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A probability measure in Rd is called a spectral measure if it has an orthonormal

basis consisting of exponentials. In this paper, we study spectral Cantor measures.

We establish a large class of such measures, and give a necessary and sufficient

condition on the spectrum of a spectral Cantor measure. These results extend the

studies by Jorgensen and Pedersen (J. Anal. Math. 75 (1998), 185–228) and Strichartz

(J. D’Analyse Math. 81 (2000), 209–238). # 2002 Elsevier Science (USA)
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1. INTRODUCTION

It is known that certain Cantor measures in Rd have an orthonormal basis
consisting of complex exponentials. This was first observed in [9] and
studied further in [20]. Let m be a probability measure in Rd : We call m a
spectral measure if there exists a L � Rd such that the set of complex
exponentials feðltÞ : l 2 Lg forms an orthonormal basis for L2ðmÞ (we use
eðtÞ to denote e2pit throughout the paper). The set L is called a spectrum for
m; we also say that ðm;LÞ is a spectral pair. It should be pointed out that a
spectral measure often has more than one spectrum.

In this paper, we study spectral Cantor measures in R: Our Cantor
measures are self-similar measures associated with iterated function systems
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(IFS). Consider the iterated functions system (IFS) ffjg
q
j¼1 given by

fjðxÞ ¼ rðx þ ajÞ; ð1:1Þ

where aj 2 R and jrjo1: It is well known (see, e.g. [1]) that for any given
probability weights p1; . . . ; pq > 0 with

Pq
j¼1 pj ¼ 1 there exists a unique

probability measure m satisfying

m ¼
Xq

j¼1

pjm 8f

1
j : ð1:2Þ

We ask the following question: Under what conditions is m a spectral
measure?

The familiar middle third Cantor measure given by r ¼ 1=3 and a1 ¼ 0;
a1 ¼ 2 with p1 ¼ p2 ¼ 1=2 is not a spectral measure, see [9]. The first known
example of a spectral measure whose support has noninteger dimension was
given by the same authors in that paper, who showed that the measure m
corresponding to r ¼ 1=4; a1 ¼ 0; a2 ¼ 1 and p1 ¼ p2 ¼ 1=2 is spectral. A
spectrum of m is

L ¼
Xm

k¼0

dk4
k : m50; dk ¼ 0 or 2

( )
:

Strichartz [19] gave an alternative proof of this result, and found other
examples of spectral Cantor measures. Later Strichartz [20] applied his
method to a more general setting to show that a class of measures having a
self-similar type of structure (but not necessarily self-similar in the more
traditional sense) are spectral measures, provided that an implicit condition
on the zero set of certain trigonometric polynomials is satisfied. This
condition, however, is not necessary and is somewhat difficult to check.

Spectral measures are a natural generalization of spectral sets. A
measurable set O in Rd with positive and finite measure is called spectral

if L2ðOÞ has an orthogonal basis consisting of complex exponentials.
Spectral sets have been studied rather extensively, particularly in recent
years. (A partial list of these studies is in the reference of the paper.) The
major unsolved problem concerning spectral sets is the following conjecture
of Fuglede [2]:

Fuglede’s Spectral Set Conjecture. Let O be a set in Rd with positive and
finite Lebesgue measure. Then O is a spectral set if and only if O tiles Rd by
translation.

The conjecture remains open in either direction, even in dimension one
and for sets that are unions of unit intervals. As we shall see, the spectral
measures-tiling connection seems to be equally compelling.
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In this paper, we study self-similar measures satisfying

m ¼
Xq

j¼1

1

q
m 8f


1
j ; ð1:3Þ

where fjðxÞ ¼
1
N
ðx þ djÞ; N 2 Z and jN j > 1; and D ¼ fdjg � Z: We use mN ;D

to denote the unique probability measure satisfying (1.3). In addition, for
each finite subset A of R we use TðN;AÞ to denote the set

TðN;AÞ :¼
X1
j¼1

ajN

j : aj 2 A

( )

which is, in fact, the attractor of the IFS ffaðxÞ :¼
1
N
ðx þ aÞ : a 2 Ag; see [1].

