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Case studies covering carbonaceous nanomaterials, metal oxide and metal sulphate nanomaterials,
amorphous silica and organic pigments were performed to assess the Decision-making framework for the
grouping and testing of nanomaterials (DF4nanoGrouping). The usefulness of the DF4nanoGrouping for
nanomaterial hazard assessment was confirmed. In two tiers that rely exclusively on non-animal test
methods followed by a third tier, if necessary, in which data from rat short-term inhalation studies are
evaluated, nanomaterials are assigned to one of four main groups (MGs). The DF4nanoGrouping proved
efficient in sorting out nanomaterials that could undergo hazard assessment without further testing.
These are soluble nanomaterials (MG1) whose further hazard assessment should rely on read-across to
the dissolved materials, high aspect-ratio nanomaterials (MG2) which could be assessed according to
their potential fibre toxicity and passive nanomaterials (MG3) that only elicit effects under pulmonary
overload conditions. Thereby, the DF4nanoGrouping allows identifying active nanomaterials (MG4) that
merit in-depth investigations, and it provides a solid rationale for their sub-grouping to specify the
further information needs. Finally, the evaluated case study materials may be used as source
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Biopersistence and biodistribution
Cellular effects

Apical toxic effects
nanomaterials in future read-across applications. Overall, the DF4nanoGrouping is a hazard assessment
strategy that strictly uses animals as a last resort.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Information box: definitions of terms

Benchmark material: A (nano-)material, which has been

tested and evaluated according to standard criteria and to

which new materials may reliably be compared for

grouping purposes (Kuempel et al., 2012).

(Certified) reference material: A material that has under-

gone a process for validation or round robin assessment as

‘reference material’, thereby having fulfilled specific pre-

defined requirements for, e.g., its homogeneity and stability

(Stefaniak et al., 2013).

Functionality: A (nano)material's activity affecting its envi-

ronment, such as dissolution rate in biological media, sur-

face reactivity, and dispersibility (cf. system-dependent

properties).

Intrinsic (material) properties: Characteristics of the mate-

rial that are determined independently of the biological

environment or test system. Accordingly, intrinsic material

properties include chemical composition and impurities,

primary particle size, surface area, water solubility and

shape or aspect ratio.

Mode-of-action: Mechanisms by which materials may elicit

cellular or apical toxic effects. To date, only a limited

number of such mechanisms have been discerned for

nanomaterials (cf. Arts et al. (2015) for further information

on different modes-of action).

Nanoform: As defined by the EU Commission's NANO

SUPPORT Project (2012), the term ‘nanoform’ is used for

REACH registration dossiers that (seem to) also address

other forms (e.g. bulk). Thus, a nanoform registered ‘alone’

(not along with non-nanoforms) would be a nanomaterial.

Nanomaterial: In line with the EU definition (EU

Commission, 2011), 'nanomaterial' is an overarching term

to describe materials containing particles with external di-

mensions in the size range 1e100 nm.

Substance: The EU Regulation on the Registration, Evalu-

ation, Authorisation and Restriction of Chemicals (REACH;

EP and Council of the EU, 2006) defines a substance a

chemical element and its compounds in the natural state or

obtained by any manufacturing process, including any ad-

ditive necessary to preserve its stability and any impurity

deriving from the process used, but excluding any solvent

which may be separated without affecting the stability of

the substance or changing its composition. Accordingly, in

the present article, ‘substance’ is used as an overarching

term encompassing nanosized and non-nanosized sub-

stances in all forms regardless of their state of dissolution.

System-dependent properties: Characteristics that are

linked to the material's functionality in its environment,

such as surface reactivity, dissolution in biological media,

and dispersibility. The outcome of measurements of

system-dependent properties is affected by the given sur-

roundings, i.e. the choice of the test system (culture media,
supplements, dispersing agents, etc.) or of the product

application. System-dependent properties constitute bio-

physical interactions of the particles with their environ-

ment. Accordingly, ‘systems’ may be, e.g., matrices in

which a nanomaterial is embedded in a product, exposure

media (aerosols, suspensions, etc.), or biological systems

that the nanomaterial comes into contact with.

