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We show that any graph G embedded on the torus with face-width r > 5 contains
the toroidal | % r J-grid as a minor. (The face-width of G is the minimum value of
|C G|, where C ranges over all homotopically nontrivial closed curves on the
torus. The toroidal k-grid is the product C, x C, of two copies of a k-circuit Cy.)
For each fixed r> 5, the value | 3r ] is largest possible. This applies to a theorem
of Robertson and Seymour showing, for each graph A embedded on any compact
surface S, the existence of a number py such that every graph G embedded on §
with face-width at least p, contains H as a minor. Qur result implies that for
H=C,xC, embedded on torus, p,:=[3k7] is the smallest possible value. Our
proof is based on deriving a result in the geometry of numbers. It implies that for
any symmetric convex body K in R? one has 4,(K) - 4,(K*) < $ and that this bound
is smallest possible. (Here 4,(K) denotes the minimum value of 4 such that 1.-X
contains J linearly independent integer vectors. K* is the polar convex body.)
{2 1994 Academic Press, Inc.

1. INTRODUCTION

For any graph G embedded on a surface S, the face-width (or represen-
tativity) r(G) of G is the minimum of |C G|, where C ranges over all
homotopically nontrivial closed curves on S. Robertson and Seymour [1]
showed:

for each graph H embedded on a compact surface S there exists an integer p,, so
that each graph G embedded on S with r(G)> p,, contains H as a minor. (1)
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In this paper we determine the smallest value of p,, for a certain class
of graphs H embedded on the torus, viz. the toroidal grids. For each
k >3, the toroidal k-grid is the product C, x C, of two k-circuits C,. (By
definition, C, x C, has vertices (i, j) for 0<i, j<k—1, where (i, j) and
(i’,j') are adjacent if either i=i" and j=j+1(modk) or j=j ' and
i=i'"+1(modk).)

Clearly, each toroidal k-grid can be embedded on the torus. In fact, there
is a unique embedding, up to homeomorphisms (of the torus and of
the grid). (If £ = 5, this follows easily from the fact that each face of the
embedded graph should be a quadrangle. For £ =3 and 4 this takes some
elaboration.) We show

THEOREM 1. For the toroidal k-grid H= C, x C, embedded on the torus,
pu =02k is the smallest integer value one can take for p, in (1).

We derive this from

THEOREM 2. Any graph G embedded on the torus contains the toroidal
L2 r(G) J-grid as a minor (if (G)=5). For each integer r =3 there exists a
graph G embedded on the torus with r(G)=r and not containing the toroidal
L$r ]+ 1-grid as a minor.

Proof of the Implication Theorem 2= Theorem 1. Choose k>3. Let G
be a graph with r(G)>[347 Since k=|2[3k7]<[%r(G)J, Theorem 2
implies that G contains the toroidal k-grid as a minor.

Let r:=[2k7—1. By Theorem 2 there exists a graph G on the torus
with r(G)=r and not containing the toroidal (| 2r_|+ 1)-grid as a minor.
Since k= 3r|+ 1, Theorem I follows. [

To prove Theorem 2, we use some results from [2, 3]. Represent the
torus as the product S'xS! of two copies of the unit circle S' in the
complex plane. For (m,n)e Z? let C,, ,: S' = S'x S' be the closed curve
on the torus given by

Conlz) :=(2",2") (2)

for ze S'.
Let G be a graph embedded on the torus. Define ¢: Z°> - Z by

@g(m,n):= min cr(C, G), (3)

("'Cm,n

where C~ C’ means that C is a closed curve freely homotopic to closed
curve C’ and where cr(C, G) denotes the number of intersections of C and
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G, counting multiplicities. So r(G) is equal to the minimum value of
@ g(m, n) over all vectors (m, n)# (0,0) in Z°.
Let P(G) be the following set in R*:

P(G) = {(x, y)e R*|mx + ny < ¢ g(m, n) for all (m, n)e Z*}. (4)

Then P(G) is a symmetric integer polygon (ie., P(G)= —P(G) and it is a
polygon with all vertices having integer coordinates only). Define the height
height(K) of a polygon K by

height(K) := min max{mx+ny|(x, y)eK}. (5)

(m.n)e 22, (m, n)#(0,0)
As @g(m, n) =max{mx+ny|(x, y)e P(G}} (cf. [2]), we have
r(G) = height(P(G)). (6)
The following was shown in [3]:

let k > 3; a graph G embedded on the torus contains a toroidal k-grid as a minor,
if and only if (1/k) P(G) contains two linearly independent integer vectors. (7)

Assertions (6) and (7) imply that to prove Theorem 2, it suffices to show

THEOREM 3. Let r>3. Then for each symmetric integer polygon K of
height r, the polygon | 3r|~' K contains two linearly independent integer
vectors. Here | % r | cannot be replaced by any larger integer.

We show Theorem 3 in Section 2. We first note that it implies the
following bound in the geometry of numbers. Let K be a symmetric convex
body in R’ (ie., K is a compact full-dimensional convex set with K= —K).
Let 4,(K) denote the minimum value of 1 so that i.K contains a nonzero
integer vector. Let 1,(K) denote the minimum value of 1 so that A.-K
contains two linearly independent integer vectors. Let K* denote the polar
convex body:

K*:={yeR?*xTy<1forall xe K}. (8)
Then

COROLLARY 3a. For each symmetric convex body K in R? one has
A,(K)-A,(K*)< 3. The bound 3 is smallest possible.

