 buildings). Across ECM cat-
egories, receiving operator characteristic—area under the curve
(ROC AUC) scores ranged from 0.47 (other) to 0.86 (fuel switch-
ing) (Table 3). Overall, the trained FRL classifier performs well
(ROC AUC 0.72–0.86) for predicting cooling system, distribution
system, domestic hot water, fuel switching, lighting, and motors
ECMs, which together represent 62% of recommended ECMs in the
analyzed sample.

Poor model performance in certain categories is often the result
of relevant features being excluded from the EER, omitted ECM
recommendations by auditors (due to high implementation cost,
auditor unfamiliarity with ECM, etc.), or both. For example, in
the case of conveying systems, the LL87 Energy Audit Data Col-
lection Tool does not have fields for elevator system information,
which were the main focus of conveying system ECM recommen-
dations. The other ECM category was  modeled in this exercise,
and as expected, the model was unable to identify opportunities
for unclassified ECMs (ROC AUC = 0.47) given the range of possible
specific ECMs grouped in the other category.

4.2. Falling rule list decision tables

While the FRL model’s classification performance is useful, the
model’s largest contribution is the set of linear decision lists it
creates. A sample of the tables, specifically those for conveying,
distribution, domestic hot water, and heating systems as well as
motors, are included here (Tables 4–7), while the remainder are
included in the appendix (Tables A1–A11). These decision lists,

which prioritize the most likely eligible BBLs, not only reveal the
building properties most correlated with ECM eligibility and inter-
actions between multiple properties, but separate buildings into
distinct eligibility groups.
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Table  4
Conveying System ECM Eligibility Decision List.

Conditions Probability Support

IF (Facility Type IS Office) AND (Heating Terminal Controls ARE None) THEN 43.75% 32
ELSE  THEN 5.33% 732

Table 5
Distribution System ECM Eligibility Decision List.

Conditions Probability Support

IF (End Use Terminal Controls ARE Central Building/Energy Management System) AND (Domestic Hot Water System IS Tankless Coil) THEN 92.31% 65
ELSE  IF (Burners Equipment Type IS On/Off) AND (Terminal Type IS Radiator) THEN 68.42% 57
ELSE  IF (End Use Terminal Controls ARE None) AND (Domestic Hot Water System Controls ARE Aquastat Based) THEN 56.54% 191
ELSE  THEN 23.73% 451

Table 6
Heating System ECM Eligibility Decision List.

Conditions Probability Support

IF (Burners Equipment Type IS On Off) AND (Domestic Hot Water System IS Tankless Coil) THEN 97.92% 48
ELSE  IF (Facility Type IS Office) THEN 50.0% 134
ELSE  IF (Heating System IS Hot Water Boiler) THEN 52.46% 61
ELSE  THEN 24.95% 521

Table 7
Motors ECM Eligibility Decision List.

Conditions Probability Support

IF (Burners Equipment Type IS On Off) AND (Domestic Hot Water from Space Heating Boiler IS Yes—Year Round) THEN 81.03% 58
ELSE  IF (Cooling System IS Water Cooled) THEN 52.68% 112
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ELSE  IF (Domestic Hot Water System Fuel Source IS District Steam) AND (H
ELSE  IF (Cooling System IS Air Cooled)
ELSE  

For each ECM category, a building owner, or other stakeholder,
an conduct a simplified audit by checking each statement in the
ecision list in succession, comparing building characteristics to
he if/else statements until the stakeholder finds a match. For each
tatement, the Conditions specify the building properties associ-
ted with the statement. For example, if the Conditions are “(DHW
ystem Fuel Source IS Dual Fuel) AND (End Use Terminal Controls
RE None)” a building must meet both criteria, otherwise the build-

ng is checked against the succeeding condition. If a building does
ot meet conditions specified in any statement, it defaults to the
roup defined by the final “else” statement. The Support describes
he number of buildings matching that statement, excluding build-
ngs matching earlier statements. The sum of support is equal to
e number of buildings in the training data, 764. The Probability
eveals the proportion of buildings matching the conditions that
eceived an ECM recommendation in the specified category, which

 building stakeholder can use to understand ECM eligibility.
For example, consider a hypothetical building owner interested

n distribution system ECMs. Based on the first statement in Table 5,
he owner surveys his building and finds that the building has no
nd use terminal controls, and the domestic hot water system is

 tankless coil. Not meeting the conditions of this statement, the
wner then checks the building against the second statement. Find-
ng that the burners are “On/Off” type and the heating terminals are
adiators, the owner then concludes the building is 68.42% likely to
e eligible for a distribution system ECM. With this information, the
wner can then review the expected savings (Table 2) and decide
hether to pursue the ECM.