1. Introduction

In the context of the EU chemicals regulation REACH (Regis-
tration, Evaluation, Authorisation, and Restriction of Chemicals; EP
and Council of the EU, 2006), grouping is defined as the process of
uniting substances into a common group if they are structurally
similar with physico-chemical, toxicological, ecotoxicological and/or
environmental fate properties that are likely to be similar or to follow a
regular pattern (ECHA, 2013). Within a group, each individual
substance may not need to be tested. Instead, endpoint-specific
effects of an unknown substance may be derived from the
endpoint-specific effects of further substances within the group
(ECHA, 2013). For substances in general, technical guidance docu-
ments on grouping are available, e.g. from the European Chemicals
Agency (ECHA, 2008, 2012a, 2012b, 2013, 2014) or from the Orga-
nization for Economic Cooperation and Development (OECD, 2014).
By contrast, to date there are no specific regulatory frameworks for
the grouping of nanomaterials (NMs; cf. Information box for defi-
nitions of key terms). However, this topic is addressed in different
publications, and preliminary guidance is provided in the context of
substance-related legislation or the occupational setting (Arts et al.,
2014).

The International Standardisation Organisation (ISO) suggests
addressing the following questions in determining the potential
hazard of a NM: Does its water solubility exceed 100 mg/L; does it
contain biopersistent fibres or fibre-like structures; are there haz-
ard indications for the NM, or is there a hazard band for the bulk
material or an analogous material (ISO, 2014)? The United States
Environmental Protection Agency (EPA) has proposed to exclude
NMs which dissociate completely in water from the foreseen rule
on the reporting and recordkeeping of nanoscale materials under
the Toxic Substances Control Act (EPA, 2015). The German Envi-
ronmental Protection Agency (UBA; Umweltbundesamt) suggests
assigning nanotubes into a distinct group and proposes a pre-
liminary long-term lowest-observed-effect-level (LOEL) of 0.1 mg/
m3 to distinguish ‘inert’ NMs from NMs with specific toxicity (UBA,
2014). Walser and Studer (2015) from the Swiss Federal Office for
Public Health call for the establishment of predefined test strategies
for different groups of NMs based upon their specific modes-of-
action, which may lead via specific adverse outcome pathways
(AOPs) to apical toxic effects. A report from the Dutch National
Institute for Public Health and the Environment (RIVM; Sellers et al.,
2015) highlights the scientific relevance to perform NM testing in
tiers of increasing complexity of the endpoints addressed. As pro-
posed in the RIVM report, Tier 1 serves to obtain additional
physico-chemical data to fulfil REACH endpoints (exceeding the
basic data that should be available by default) or to support
grouping or read-across. In Tier 2, the behaviour of the NM is

http://creativecommons.org/licenses/by-nc-nd/4.0/
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characterized in its given environment and in vitro toxicity is
assessed; and Tier 3 of the scheme suggested by the RIVM en-
compasses in vivo testing, ‘if necessary to characterize the (eco)
toxicity of a NM’ (p. 124; Sellers et al., 2015).

In a comprehensive literature review (Arts et al., 2014), the
European Centre for Ecotoxicology and Toxicology of Chemicals
(ECETOC) ‘Nano Task Force’ evaluated existing approaches for the
grouping of NMs available in the published literature or in guid-
ance documents from different jurisdictions. It came to the
conclusion that, whereas a NM's apical toxic effect is eventually
directed by its intrinsic material properties (cf. Information box),
the exact correlation between the two is not yet established.
Therefore, the grouping of NMs should not rely on intrinsic ma-
terial properties alone. Instead, grouping should address all rele-
vant aspects of a NM's life cycle and biological pathways, i.e.
intrinsic material and system-dependent properties (cf. Informa-
tion box), biopersistence, uptake and biodistribution, cellular and
apical toxic effects.

As Arts et al. (2014) revealed, nearly all available approaches for
the grouping of NMs involve some form of grouping by intrinsic
material properties or system-dependent properties. However,
none of the evaluated approaches consistently addressed all of the
mentioned relevant aspects of a NM's life cycle and biological
pathways.

