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ABSTRACT 

A square matrix A is said to be osciEZatoy if it has nonnegative minors and some 
power Ak of A is strictly totally positive (i.e., Ak has strictly positive minors). We 
study the Schur and singular value decompositions of oscillatory matrices. Some 
applications are provided. 0 Elsevier Science Inc., 1997 

1. INTRODUCTION 

Totally positive (TP) matrices are matrices whose minors are nonnegative. 
These matrices have an increasing importance in approximation theory and 
other fields (such as statistics and economics), and for that reason linear 
algebraists are paying more attention to them (see [l] for a comprehensive 
survey from an algebraic point of view and historical references). Many 
classical applications of totally positive matrices and its subclasses can be 
found in [9]. Strictly totally positive (STP) matrices are matrices whose 
minors are strictly positive. Finally, a totally positive matrix A is said to be 
oscillatory if some power Ak of A is strictly totally positive. Oscillatory 
matrices were introduced by Gantmacher and Krein [5] in connection with 
the study of small vibrations of dynamical systems (see an example of those 
applications in Section 9.3 of Chapter XIII of [4J). 
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In this paper we shall use the following well-known characterization of 
oscillatory matrices (see for instance Theorem 4.2 of [I]): 

THEOREM 1.1. A totally positive n x n matrix A is oscillatory if and 
only if it is nonsingular and a,, i + 1 > 0, a, + 1, i > 0 for all i E (1, . . . , n - l}. 

Oscillatory matrices were characterized in terms of their LU factorization 
in Section 4 of [3]. Th’ p p IS a er is devoted to the study of another decomposi- 
tions of oscillatory matrices. In Section 2 we introduce the notation and basic 
definitions, and in Theorem 2.5 we describe the Schur decomposition of 
oscillatory matrices. Section 3 deals with the singular value and polar decom- 
positions of oscillatory matrices. We also introduce a class of rectangular 
matrices, which generalizes oscillatory matrices, and prove the existence and 
uniqueness of solution of the corresponding total least squares problem. 

2. NOTATION AND SCHUR DECOMPOSITIONS 

Following the notation of [l], given k, n E N, 1 Q k Q n, Qk, n will 
denote the set of all increasing sequences of k natural numbers less than or 
equal to n. The dispersion d(a) of (Y E Qk, n is defined by d(a) := 
c:,:bi+l - q - 1) = “k - (Y1 - (k - l), with the convention d(a) = 0 
for cx E Q1,n. Let A be a real square matrix of order n. For k < n, 1 < n, 
and for any (Y E Qk,n and p E Q1,n, we denote by A[alP] the k X I 
submatrix of A containing rows numbered by (Y and columns numbered by 
P. 

Now, we shall introduce some special classes of matrices which will play 
an important role in this paper. Let A be an n X n lower (upper) triangular 
matrix. Following [3], the minors A[ (Y I/3 ] with (Ye > Pk (with (Ye Q Pk Vk) 
are called nontrivial minors of A. Then a matrix A is called ASTP if the 
nontrivial minors of A are all positive. In this section, L (U) represents a 
lower (upper) triangular, unit diagonal matrix, and D a diagonal matrix. 

DEFINITION 2.1. A nonsingular matrix A is said to be lowerly STP if it 
can be decomposed in the form A = LDU and LD is ASTP. 

Observe that since L is unit diagonal, the total positivity of LD implies 
that L and D are totally positive. Some applications of lowerly STP matrices 
to approximation theory (in particular, to the study of Tchebycheff systems) 
can be found in [2]. 
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The next class of matrices appeared in [7] in the characterization of the 
QR factorization of the strictly totally positive matrices and in the diagonaliza- 
tion of the oscillatory matrices. 

DEFINITION 2.2. A nonsingular matrix A is said to be a strict y-matrix if 
it is lowerly STP and, in the factorization A = LDU, U-’ is ASTP. 