Finally, denote

LðN ;AÞ :¼
Xk

j¼0

ajN
j : k51 and j 2 A

( )
:

Two finite sets A ¼ fajg and S ¼ fsjg of cardinality q in R form a
compatible pair, following the terminology of [20], if the matrix

M ¼ 1 ffiffi
q

p eðajskÞ

" #
is a unitary matrix. In other words ðdA;SÞ is a spectral

pair, where

dA :¼
X
a2A

1

q
dðx 
 aÞ:

For each finite set A in R define its symbol by

mAðxÞ :¼
1

jAj

X
a2A

eð
axÞ:

Strichartz [20] proves the following theorem:

Theorem 1.1 (Strichartz). Let N 2 Z with jN j > 1 and D be a finite set of

integers. Let S � Z such that 0 2 S and 1
N
D;S

	 

is a compatible pair.

Suppose that mD=N ðxÞ does not vanish on TðN;SÞ: Then the self-similar

measure mN ;D is a spectral measure with spectrum LðN;AÞ:

Unfortunately, the condition that mD=N does not vanish on TðN;SÞ is
not a necessary condition, and can be very difficult to check, even when both
D and S are simple. In general, we know very little about the zeros of mD=N :
Our objective here is to remove the above condition. We prove that a
compatible pair automatically yields a spectral measure. We also give a
necessary and sufficient condition for LðN;AÞ to be a spectrum.
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Theorem 1.2. Let N 2 Z with jN j > 1 and let D be a finite set of integers.

Let S � Z such that 0 2 S and 1
N
D;S

	 

is a compatible pair. Then the self-

similar measure mN ;D is a spectral measure. If moreover gcdðD
DÞ ¼ 1;
0 2 S and S � ½2 
 jN j; jN j 
 2�; then LðN;SÞ is a spectrum for mN ;D:

In Lemma 2.2 we prove that if 1
N
D;S

	 

is a compatible pair for some

S � Z; then there is also a set #SS � Z satisfying the additional conditions
of Theorem 1.2 (i.e. 0 2 #SS and #SS � ½2 
 jN j; jN j 
 2�) such that 1

N
D; #SS

	 

is

a compatible pair.
The following theorem gives a necessary and sufficient condition

for LðN;AÞ to be a spectrum. It also leads to a simple algorithm, see
Section 3.

Theorem 1.3. Let N 2 Z with jN j > 1 and D � Z with 0 2 D and

gcdðDÞ ¼ 1: Let S � Z with 0 2 S such that 1
N
D;S

	 

is a compatible pair.

Then ðmN;D;LðN;SÞÞ is NOT a spectral pair if and only if there exist snj 2 S
and nonzero integers Zj ; 04j4m 
 1; such that Zjþ1 ¼ N
1ðZj þ snj Þ for all

04j4m 
 1 (with Zm :¼ Z0 and snm :¼ sn0).

The proof of Theorem 1.3 depends on the analysis of the extreme values
of the eigenfunctions of the Ruelle transfer operator. The Ruelle transfer
operator was studied in [9].

There appears to be a strong link between compatible pairs,
tiling of integers and Fuglede’s conjecture. All examples suggest that if D
is a finite set of integers and is part of a compatible pair then D tiles Z: A
finite set D � Z is called a complementing set ðmod NÞ if there exists a
E � Z such that D� E is a complete residue system ðmod NÞ: It is known
that D tiles Z if and only if it is a complementing set ðmod NÞ for some N:
We prove:

Theorem 1.4. Let D � Z be a complementing set ðmod NÞ with jN j > 1:
Suppose that jDj has no more than two distinct prime factors. Then mN ;D is a

spectral measure.

In the next section, we shall prove the results just stated. Later in
Section 3, we give some examples and state some open problems.

We are indebted to Bob Strichartz for very helpful comments.