Therefore, in the second part of its work, the ECETOC Nano Task
Force developed a comprehensive DF4nanoGrouping Decision-
making framework for the grouping and testing of nanomaterials
presented in detail in Arts et al. (2015). Overall, the DF4nanoG-
rouping aims to group NMs by their specific mode-of-action (cf.
Information box) that results in an apical toxic effect. Since the
direct correlations of intrinsic material properties and NM apical
toxic effects are not yet understood, the DF4nanoGrouping uses the
‘functionality’ of NMs for grouping rather than relying on intrinsic
material properties alone. Such functionalities include system-
dependent material properties, such as dissolution and dis-
persibility in biologically relevant media, and in vitro cellular ef-
fects, further taking into account relevant release and exposure
scenarios.

By founding the grouping concept on ‘functionalities’ of NMs
instead of restricting it to assessments of structural similarities, as
laid down in e.g. the ECHA's or the OECD's guidance documents on
grouping of substances (ECHA, 2013; OECD, 2014), the DF4nanoG-
rouping pursues a novel approach that addresses all toxicologically
relevant aspects of a NM's life cycle and biological pathways.

Specifically, the DF4nanoGrouping allows assigning NMs to one
of the four following main groups (MGs), to sub-group active NMs
and to determine and refine specific information needs for hazard
and risk assessment (Arts et al., 2015):

� MG1: Soluble NMs: Non-biopersistent NMs, for which the
chemical composition is important for hazard assessment than
the as-produced nanostructure.

� MG2: Biopersistent HAR NMs that are rigid and fulfil the WHO
criteria for respirable fibres.

� MG3: Passive NMs: Biopersistent, non-fibrous (neither MG1 or
MG2) NMs that (a) do not exhibit specific bio-interactions (low
surface reactivity); (b) do not possess toxic potential (chemical
composition devoid of active components; no specific cellular
effects); and (c) are not mobile (agglomeration in biological
fluids). In vivo, the 'passive state' of NMs is confirmed in that
they do not elicit apical toxic effects and are not biodistributed
from the site of contact or outside the mononuclear phagocyte
system (MPS). Examples for such passive, inert NMs are respi-
rable granular biodurable particles (GBPs). At high concentra-
tions, they may elicit effects on account of their particulate
nature, especially by dust inhalation, just as non-nanosized
particles may also do. NMs that are not released from their
matrix in products are also assigned to MG3.

� MG4: Active NMs: Biopersistent, non-fibrous NMs with a
hazard potential (i.e. ‘activity’) that is determined using mul-
tiple characteristics including intrinsic material properties and
biophysical interactions. Arts et al. (2015) proposed assigning
NMs to MG4 by chemical composition, dissolution in biological
media, surface reactivity, dispersibility, or cellular effects.
In vivo, 'active' NMs are expected to elicit apical toxic effects at
lower concentrations. Additionally and importantly, in vivo
data may be used to sub-group 'active NMs' since their local
toxic potency or potential to induce systemic effects may differ
considerably.

As this overview of the four MGs reveals (cf. Arts et al. (2015) for
details), the DF4nanoGrouping has incorporated relevant elements
from existing approaches for the grouping of NMs. Overall, the
DF4nanoGrouping is structured into three tiers that cover all rele-
vant aspects of a NM's life cycle and biological pathways, i.e.
intrinsic material properties (Tier 1), system-dependent properties
and cellular effects (Tier 2), and apical toxic effects as well as in vivo
biopersistence, uptake and biodistribution (Tier 3). Intended use
(including manufacture), release and route of exposure may be
applied as ‘qualifiers’within the DF4nanoGrouping to determine if,
e.g. NMs cannot be released from a product matrix, which may
justify the waiving of testing.

The value of the Decision-making framework for the grouping and
testing of nanomaterials for hazard assessment has to be substan-
tiated by putting it into practice. Therefore, the case studies pre-
sented in this article, summarizing the outcome of the third and
final part of the work of the ECETOC Nano Task Force, pursue the
following goals:

� Exemplify how the DF4nanoGrouping Decision-making frame-
work for the grouping and testing of nanomaterials may be used;

� Evaluate the appropriateness of the four MGs of the DF4na-
noGrouping, specifically:
� evaluate the appropriateness and significance of each indi-
vidual grouping criterion for NM grouping;

� determine if the position of each grouping criterionwithin the
tiers of the DF4nanoGrouping requires adaptation;

� determine if threshold values of specific grouping criteria
triggering NM assignment to a given MG require amendment;

� evaluate the appropriateness of benchmark materials (cf. In-
formation box, also for distinction between ‘benchmark ma-
terial’ and ‘(certified) reference material’) that serve to assign
NMs into the specific MGs (and sub-groups if applicable).