FRL decision lists varied significantly among ECM categories,

n both conditions and decision structure. Decision lists had up to
ve statements, including the final “else” statement. For individual
tatements, Support ranged from 32 (4.2%) to 517 (68%), excluding
he final default statements. The FRL classifiers were also able to
 System IS District Steam) THEN 45.83% 24
THEN 26.79% 209
THEN 4.43% 361

distinguish highly eligible and highly ineligible buildings, with a
maximum and minimum probability of 98% and 2.5% respectively
across statements in ECM categories. The most divided ECM cate-
gory was motors, where ECM eligibility for the initial group was 81%
and eligibility for the default group was  4.4% (Table 7). The decision
list for heating system ECMs (Table 6) reveals that, even though ROC
AUC score is only 0.62, buildings with “(Burners Equipment Type
IS On Off) AND (Domestic Hot Water System IS Tankless Coil)” are
98% likely to be eligible for a heating system ECM, based on 48
buildings in the LL87 data. For systems where important informa-
tion was missing from the EER, the FRL classifier uses other general
building characteristics to define the decision and thus can be use-
ful in accounting for incomplete audits. For example, the decision
list of conveying systems (e.g. Elevators) specifies “(Facility Type IS
Office) AND (Heating Terminal Controls ARE None)” as the primary
conditional statement (Table 4).

5. Discussion and policy implications

5.1. ECM distribution and recommendations

The distribution of recommended ECMs reveals interesting
information about methods and opportunities for improving
energy efficiency in urban buildings. By far, the most common
recommendation was  for lighting system improvement, mainly
upgrading bulbs to LEDs and installing occupancy sensors (Table 2).
Lighting ECMs are not only low cost and can be easily installed, but
can also be implemented gradually, reducing the initial implemen-
tation cost. Additionally, among the EERs which did not include

lighting ECM recommendations, it is believed that some of these
buildings are eligible, but the auditor did not consider lighting
ECMs. In contrast, submetering and on site generation ECMs, were
only recommended in only 5% of buildings, possibly due to complex
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nstallation requirements and uncertainty in future savings, which
upports the assertion that energy auditors omitted experimental
r expensive ECMs [6].

ECM cost and energy savings data provide evidence to deter-
ine which ECM categories should be the focus of energy efficiency

nvestments and policies. Cost effective ECMs, such as distribution
ystem improvements, are most attractive to building stakeholders.
hese ECMs also have significant energy benefits, and should be a
riority for information campaigns and energy efficiency policies.
udit data can also be used to prioritize ECMs with high annual
nergy savings, but low annual cost savings for financial incen-
ives. For example, heating system ECMs are ranked 5th among
CM categories for median Cost/Energy, but 9th for Simple Pay-
ack (Table 2). Financial incentives and other policies could make
hese ECMs more attractive to building stakeholders.

The distribution of ECM recommendations in the LL87 dataset
iffers from recommendations for home auditors. Large buildings
udited in compliance with LL87 were most often recommended
ighting and distribution system improvements, while Palmer et al.
23] found the home energy auditors most often recommended
nsulation and envelope improvements, which are more easily
mplemented on wood-framed single family homes than large
rick, concrete, and steel-framed buildings in dense urban envi-
onments. This finding demonstrates the importance of developing
nergy efficiency policies and recommendations based on data
rom a similar building stock.

.2. Falling rule list classifier and decision lists

Fitted FRL classification models showed good performance for a
ubset of ECM categories, based on ROC AUC scores, while providing
n interpretable and actionable result (Table 3). It is believed that
oor model performance in certain categories resulted from miss-

ng relevant features or omitted ECMs from the EERs. In addition,
he decision lists generated by the FRL classifier separate buildings
nto distinct groups with varying ECM eligibility. Decision lists sep-
rated buildings into groups with ECM eligibilities as high as 98%
nd as low as 2.5%.

The decision lists generated by the FRL model provide a useful
ool for building stakeholders. By using the decision lists, a build-
ng owner, manager, or tenant can conduct a simplified audit of
he building properties and estimate ECM eligibility and poten-
ial energy and cost savings. With this knowledge, stakeholders
ould be more likely to pursue specific system audits and ECM

mplementation, and would be able to more efficiently allocate
esources to maximize energy efficiency improvements. The deci-
ion lists also prioritize most likely candidates first, and given the
onotonically decreasing probability and if-then organization, the

ecision list can cater to multiple levels of interest and desired audit
omprehensiveness. For example, if a building stakeholder is only
nterested in pursuing a more detailed motors audit if their building
s at least 80% likely to be eligible for this ECM, they can discontinue
he simplified audit after the initial statement.