An algorithmic characterization of the strict y-matrices in terms of the 
signs of the multipliers of their Neville elimination can be found in Section 5 
of [7]. 

The next result can be obtained from applying Proposition 4.6 of [7] of P 
and to (PT)-’ 

PROPOSITION 2.3. Zf P and (PT>-l are lowerly STP, then P and (PT)-’ 
are strict y-matrices. Therefore, if P is an orthogonal and lowerly STP matrix, 
then it is a strict y-matrix. 

Spectral properties of oscillatory matrices are well known: the eigenvalues 
A, are all simple, real, and positive, and the corresponding eigenvectors ui 
can be chosen with certain sign variations in the sequence of their compo- 
nents (see for instance [4, pp. 105-1061). The following result summarizes the 
comments of Section 6 of [7] on the diagonalization of oscillatory matrices. 

THEOREM 2.4. 

(i) Let A be an oscillatory matrix. Then there exists a strict y-matrix P 
such that 

A = PAP-’ [and A’ = (P’.))‘AP’], (2.1) 

where h = diag{h,, . . . . A,] with A, > ... > h,, > 0. Furthermore, (Pl‘)-’ 
is also a strict y-matrix. 

(ii> Zf A is a non-singular real matrix with real eigenvalues h, > A, > ... 
> A,, > 0 and there exist strict y-matrices P, N such that 

A = P.diag{A,,A, ,..., A,,} .P-’ 

and 

AT = N.diag(A,,A, ,..., A,,) .N-‘, 

then there exists a positive integer k such that Ak is strictly totally positive. 
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In fact, in [4, pp. 106-1071 it is shown that the minors of P and (Pr)-’ in 
(2.1) satisfy the properties (4.1) of [7] an d so, by Proposition 4.4 of [7], these 
matrices are lowerly STP matrices. Hence they are strict y-matrices by 
Proposition 2.3, and this gives the proof of(i) of the previous theorem. Part 
(ii> follows from Theorems 6.4 and 6.1 of [l] and its proof. 

It is well known that a square complex matrix is similar to a triangular 
matrix by way of a unitary matrix of change of basis. The corresponding 
matrix factorization is usually known as Schur decomposition. The next 
theorem characterizes the Schur decomposition of oscillatory matrices. 

THEOREM 2.5. 

(i) Let A be an oscillatory matrix. Then there exists an orthogonal strict 
y-matrix Q such that Q-lAQ = T (= (tijjl d i, j G ,,> is an upper triangular 
real matrix with t,, > a** > t,, > 0. Furthermore, there exists a nonsingu- 
lar upper triangular matrix R such that QR and Q( RmljT are also strict 
y-matrices and T = RRR-‘, where A is a diagonal matrix. 

(ii> Let us assume that a matrix A admits a Schur decomposition A = 
QTQ-‘, where Q is an orthogonal strict y-matrix and T = (tij)l G i, jc n is an 
upper triangular matrix with t,, > *** > t,, > 0. Let us assume also that 
QR and Q< R-l)T are stn’ct y-matrices, where R is a nonsingular upper 
triangular matrix such that T = R A R- ’ (A = diag{h,, . . . , A,) is a diagonal 
matrix). Then there exists a positive integer k such that AK is a strictly totally 
positive matrix. 

Proof. (i): By Theorem 2.4 there exists a strict y-matrix P such that 
P-lAP = A (= diag{h,, . . . , A,}) with A, > *** > A,, > 0. The Gram- 
Schmidt method, applied to orthogonalize the columns of P, is described by 

PV = M, (2.2) 

where V is an upper triangular, unit diagonal matrix and M is a matrix with 
orthogonal columns. Then there exists a diagonal matrix D with positive 

=%liagonal entries such that MD = Q is an orthogonal matrix. 
Since P is a strict y-matrix, it is in particular lowerly STP and, by 

Proposition 4.4 of [7], it satisfies, for each k E {1,2, . . . , n}, 

det P[a11,2,...,k] > 0 Va E Q/_ with d(a) = 0. (2.3) 

From (2.2), (2.31, and the Cauchy-Binet formula we deduce that similar 
inequalities to (2.3) hold for M and Q t 00. So these matrices are also lowerly 
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STP. Then, by Proposition 2.3, Q is a strict y-matrix. On the other hand, 
from (2.2) we get 

P z QD-‘V-’ (2.4) 

and the matrix R := D-iv-’ is upper triangular with positive diagonal. If we 
define now T := RAR-‘, we obtain an upper triangular matrix satisfying the 
required properties. 

