Note

On Polynomials and Crossing Numbers of Complete Graphs

THOMAS L. SAATY

University of Pennsylvania, Philadelphia, Pennsylvania 19104 Communicated by G.-C. Rota Received August 21, 1970

A long-standing, unsolved problem is that of finding the minimum number of crossings of the edges in a complete graph when embedded on a surface of genus zero. It has been shown [4, 5] that the minimum crossing number, I_n , of a complete graph on n vertices for values of $n \leq 10$ is given by:

n	0	1	2	3	4	5	6	7	8	9	10
$\overline{I_n}$	0	0	0	0	0	1	3	9	18	36	60

It is known that for each n the crossing number is dominated by the following quartics to which corresponds a realization in the plane:

$$I_n \leqslant \begin{cases} \frac{n(n-2)^2 (n-4)}{64} \equiv A, & n \text{ even,} \\ \frac{(n-1)^2 (n-3)^2}{64} \equiv B, & n \text{ odd.} \end{cases}$$
(*)

The two expressions may be combined, yielding

$$I_n \leqslant \frac{1 + (-1)^n}{2} A + \frac{1 - (-1)^n}{2} B$$

= $\frac{1 + \cos n\pi}{2} A + \frac{1 - \cos n\pi}{2} B$, $n = 0, 1, ...$

One can also write

$$I_n \leqslant \frac{1}{4} \left[\frac{n}{2}\right] \left[\frac{n-1}{2}\right] \left[\frac{n-2}{2}\right] \left[\frac{n-3}{2}\right].$$

SAATY

THEOREM. If I_n as a function of n can be split into a unique polynomial for all even n and into another unique polynomial for all odd n, then each polynomial is at least a quartic and is identical with the corresponding expression given on the right side of (*). Therefore, in (*) the equality would hold.

Proof. For *n* even, any representation of I_n as a function of *n* must vanish at n = 0, 2, 4 and hence as a polynomial must be at least a cubic of the form an(n-2)(n-4) where *a* is a constant. Now, n = 6 implies a = 1/16 and $I_8 = 12$, a contradiction. Thus,

$$I_n = (a_1 + b_{1n}) n(n-2)(n-4).$$

The two values n = 6, 8 determine a_1 and b_1 precisely as in (*).

For *n* odd, a similar argument shows that (n - 1), (n - 3) must be factors of a polynomial which cannot be a quadratic or a cubic because of I_5 and I_7 ; and, hence, must be a quartic of the form

$$I_n = (n-1)(n-3)(a_2 + b_2n + c_2n^2)$$

whose coefficients when determined from I_5 , I_7 , I_9 are again as in (*).

Remark. Guy and Kainen [2, 3] have shown that

$$\lim_{n\to\infty} I_n \sim \frac{n^4}{64}.$$

REFERENCES

- BLAŽEK, J., AND KOMAN, M. A., A minimal problem concerning complete plane graphs, in "Theory of Graphs and Its Applications," Proc. Symp. Smolenice, June, 1963, Academic Press, New York, 1964.
- GUY, R. K., A combinatorial problem, Bull. Malayan Math. Soc. 7, No. 2, 68–72 (July 1960).
- 3. KAINEN, PAUL, On a problem of Erdös, J. Combinatorial Theory 5, No. 4, 374–377 (Dec. 1968).
- SAATY, THOMAS L., Two theorems on the minimum number of intersections for complete graphs, J. Combinatorial Theory 2, No. 4, 571-584 (June 1967).
- 5. SAATY, THOMAS L., Symmetry and the crossing number of complete graphs, J. Res. Nat. Bur. Standards Sect. B. 738, No. 2 (April-June 1969).