2. PROOFS OF THEOREMS

We first state several lemmas, many of which have been proved in [9]
or [20].
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Lemma 2.1. Let A;B � R be finite sets of the same cardinality. Then the

following are equivalent:

(a) ðA;BÞ is a compatible pair.
(b) mAðb1 
 b2Þ ¼ 0 for any distinct b1; b2 2 B:
(c)

P
b2B jmAðxþ bÞj2 � 1:

Proof. Note that condition (b) says precisely that the rows of the matrix

M ¼ 1ffiffiffiffiffi
jAj

p eðajbkÞ

" #
are orthonormal. So (a) and (b) are clearly equivalent.

To see (a) and (c) are equivalent, let dA ¼ 1
jAj

P
a2A dðx 
 aÞ: Then dA is a

probability measure with #ddAðxÞ ¼ mAðxÞ: Furthermore, ðA;BÞ is a
compatible pair if and only if ðdA;BÞ is a spectral pair, see [20]. The
equivalence of (a) and (c) follows immediately from Lemma 2.3 of [20]. ]

Lemma 2.2. Let D;S � Z and N 2 Z; jN j > 1 such that 1
N
D;S

	 

is a

compatible pair. Then

(a) 1
N
Dþ a;Sþ b

	 

is a compatible pair for any a; b 2 R:

(b) Suppose that Ŝ � Z such that Ŝ � S ðmod NÞ: Then 1
N
D; Ŝ

	 

is a

compatible pair.
(c) The elements in both D and S are distinct modulo N.
(d) Suppose that jN j > 2: Then there exists an #SS with 0 2 #SS and

#SS � ½2 
 jN j; jN j 
 2� such that 1
N
D; #SS

	 

is a compatible pair.

(e) Denote Dk ¼ Dþ NDþ � � � þ Nk
1D and Sk ¼ Sþ NSþ � � � þ
Nk
1S: Then 1

Nk Dk;Sk

	 

is a compatible pair.

Proof. Condition (a) is essentially trivial from Lemma 2.1. It is also well
known from the fact that any translate of a spectrum is also a spectrum, and
any translate of a spectral measure is also a spectral measure with the same
spectra.

For (b), observe that if s � ŝ ðmod NÞ then mD=Nðxþ sÞ ¼ mD=N ðxþ ŝÞ:
Therefore,

X
ŝ2 #SS

jmD=N ðxþ ŝÞj2 ¼
X
s2S

jmD=N ðxþ sÞj2 ¼ 1:

This proves (b).
For (c), assume that S ¼ fsjg has s1 � s2 ðmod NÞ: Then we may replace

s2 by s1 in S and still have a compatible pair by (b). This means the matrix
M used for defining compatible pairs has two identical columns, so it cannot
be unitary, a contradiction. So elements in S are distinct modulo N :
Similarly, M will have two identical rows if elements in D are not distinct
modulo N; again a contradiction.
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To prove (d), we first translate S so that 0 2 S1 :¼ Sþ a for some a 2 Z:
1
N
D;S1

	 

is still a compatible pair. Now ½2 
 jN j; jN j 
 2� contains a

complete set of residues ðmod NÞ because it contains at least jN j consecutive
integers. Choose #SS � ½2 
 jN j; jN j 
 2� so that 0 2 #SS and #SS � S1ðmod NÞ:
Then 1

N
D; #SS

	 

is a compatible pair.