On the other hand, by (2.4), P = QR and so (P-l)’ = Q(R- ’ I?‘, which is 
a strict y-matrix by Theorem 2.4(i). 

(ii>: Let us observe that the facts T = RhR--’ and t,, > *I. > t,,,, > O 
imply that A, > 1.. > A, > 0. Since Q-‘AQ = RAR-‘, we have that 
P-‘AP = A, where P := QR. By hypothesis, P and (PT)-’ = Q(R ~’ )“ an 
strict y-matrices. Now (ii) is a consequence of Theorem 2.4(ii). m 

As well known, for symmetric matrices Schur decomposition leads to 
the factorization (2.1). Thus we can derive from Theorem 2.5(i) and 
Theorem 2.4(ii) the following corollary. 

COROLLARY 2.6. 

(i) Let A be an oscillatory and symmetric matrix. Then there exists an 
orthogonal strict y-matrix P such that 

A = PAP-’ (and AT = (P’)-’ AP’), 

where A = diaglh,, . . . , A,) with A, > ..a > A,, > 0. 
(ii) Zf A is a positive definite symmetric matrix and there exists an 

orthogonal strict y-matrix P such that 

A = P-diag{A,, A, ,..., A,} .P~I, 

with A, > *** > A,, then there exists a positive integer k such that Ak i.7 
strictly totally positive. 

3. SINGULAR VALUE DECOMPOSITION AND APPLICATIONS 

In this section we shall study the singular value decomposition of an 
oscillatory matrix. Singular value decomposition is a powerful tool in linear 
algebra. In [S] one can find many examples of the practical and theoretical 
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value of this matricial factorization. A survey of the early history of this 
decomposition can be found in [lo]. Polar decomposition is another impor- 
tant matricial factorization and is closely related with the singular value 
decomposition. The next result describes the singular value and polar decom- 
positions of an oscillatory matrix. 

THEOREM 3.1. 

(i) Let A be an oscillatory matrix. Then there exist orthogonal strict 
y-matrices Q1, Qz such that 

A = QJQ;, (3.1) 

where C = diag{ ui, . . . , q,) with u1 > *-+ > a, > 0. 
(ii) Zf A is an oscillatory matrix, then it can be decomposed in the form 

A = QS, where Q is orthogonal and S is a positive definite symmetrix matrix 
such that there exists a positive integer k with Sk strictly totally positive. 

Proof. (i): Let us observe that, by Corollary 4.3 of [l], ATA and AAr are 
also oscillatory matrices. Then, by Corollary 2.6(i), there exist orthogonal 
strict y-matrices Qi, Qs such that 

AA’ = Q,AQ;, ATA = QJQ;, 

where A = diag{h,, . . . , A,} with A, > ... > h, > 0. Let C = 
diag{cr,, . . . , an} with cri := A:/“, i = 1,. . . , n. Now it is well known that the 
singular value decomposition of A is of the form (3.I), and (i) follows. 

(ii>: By (i) we can write A = QIIZQz = <Q~Q;XQJQ;), where Qi and 
Qs are orthogonal strict y-matrices and C = diag{(+,, . . . , gn} with cri > ... 
> a, > 0. Now let us take Q := QiQi, which is an orthogonal matrix, and 
S := QJQ;, which is a positive definite symmetric matrix. Let us observe 
that S2 = ATA and, since ATA is oscillatory (by Corollary 4.3 of [l]), there 
exists a positive integer k such that (S2>k . is a strictly totally positive matrix. 