Not only building stakeholders, but also policymakers and
nergy consultants can benefit from FRL decision lists. Policymak-
rs can use decisions lists to target policies and financial incentives
owards groups of buildings with high ECM eligibility, as well
s common and cost effective ECMs. For example, if New York
ity offered financial incentives for distribution system audits
estricted to buildings where “(End Use Terminal Controls ARE
entral Building/Energy Management System) AND (Domestic Hot
ater System IS Tankless Coil)”, the City would receive a higher
eturn on investment than if the incentive was available for all
uildings. Overall, multiple targeted financial incentives would be
ore successful than a large generic incentive of the same scale.

nergy consultants may  use FRL decision lists to focus market-
nd Buildings 128 (2016) 431–441

ing towards highly eligible buildings, and include decision lists in
promotional material to better inform potential customers. Fur-
thermore, consultants can use the FRL decision lists as a tool for
making future ECM recommendations. After conducting the sys-
tems audit, a consultant can use the decision list to support their
ECM recommendations. Finally, consultants can identify ECMs they
may  have missed during an audit, based on recommendations in
similar buildings, and investigate if the ECM is applicable.

5.3. Influence on auditing policy and process

As stated by the Building Energy Exchange [6], additional guid-
ance for energy auditors could significantly improve the quality of
audits. The development and application of decision lists and data-
driven models presented here can significantly improve energy
auditing policies and procedures by identifying common causes of
uncertainty and improper reporting, encouraging and defining cat-
egorical data fields, and more efficiently allocating resources across
possible ECMs. In turn, these changes would greatly improve future
models and their applicability for encouraging energy efficiency
investments. Energy consultants can provide domain expertise and
feedback on ECM decision lists, suggesting features for EERs that
may improve models and insight into the relationships between
various building characteristics and ECM eligibility. Analysts and
researchers can provide input to improve data quality without
increasing the burden on energy consultants.

Expanded data and changes to auditing policy can further
improve the quality of data driven ECM recommendation models.
New York City is continuing to receive audit data for new build-
ings, and will continue to do so until 2023. New data can be used
to improve the current model, or allow development of a model
catered to more specific ECMs or building types. The FRL model can
be rapidly updated with new data, allowing dynamic adjustments
as new audit data is collected. Additionally, adoption of municipal
energy audit mandates in other regions would allow development
of a region-specific ECM recommendation model, catered towards
the unique features of the region’s building stock. To improve the
quality of ECM recommendation models, a few changes to the
reporting process should be made. Currently many of the fields
in NYC’s auditing tool were open text entry. Restricting numerical
fields, such as Energy Savings, to numbers will make the clean-
ing process easier, and reduce the number of excluded records.
Additionally, changing open text fields to categorical fields where
possible will drastically increase the number of usable features
in the final model. Furthermore, categories themselves should be
defined based on ASHRAE standards, energy consultant input, and
observed data in order to reduce the number of “Other” selections
when submitting energy efficiency reports.

Audit analysis could also be improved by expanding audits
requirements to tenant spaces and a wider range of buildings.
With the current system, auditors only focus on systems controlled
by the building owner – typically considered “base building” sys-
tems – which represent approximately 50–75% of total energy
use in a multi-tenanted building [6]. Implementation of a “ten-
ant space” audit program and classification model can be applied
to develop a tenant self-audit tool to encourage further energy
efficiency improvements. This tool could focus on tenant systems
and recommend lighting improvements, vacancy sensors, efficient
appliances, etc. Additionally, to provide a larger building sample,
NYC is considering expanding the Greener, Greater Buildings Plan
coverage to all buildings over 25,000 ft2 (2322.6 m2), increasing the
sample size of covered buildings for analysis, and increasing ECM

model performance [33].

The analysis provided here creates the potential to automate
much of the initial audit process. This would not only lead to more
precise and complete audit reports, but also allow for a quick,
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ow-cost alternative for building owners and other stakeholders
o assess energy efficiency opportunities. The decision list audit
rocess could be used to rapidly assess the energy efficiency poten-
ial of a building, a portfolio of buildings, or an entire city, and
rovide a data-driven framework for enacting urban sustainability
nd environmental policies. For the building owner and portfolio
anager, the machine learning applications presented here could

ignificantly reduce both cost and time relating to energy effi-
iency investments, thus reducing the opportunity cost of capital
or energy improvements and increasing return of investment.

. Conclusion

Energy audits and whole building energy modeling are
xpensive and time consuming, requiring significant invest-
ents prohibitive to some stakeholders. Subsequently, data-driven

mpirical models based on existing benchmarking and audit
ata may  provide effective low-cost options for building owners,

nvestors, and local governments to determine ECM eligibility and
otential savings. The FRL classification model developed in this

tudy can increase the impact of energy audits, provide an alter-
ative rapid assessment tool for energy efficiency potential, and
ncourage energy efficiency investments by reducing the cost and
omplexity of the energy retrofit process.

able A1
ooling System ECM Eligibility Decision List.

Conditions 

IF (Central Distribution Type IS Forced Air) 

ELSE  IF (Cooling System IS Water Cooled) 

ELSE  IF (Facility Type IS Office) 

ELSE  

able A2
omestic Hot Water ECM Eligibility Decision List.