Finally (e) is a special case of Lemma 2.5 in [20]. ]

Lemma 2.3. Under the assumptions of Theorem 1.2, let QðxÞ :¼
P

l2LðN ;SÞ
j #mmðxþ lÞj2: Then

(a) The set of exponentials feðlxÞ : l 2 LðN;SÞg is orthonormal in L2ðmÞ:
(b) QðxÞ41 for all x 2 R and feðlxÞ : l 2 LðN;SÞg is an orthonormal

basis for L2ðmÞ if and only if QðxÞ � 1:
(c) The function QðxÞ is the restriction of an entire function of

exponential type to the real line. Furthermore, it satisfies

QðxÞ ¼
X
s2S

jmDðN
1ðxþ sÞÞj2QðN
1ðxþ sÞÞ: ð2:1Þ

Proof. See [9]. The right-hand side of (2.1) is known as the Ruelle

transfer operator (operated on Q). ]

Proof of Theorem 1.3. Denote L :¼ LðN;SÞ and m :¼ mN ;D:
ð(Þ We prove that ðm;LÞ is not a spectral pair by proving that QðxÞc1;

where QðxÞ is defined in Lemma 2.3. In fact, we prove that QðZ0Þ ¼ 0:
Observe that mDðZjÞ ¼ 1 because Zj 2 Z: Now

P
s2S jmDðN
1ðZj þ sÞÞj2 ¼

1 by (c) of Lemma 2.1. Since mDðN
1ðZj þ snj ÞÞ ¼ mDðZjþ1Þ ¼ 1; it follows
that mDðN
1ðZj þ sÞÞ ¼ 0 for all sasnj in S:

Take any l 2 L and write l ¼
P1

k¼0 skNk where sk 2 S and of course
only finitely many ska0: We have

#mmðZ0 þ lÞ ¼
Y1
j¼1

mDðN
jðZ0 þ lÞÞ:

Note that

mDðN
1ðZ0 þ lÞÞ ¼ mD N
1ðZ0 þ s0Þ þ
X1
k¼0

skþ1Nk

 !
¼ mDðN
1ðZ0 þ s0ÞÞ:

Hence mDðN
1ðZ0 þ lÞÞ ¼ 1 for s0 ¼ sn0 and mDðN
1ðZ0 þ lÞÞ ¼ 0 otherwise.
Suppose s0 ¼ sn0 : Then the same argument together with the fact Z1 ¼ N
1 �
ðZ0 þ sn0Þ yield mDðN
2ðZ0 þ lÞÞ ¼ 1 for s1 ¼ sn1 and mDðN
2ðZ0 þ lÞÞ ¼ 0
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otherwise. By induction, we easily obtain mDðN
jðZ0 þ lÞÞa0 if and only if
sj ¼ snjðmod mÞ: Therefore, #mmðZ0 þ lÞa0 only if sj ¼ snjðmod mÞ for all j50: But
this is impossible since sj ¼ 0 for all sufficiently large j: Thus, #mmðZ0 þ lÞ ¼ 0
and QðZ0Þ ¼ 0:

ð)Þ Assume that ðm;LÞ is NOT a spectral pair. Then QðxÞc1: Note that
this cannot happen if jDj ¼ jSj ¼ 1; in which case m ¼ d0 and L ¼ f0g: So
we may assume that q ¼ jDj ¼ jSj > 1: It is well known that in this case
T :¼ TðN;SÞ is a compact set with infinite cardinality.

Since QðxÞc1; QðxÞc1 for x 2 T ; because Q is extendable to an entire
function on the complex plane and T is an infinite compact set. Denote
X
 :¼ fx 2 T : QðxÞ ¼ minZ2T QðZÞg: It follows from Qð0Þ ¼ 1 that 0 =2 X
:
We apply the Ruelle transfer operator to derive a contradiction.

For any s 2 R denote fsðxÞ ¼ N
1ðxþ sÞ: Then T ¼
S

s2S fsðTÞ: Hence
fsðxÞ 2 T for all x 2 T : Now choose any x0 2 X
 and set Y0 ¼ fx0g: Define
recursively

Ynþ1 ¼ ffsðxÞ : s 2 S; x 2 Yn;fsðxÞ 2 X
g ðcounting multiplicityÞ:

Claim 1. We have jYnþ1j5jYnj (counting multiplicity).