??

Finally, we shall consider a total least squares problem (see Section 12.3 
of [S] or Chapters 1 and 2 of [ll]), which is closely related with oscillatory 
matrices. Let Ax = b be an overdetermined linear system of m equations 
and n unknowns (m > n). Least squares problems deal with the minimiza- 
tion of ]]Ar - bllz. In th ese p bl ro ems it is assumed that the errors come from 
the vector b. If the error also comes from the matrix A, then it may be more 
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natural to consider the following problem (which is called the total least 
squares problem): 

minimize II[ A; b] - [ A; a] IIF subject to 6 E R( A) (3.2) 

[where (1 M IIF = dm is the Frobenius norm of, a, matrix M, and 
R(M) is the column sp_ace of Ml. Once a minimizing [ A; b] is found, then 
any x satisfying Ax = b is called a total least squares solution. 

Let us assume that the singular value decomposition of A is given by 

A = U’C’V’, C’ = diag( cr;, . . . , a;:}, a;>a;> ... >q’>O, 

(3.3) 

where U’ = (uij)r G i, j G m and V’ = (uij>r ~ i, & n are orthogonal matrices. 
Analogously, let us assume that the singular vake decomposition of [ A; b] is 
given by 

[A;b] = UCV, C = diag{a,,...,mm+,}, 

where U = (uij)r Q i, j4 m and V = (vii)1 4 i, J G n+ r are orthogonal matrices. 
The next result guarantees the existence and uniqueness of solution of the 

total least squares problem for a class of rectangular matrices which general- 
ize the oscillatory matrices. 

PROPOSITION 3.2. Let Ax = b be a linear system, and assume that 

[A;bI = (cij)l<i<rn; l<jall+l (m > n + 1) is a totally positive matrix of 
rank n + 1 such that cii > 0 Vi = 1,. . . , n + 1 and 

either ci,i_l > 0 Vi = 2 ,..., n + 1 or ci t+l > 0 Vi = I,..., n. 

(3.5) 

Then, if (3.4) is the singular value decomposition of [A; b], the correspond- 
ing total least squares problem (3.2) has the solution 

[ 1 it;& = u~v, 2 = diag{o ,,..., a,,O}, 

andi? = (~/(T,+~XV~,~+~,...,V,,.,+~ ) is the unique solution to IL = &. 
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Proof. Let us see first that the matrix B := [A; b]r[ A; b] = 
(bij)l<i, j<n+l is oscillatory. By Theorem 3.1 of [l], B is totally positive. 
Since rank[ A; b] is maximal, we have that B is invertible. Then, by 
Corollary 3.8 of [l], bii > 0 for all i = 1, . . . , n + 1. Besides, one can check 
using (3.5) that bi,i_l > O Vi = 2,...,n + 1 and that bi,i+l > O Vi = 
1 >***> n. Thus, by Theorem 1.1, B is an oscillatory matrix. 

Since B is oscillatory, by Theorem 6.5 of [l] one has that AL > A, + r, 
where h’,, is the least eigenvalue of ArA = B[l, . . . , nil,. , , , n] and A,, 1 is 
the least eigenvalue of B. Hence a,l > a, + r, where ai is the least singular 
value of A and a;,, 1 is the least singular value of [A; b]. Now the result 
follows from Theorem 2.6 of [ 111. ??

Since strictly totally positive matrices have positive elements and maximal 
rank, we may deduce the following consequence of the previous theorem. 

COROLLARY 3.3. Let Ax = b be an over-determined linear system, and 
assume that [A; b] is a strictly totally positive matrix. Then, if (3.4) is the 
singular value decomposition of [A; b], th e corresponding total least squares 
problem (3.2) has the solution 

1 1 iQ = uzv, 2 = diag{o, ,..., g”,O}, 

and 2 = (l/q+ lXv,, n+ 1,. . . , v,, n+ 1 > is the unique solution to & = b. 
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