ing. The CS catheter was then replaced with the MESH electrode catheter. The MESH electrode was deployed and RF lesions were delivered just outside and just inside the CS os. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated.

Results: CS access was possible in 3 of 4 dogs. CS activation sequence (high frequency potential) during low right atrial pacing was proximal (CS os) to distal in all animals. In addition, far field (low frequency) left atrial potentials were seen with a similar activation sequence. After RF ablation the CS activation sequence now progressed from distal to proximal, consistent with conduction block in the CS. Left atrial far field potentials however still showed a proximal to distal sequence. Macroscopic lesion evaluation showed circumferential lesions just inside the CS os.

Conclusion: In this model, (1) a novel RF energy MESH electrode ablation catheter can create circumferential ablation lesions inside the CS os, (2) these lesions result in conduction block in the CS. Left atrial far field potentials how-ever still showed a proximal to distal sequence. Macroscopic lesion evaluation showed circumferential lesions just inside the CS os.

POSTER SESSION
1138 Measuring the Effectiveness of Biventricular Pacing
Monday, March 18, 2002, 3:00 p.m.-5:00 p.m.
Georgia World Congress Center, Hall G
Presentation Hour: 4:00 p.m.-5:00 p.m.

Flow and Tissue Doppler Echocardiography Before and After Biventricular Pacing: Resynchronization Results in a Significant Decrease of Mitral Regurgitation
Lothar Faber, Barbara Lamp, Jürgen Vogt, Johannes Heinze, Bert Hansky, Reiner Koerfer, Dieter Horstkott, Heart Center North Rhine-Westphalia, Bad Oeynhausen, Germany.

Background and Introduction: Resynchronization of ventricular contraction and optimization of left ventricular (LV) filling are two mechanisms which contribute to the clinical benefits observed in heart failure patients (CHF-pts.) with a wide QRS complex. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated. The CS catheter was then replaced with the MESH electrode catheter. The MESH electrode catheter can create circumferential ablation lesions inside the CS os. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated.

Methods: The CS os. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated. The CS catheter was then replaced with the MESH electrode catheter. The MESH electrode catheter can create circumferential ablation lesions inside the CS os. After each ablation the CS mapping catheter was repositioned and activation sequence re-evaluated.