Conditions 

IF (Domestic Hot Water System Fuel Source IS Dual Fuel) AND (End Use Te
ELSE  IF (Central Distribution Type IS 1-Pipe Steam) AND (Cooling System Fuel S
ELSE  IF (End Use Terminal Controls ARE None) AND (Domestic Hot Water System
ELSE  IF (Domestic Hot Water System IS Separate Hot Water Boiler With Storage
ELSE  

able A3
nvelope ECM Eligibility Decision List.

Conditions 

IF (Windows ARE Single Pane) AND (Facility Type IS Multifamily
ELSE  IF (Build Period IS 1920–1946) AND (Facility Type IS Multifamily
ELSE  IF (Build Period IS 1946–1970) AND (Facility Type IS Multifamily
ELSE  

able A4
uel Switching ECM Eligibility Decision List.

Conditions 

IF (Domestic Hot Water Fuel Source IS #6 Oil) AND (Domestic Hot Water from
ELSE  IF (Heating System Fuel Source IS #4 Oil) AND (Terminal Type IS Radiator) 

ELSE  IF (Heating System Fuel Source IS #6 Oil) AND (Terminal Type IS Radiator) 

ELSE  IF (Heating System Fuel Source IS #2 Oil) 

ELSE  
nd Buildings 128 (2016) 431–441 439

Based on ROC AUC scores, the FRL ECM eligibility models
performed well for a subset of ECM categories, which together rep-
resent a majority of recommended ECMs, and provide interpretable
and actionable results. Future collaboration with energy consul-
tants and policymakers could improve the performance and impact
of similar classification models by enhancing data quality and
determining further relevant building features. Most importantly,
the user-facing FRL decision lists generated by the model could be
used by building stakeholders to easily conduct simplified audits
of building systems and identify possible ECM opportunities. This
work provides an important contribution that demonstrates the
potential of machine learning applications to the growing ecosys-
tem of building energy data.
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Appendix A

See Tables A1–A11.

Probability Support

THEN 59.18% 49
THEN 52.75% 91
THEN 40.0% 70
THEN 5.6% 554

Probability Support

rminal Controls ARE None) THEN 98.04% 51
ource IS Electric) THEN 81.03% 116

 Controls ARE Aquastat Based) THEN 67.42% 132
 Tank) THEN 54.43% 79

THEN 28.5% 386

Probability Support

) THEN 62.5% 32
) THEN 44.04% 193
) THEN 39.26% 163

THEN 25.53% 376

Probability Support

 Space Heating Boiler IS Yes—Year Round) THEN 61.32% 106
THEN 51.52% 66
THEN 47.06% 17
THEN 41.94% 62
THEN 2.34% 513
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Table  A5
HVAC Controls and Sensors ECM Eligibility Decision List.

Conditions Probability Support

IF (Cooling System Controls ARE None) AND (Exterior Wall Type IS Steel- Framed) THEN 78.38% 37
ELSE  IF (End Use Terminal Controls ARE None) AND (Heating System Controls ARE Direct Digital Control) THEN 61.61% 112
ELSE  IF (Facility Type IS Office) THEN 57.76% 116
ELSE  THEN 25.25% 499

Table A6
Lighting ECM Eligibility Decision List.

Conditions Probability Support

IF (Facility Type IS Multifamily) THEN 97.29% 517
ELSE  THEN 90.69% 247

Table A7
On Site Generation ECM Eligibility Decision List.

Conditions Probability Support

IF (Heating System Controls ARE Direct Digital Control) AND (Burners Equipment Type IS Full Modulation—Set to Modulating) THEN 13.58% 162
ELSE  THEN 2.49% 602

Table A8
Other ECM Eligibility Decision List.

Conditions Probability Support

IF (Heating System Fuel Source IS District Steam) AND (Interior Lighting Control Type IS None) THEN 22.03% 59
ELSE  THEN 5.53% 705

Table A9
Process and Plug Loads ECM Eligibility Decision List.

Conditions Probability Support

IF (Domestic Hot Water Fuel Source IS #6 Oil) AND (Heating System Controls ARE Direct Digital Control) THEN 20.0% 65
ELSE  THEN 5.15% 699

Table A10
Submetering ECM Eligibility Decision List.

Conditions Probability Support

IF (Domestic Hot Water System IS Separate Hot Water Boiler With Storage Tank) AND (Heating System IS Steam Boiler) THEN 26.67% 45
ELSE  THEN 2.5% 719

Table A11
Ventilation ECM Eligibility Decision List.

Conditions Probability Support

IF (Build Period IS 1990–2015) AND (Cooling System IS Air Cooled) THEN 41.18% 34
ELSE  IF (Facility Type IS Office) THEN 33.85% 130
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