Proof. Let xn 2 X
: By (c) of Lemma 2.3

min
Z2T

QðZÞ ¼ QðxnÞ ¼
X
s2S

jmDðfsðx
nÞÞj2Qðfsðx

nÞÞ:

But
P

s2S jmDðfsðx
nÞÞj2 ¼ 1 by Lemma 2.3 and Qðfsðx

nÞÞ5minZ2T QðZÞ:
Thus, Qðfsðx

nÞÞ ¼ minZ2T QðZÞ whenever mDðfsðx
nÞÞa0: In other words,

fsðx
nÞ 2 X
 whenever mDðfsðx

nÞÞa0: ð2:2Þ

Hence for each x 2 Yn there exists at least one s 2 S such that fsðxÞ 2 Ynþ1;
proving Claim 1. ]

Claim 2. The elements of Yn in fact all have multiplicity one.

Proof. It is easy to see that elements in Yn have the form fsn 8 � � � 8
fs1

ðx0Þ: If some element in Yn has multiplicity more than one, then there are
two distinct sequences ðs1; . . . ; snÞ and ðt1; . . . ; tnÞ in S such that

fsn 8 � � � 8fs1
ðx0Þ ¼ ftn 8 � � � 8ft1

ðx0Þ:

Expanding the two expressions yields

1

Nn
ðx0 þ s1 þ Ns2 þ � � � þ Nn
1snÞ ¼

1

Nn
ðx0 þ t1 þ Nt2 þ � � � þ Nn
1tnÞ:
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But this is clearly not possible, since all elements of S are in different
residue classes ðmod NÞ: ]

Now X
 is finite. It follows that all Yn have the same cardinality for
sufficiently large n; say n5n0: Therefore, for n5n0 any xn 2 Yn has a unique
offspring fsðx

nÞ 2 Ynþ1: Furthermore, for any t 2 S and tas we must have
mDðftðx

nÞÞ ¼ 0; because otherwise by (2.2) we would have ftðx
nÞ 2 Ynþ1 as

another offspring, a contradiction. Thus, starting with a xn0
2 Yn0

; we obtain
a sequence fxngn5n0

in which xn 2 Yn is the unique offspring of xn
1 2 Yn
1;
xn ¼ fsn
1

ðxn
1Þ for some sn
1 2 S: It follows from the finiteness of X
 that
there exist k > n0 and m > 0 such that

xk ¼ xkþm ¼
1

Nm
ðxk þ sk þ skþ1N þ � � � þ skþmNm
1Þ:

In particular, xk 2 Q: Set Zj ¼ xjþk and snj ¼ sjþk for 04j4m 
 1 ðZm :¼ Z0

and snm :¼ sn0 : Only the case j ¼ m 
 1 needs to be checked). Then Zj 2 Q for
all j: Furthermore, Zjþ1 ¼ fsn

j
ðZjÞ ¼ N
1ðZj þ snj Þ for all 04j4m 
 1:

Note that mDðfsðZjÞÞ ¼ 0 for all 04j4m 
 1 and sasnj ; as shown above.
This yields

jmDðZjÞj
2 ¼

X
s2S

jmDðfsn
j
1
ðZj
1ÞÞj

2 ¼ 1; 14j4m:

But mDðZjÞ ¼
1
jDj

P
d2D eðdZjÞ and 0 2 D: The only way jmDðZjÞj ¼ 1 can hold

is eðd � ZjÞ ¼ 1 for all d 2 D: Hence Zj � d 2 Z for all d 2 D: Since all Zja0 and
gcdðDÞ ¼ 1; it follows that all Zj 2 Z: The theorem is proved. ]

Proof of Theorem 1.2. Suppose that mN;D is a spectral measure with
spectrum L then mN;aD is a spectral measure with spectrum a
1L: Therefore,
to prove that mN ;D is spectral we may without loss of generality assume that
0 2 D and gcdðDÞ ¼ 1:

If jN j ¼ 2 then D ¼ f0; 1g or D ¼ f0;
1g: The corresponding self-similar
measure mN ;D is the Lebesgue measure supported on a unit interval. Clearly,
in this case mN ;D is a spectral measure with spectrum Z:

