Note

On Polynomials and Crossing Numbers of Complete Graphs

Thomas L. Saaty
University of PennsyIvania, Philadelphia, Pennsylvania 19104

Communicated by G.-C. Rota
Received August 21, 1970

A long-standing, unsolved problem is that of finding the minimum number of crossings of the edges in a complete graph when embedded on a surface of genus zero. It has been shown $[4,5]$ that the minimum crossing number, I_{n}, of a complete graph on n vertices for values of $n \leqslant 10$ is given by:

n	0	1	2	3	4	5	6	7	8	9	10
I_{n}	0	0	0	0	0	1	3	9	18	36	60

It is known that for each n the crossing number is dominated by the following quartics to which corresponds a realization in the plane:

$$
I_{n} \leqslant \begin{cases}\frac{n(n-2)^{2}(n-4)}{64} \equiv A, & n \text { even } \tag{}\\ \frac{(n-1)^{2}(n-3)^{2}}{64} \equiv B, & n \text { odd }\end{cases}
$$

The two expressions may be combined, yielding

$$
\begin{aligned}
I_{n} & \leqslant \frac{1+(-1)^{n}}{2} A+\frac{1-(-1)^{n}}{2} B \\
& =\frac{1+\cos n \pi}{2} A+\frac{1-\cos n \pi}{2} B, \quad n=0,1, \ldots
\end{aligned}
$$

One can also write

$$
I_{n} \leqslant \frac{1}{4}\left[\frac{n}{2}\right]\left[\frac{n-1}{2}\right]\left[\frac{n-2}{2}\right]\left[\frac{n-3}{2}\right] .
$$

Theorem. If I_{n} as a function of n can be split into a unique polynomial for all even n and into another unique polynomial for all odd n, then each polynomial is at least a quartic and is identical with the corresponding expression given on the right side of (${ }^{*}$). Therefore, in $\left(^{*}\right)$ the equality would hold.

Proof. For n even, any representation of I_{n} as a function of n must vanish at $n=0,2,4$ and hence as a polynomial must be at least a cubic of the form $\operatorname{an}(n-2)(n-4)$ where a is a constant. Now, $n=6$ implies $a=1 / 16$ and $I_{8}=12$, a contradiction. Thus,

$$
I_{n}=\left(a_{1}+b_{1 n}\right) n(n-2)(n-4) .
$$

The two values $n=6,8$ determine a_{1} and b_{1} precisely as in (${ }^{*}$).
For n odd, a similar argument shows that $(n-1),(n-3)$ must be factors of a polynomial which cannot be a quadratic or a cubic because of I_{5} and I_{7}; and, hence, must be a quartic of the form

$$
I_{n}=(n-1)(n-3)\left(a_{2}+b_{2} n+c_{2} n^{2}\right)
$$

whose coefficients when determined from I_{5}, I_{7}, I_{9} are again as in (*).
Remark. Guy and Kainen [2,3] have shown that

$$
\lim _{n \rightarrow \infty} I_{n} \sim \frac{n^{4}}{64} .
$$

References

1. Blažek, J., and Koman, M. A., A minimal problem concerning complete plane graphs, in "Theory of Graphs and Its Applications," Proc. Symp. Smolenice, June, 1963, Academic Press, New York, 1964.
2. Guy, R. K., A combinatorial problem, Bull. Malayan Math. Soc. 7, No. 2, 68-72 (July 1960).
3. Katnen, Paul, On a problem of Erdös, J. Combinatorial Theory 5, No. 4, 374-377 (Dec. 1968).
4. Saaty, Thomas L., Two theorems on the minimum number of intersections for complete graphs, J. Combinatorial Theory 2, No. 4, 571-584 (June 1967).
5. Saaty, Thomas L., Symmetry and the crossing number of complete graphs, J. Res. Nat. Bur. Standards Sect. B. 738, No. 2 (April-June 1969).