Proof. It suffices to show the corollary for symmetric integer polygons
K with r := height(K) being a multiple of three. Now r := 4,(K*), while by
Theorem 3, 4,(K)<(3r) " So Ay(K)-4,(K*)<3. Similarly, any better
value in the corollary would imply a better factor in Theorem 3. ||
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2. PROOF OF THEOREM 3

Call a symmetric integer polygon K r-minimal, if height(K)>r while
height(K’) < r for each symmetric integer polygon K’ # K contained in K.
So Theorem 3 follows from:

let r>2; then for each r-minimal symmetric integer polygon K, the polygon
(3/2r) K contains two linearly independent integer vectors; moreover, there exists
an r-minimal symmetric integer polygon K so that (| 2r/3 |+ 1)~ !-K does not
contain two linearly independent integer vectors. 9)

In order to prove (9), we use the classification of r-minimal symmetric
integer polygons given in [3]. Each of these polygons is a quadrangle or
a hexagon. The quadrangles arise as follows. Choose integer values
0<a<rand 0<f<r Let Q, 45 be the convex hull of the points +(r, ),
+(—p,r). Then Q, 4 is r-minimal, and all symmetric r-minimal integer
polygons that are quadrangle arise in this way, up to unimodular trans-
formations (=linear transformations of R? fixing Z?).

The hexagons arise as follows. Choose integer values O<a<r, 0< f<r,
and O<y<r. Let H,, be the convex hull of the points #+(r, «),
+(r—pB,r), £(—y,r—y). Again, H, 4, is r-minimal, and all symmetric
r-minimal integer polygons that are hexagons arise in this way, up to
unimodular transformations. So it suffices to show the following two
lemmas.

LemMMA 1. For each choice of integers O <a<r and 0< ff <r, we have
2,(Q,. ) <3/2r. For fixed r, we cannot replace 3/2r by k ' for any integer
k > 2r/3.

Proof. Onme easily finds that Q, , is determined by the following
inequalities:

r—o " r+
X
ryafs o+

A y(él,
af

r+a + p—r <1
X n< 1.
r*+af r2+oz[3}

For each vector (x, y), let the norm |(x, y)| be the minimum A for which
(x, y) belongs to A-Q, , Note that (x, y) can be easily calculated from
(10):

max{|(r—a)x+(r+ §) yl, I(r+a)X+(ﬁ—r)}’!}.

P4 ap (1)

Ix, Yl =
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To show the first statement in the lemma, we have to find two linearly
independent integer vectors each with norm at most 3/2r. We may assume
a < fB. Then

r+a r+ao 3
S5 S< . 12
rPyaf rr+at 2r (12)

(1, 0y =

(The first inequality follows from a < 8. The second inequality follows from
the fact that (1 +x)<2 (1 + x?) for all xeR.)
If f<r/3, then

r+f r+r3 3
r2+oz/3< 2 S (13)

160, 1)l =

If $=r/3, then

r+f 2r+a-—§
rPraf r’+4af

160, DI +1(L, =D =

=.’;r+a<3r;i-3aﬂ/r=3’ (14)
ri+aff re+af r

implying that at least one of (0, 1), (1, —1) has norm at most 3/2r. This
shows the first statement of the lemma.

To show the second statement, choose r>3. Let k:=|2r/3 |+ 1. Let
2:=0 and B:=|r/2 ] We define a norm as in (11). Let (x, y) be any
integer vector with norm at most 1/k. We show that y =0, implying that
there do not exist two linearly independent integer vectors each with norm
at most 1/k. We may assume x > 0.

First let r be even. Then ||(x, y)|l =max{|{x+3 y|, x—3y|}/r<l/k I
x=0 then |3 y|<r/k<32, and hence y=0. If x=1, y>1, then r/k>
Ix+3y=23>rk U x>21, y< —1, then r/k = |x— 1 y| = 1> r/k.

Next let r be odd. Then |(x, y)| = max{|x + (3 — 1/2r) y|,
|x— (34 1/2r) y|}/r< 1/k. Note that k>2r+1, implying k(3—1/2r)>
3+ EC—12))=r+ 5~ 1/6r>r. If x=0 then |(2—1/2r) y|<r/k<

2—1/2r), yielding y=0. If x>1, y>1, then r/k>=|x+(3—~1/2r) y| =
5—1/2r>3>r/k I x=21, y< —1 then rtk = |x — (5 + 1/2r) y| > 3> r/k. So
alsoif x>1 then y=0. |

LEMMA 2. For each choice of integers 0 <a<r, 0<fi<r,and O<y<r,
we have Ay,(H, 5 .,)<3/2r.

Proof. One easily finds that H, ;. is determined by the following
inequalities:
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r—a N Ji] <1
x ~ b
rP+af —ar r2+cx,3—cxry
y B—r—y
X+ <1, 15
r’+ By — pr r2+ﬁy—ﬂry (15)
—r—a r—
2}’ X+ = Y <1
re+ya—yr re+oya—yr

For each vector (x, y), let the norm |(x, y)|| be the minimum A for which
(x, y) belongs to A- H, 5 .. Again, (x, y) can be easily calculated from (15).
It folows that

10,0} = =

10, 0 =t 2P (16)
Ty By — B

I, D) =

We show that at least two of these norms are less than 3/2r. Suppose not.
By symmetry we may assume that |[(1, 0)| =3/2r and [(0, 1)| = 3/2r. As
0 <y <r, the first norm in (16) is monotonically increasing in «, while the
second norm is monotonically decreasing in . So

r+o— 2r— r+y— r+
’ LI I+ B 7
re 4 ya—yr r ré+ By— pr r

(17)

Since 2r—y<3r or r+y<2r (as (2r—y)+ (r+7)=3r), this contradicts
our assumption. J
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