For jN j53; by Lemma 2.2 we may replace S by #SS � ½2 
 jN j; jN j 
 2�
such that 0 2 #SS and 1

N
D; #SS

	 

is a compatible pair. Now for any such #SS; we

have TðN; #SSÞ � ½
 N
2
N
1

; N
2
N
1

� for N > 0 or TðN; #SSÞ � ½
 N2þN
2
N2
1

; N2þN
2
N2
1

� for

No0: In either case TðN; #SSÞ contains no integer other than 0. Now suppose

that ðmN ;D;LðN; #SSÞÞ is not a spectral pair. Then there exist snj in S and

nonzero integers Zj satisfying the condition of Theorem 1.3. Starting with

T0 ¼ fZjg we see that T0 �
S

s2S fsðT0Þ: This yields T0 � TðN;SÞ: But this
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is a contradiction, since TðN; #SSÞ contains no integer other than 0. Therefore

ðmN ;D;LðN ; #SSÞÞ is a spectral pair by Theorem 1.3. ]

Proof of Theorem 1.4. It is known that if D is a complementing set
ðmod NÞ then there exists an LjN whose prime factors are precisely those of
jDj such that D is a complementing set ðmod LÞ: We prove that there exists
an S 2 Z such that 1

N
D;S

	 

is a compatible pair, using a theorem of Coven

and Meyerowitz [3]. The argument below is essentially a repetition of the
proof of Theorem 1.5 (i) in [13] specialized to the case of two prime factors.

Let FnðzÞ denote the nth cyclotomic polynomial. Let also DðzÞ ¼
P

d2D zd

so that mDðxÞ ¼ Dðe2pixÞ: Assume that jDj ¼ paqb and L ¼ pa0qb0 ; where p; q
are distinct primes. (If jDj is a prime power, the proof below works and is
simpler.) Let

P :¼ fpk : Fpk ðzÞ j DðzÞ; k4a0g; Q :¼ fqk : Fqk ðzÞ j DðzÞ; k4b0g:

Coven and Meyerowitz [3] prove that jPj ¼ a; jQj ¼ b; and that Fpkql ðX Þ
j mDðzÞ for all k; l such that pk 2 P; ql 2 Q:

We construct the set S: Write P ¼ fpkjg and Q ¼ fqljg; where k1ok2o
� � �oka and l1ol2o � � � lb: Define

E ¼
Xa
j¼1

ajp

kj þ

Xb
j¼1

bjq

lj : 04ajop; 04bjoq

( )
;

and let S ¼ NE: Clearly, S � Z: To prove that 1
N
D;S

	 

is a compatible

pair it suffices to prove that mD=Nðs1 
 s2Þ ¼ 0 for any distinct s1; s2 2 S:
Equivalently, we only need to show that mDðl1 
 l2Þ ¼ 0 for any distinct
l1; l2 2 E: Note that

l1 
 l2 ¼
Xa
j¼1

cjp

kj þ

Xb
j¼1

djq

lj ; 
pocjop; 
 qodjoq:

If all cj ¼ 0 then not all dj ¼ 0: So l1 
 l2 ¼ r=qljn for some r with

gcdðr; qÞ ¼ 1; where jn is the largest j such that dja0: Therefore,

F
q

l
jn
ðe2piðl1
l2ÞÞ ¼ 0 and hence mDðl1 
 l2Þ ¼ 0: Similarly, mDðl1 
 l2Þ ¼ 0

if all dj ¼ 0: Finally, assume none of the above is true. Let j1 be the largest j

such that cja0 and j2 be the largest j such that dja0: Then l1 
 l2 ¼
r1=pkj1 þ r2=qlj2 with gcdðr1; pÞ ¼ gcdðr2; qÞ ¼ 1: This yields

l1 
 l2 ¼
r1qlj2 þ r2qkj1

pkj1 qlj2
:
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The numerator is clearly coprime with the denominator. Hence
F

p
kj1 q

lj2
ðe2piðl1
l2ÞÞ ¼ 0 and therefore mDðl1 
 l2Þ ¼ 0:

So ðD=N;SÞ is a compatible pair, and hence mN ;D is a spectral
measure. ]

3. EXAMPLES AND OPEN QUESTIONS

Theorem 1.3 leads to an algorithm for determining whether LðN;SÞ is a
spectrum for mN ;D: To find whether the integer sequence fZjg exists, we only
need to check a finite number of integers. This is because we have shown in
the proof of Theorem 1.3 that if the sequence fZjg exists, it must be
contained in TðN;SÞ: However, TðN ;SÞ is compact. In fact TðN;SÞ �

a
N
1

; b
N
1

� �
for N > 0 and TðN;SÞ � aþNb

N2
1
; bþNa

N2
1

� �
for No0; where a; b are the

smallest and the largest elements in S; respectively.

Example 3.1. Our first example addresses the condition in Theorem 1.1
by Strichartz. Let N ¼ 5 and D ¼ f0;�2;�11g: Since D is a residue system
ðmod NÞ; the set TðN ;DÞ is a fundamental domain of Z and mN ;D is simply
the restriction of the Lebesgue measure to TðN;DÞ; see [5]. Let
S ¼ f0;�1;�2g: Then LðN;SÞ ¼ Z is a spectrum for mN ;D: However,
mDðxÞ has a zero in ½0; 1

4
�; which is contained in TðN ;SÞ ¼ ½
 1

2
; 1
2
�:

The condition can also be hard to check. Consider the same D as above,
let N ¼ 10 and S ¼ f0; 2; 4; 6; 8g: Then ðD=N;SÞ is a compatible pair. By
Theorem 1.2 LðN;SÞ is a spectrum for mN ;D: Nevertheless, it is difficult to
check whether TðN;SÞ contains a zero of mDðxÞ:

Example 3.2. Our next example illustrates that a spectral measure
can have many spectra. Take N ¼ 6 and D ¼ f0; 1; 2g: Then ðD=N ;SÞ
are compatible pairs for both S ¼ f0; 2; 4g or f0;
2; 2g: By Theorem 1.2
L� ðN;SÞ are spectra of mN ;D for both S:

A far more striking example is to take S0 ¼ f0; 4; 8g: Then ðD=N;S0Þ is a
compatible pair because S0 � S ¼ f0; 2; 4gðmod NÞ: One can check using
the algorithm described earlier that LðN ;S0Þ is indeed a spectrum of mN ;D;
as is LðN;SÞ: But LðN ;S0Þ ¼ 2LðN ;SÞ! This is rather striking because
LðN ;S0Þ is intuitively ‘‘twice as sparse as’’ LðN;SÞ:

The study in this paper also leaves several questions unanswered. For
example, do Theorems 1.2 and 1.3, or something similar, hold in higher
dimensions? The difficulty is that an analytic function of two or more
variables may attain its infimum at infinitely many points, even on a
compact set. The technique of the Ruelle transfer operator employed in this
paper has its origin in the study of wavelets and self-affine tiles, see e.g. [5],
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in dimension 1. It was extended to higher dimensions in [17]. Could the
techniques there be applied to higher dimensions to yield results on spectral
measures?

Note that we have studied spectral Cantor measures in which the
probability weights are equally distributed. Is this a general rule? We
conclude this paper with the following conjecture:

Conjecture 3.1. Let m be the self-similar measure associated with the
IFS fjðxÞ ¼ rðx þ ajÞ; 14j4q; with probability weights p1; . . . ; pq > 0;
where jrjo1: Suppose that m is a spectral measure. Then

(a) r ¼ 1
N

for some N 2 Z:
(b) p1 ¼ � � � ¼ pq ¼ 1

q
:

(c) Suppose that 0 2 A ¼ fajg: Then A ¼ aD for some a 2 R and
D � Z: Furthermore, D must be a complementing set ðmod NÞ:
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