� Evaluate the usefulness of the DF4nanoGrouping:
� to support the application of read-across techniques in filling
data gaps for specific substances within a group by using data
from other substances of the same group;

� to determine information needs;
� to justify the waiving of unnecessary testing; in the context of
regulatory hazard and risk assessment and specifically in
fulfilling the REACH requirements for the registration of
substances.

The case studies demonstrate how the DF4nanoGrouping may
be applied for the hazard assessment of NMs. Tiers 1 and 2 of the
DF4nanoGrouping (serving to group NMs by intrinsic material
properties and system-dependent properties) are basic tiers that
are generally applicable for NM hazard assessment. The present
case studies focus on the inhalation route of exposure, i.e. the
predominant route of NM uptake, which was also the focus of the
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first two parts of the ECETOC Nano Task Force's work. Thereby, the
focus of the case studies lies on potential human health effects in
the respiratory tract as the primary target organ upon inhalation as
well as in secondary organ systems that might be affected if NMs
become systemically available after deposition in the lung. Never-
theless, the general approach of the DF4nanoGrouping is equally
applicable to other routes of exposure, and further grouping criteria
may be included into its tiers as necessary, e.g., for ecotoxicological
assessment. Finally, in acknowledgement that for many NMs a
broad spectrum of intended uses is foreseeable, the case studies
aim at revealing how the decision-making framework may gener-
ally be applied irrespective of intended use (or specific release
scenarios).

2. Design of the DF4nanoGrouping case studies

2.1. Selection of case study materials

The following 24 materials were selected for four specific case
studies. (Of note, NM-x numberings (e.g. ‘ZnO NM-110’) refer to the
respective codes of the representative NMs from the OECD Spon-
sorship Program for the Testing ofManufactured NMs (http://www.
oecd.org/science/nanosafety/and https://ec.europa.eu/jrc/en/
scientific-tool/jrc-nanomaterials-repository).

1. Carbonaceous NMs (5 materials)
� Multiwalled carbon nanotubes MWCNT NM-400 (Nanocyl®

NC7000)
� MWCNT NM-402 (Graphistrength™)
� Graphene
� Graphite nanoplatelets (GraphEx®)
� Low surface area carbon black

2. Metal oxides and metal sulphates (8 materials)
� BaSO4 NM-220
� CeO2 NM-211
� CeO2 NM-212
� 10 nm-CuO
� 15 nm-Fe2O3 (hematite)
� TiO2 NM-105
� ZnO NM-110
� ZnO NM-111

3. Amorphous silica NMs (7 materials)
� SiO2 NM-200 (equivalent: Zeosil® 45, SIPERNAT® 22S)
� SiO2 NM-203 (equivalent: Cab-O-Sil® M5, AEROSIL® 200)
� Levasil® 200 (in the following: aSiO2-susp)
� aSiO2-susp with four different surface functionalizations, i.e.
acrylate, amino, polyethylene glycol (PEG), and phosphate,
respectively

4. Organic pigments (4 materials)
� Diketopyrrololpyrrol (DPP) orange (bulk)
� DPP orange (nano)
� Pigment red 254-2 (nano)
� Pigment blue 15:1 (Cu-phthalocyanin)

In addition to the 24materials in the 4 case studies, C60 fullerene
and non-nanosized crystalline quartz DQ12 were analysed. C60

fullerene was evaluated using only data from peer-reviewed liter-
ature that had not been co-authored by any ECETOC Nano Task
Force member. These data for C60 fullerene were collected from a
variety of different unrelated sources (cf. 2.2 Data collection). Non-
nanosized crystalline quartz DQ12 is known to elicit pronounced
effects in the lung upon inhalation exposure.

Each case study (except for the organic pigments) included
DF4nanoGrouping benchmark materials as they had been specified
by Arts et al. (2015), i.e. for the carbonaceous NMs MWCNT NM-
400; for the metal oxides and metal sulphates BaSO4 NM-220,
CeO2 NM-211 and NM-212, TiO2 NM-105, ZnO NM-110 and NM-
111; and for the silica NMs SiO2 NM-200 and NM-203.

2.2. Data collection

Data for the case studies were collected from the following
sources:

� Study reports from members of the ECETOC Nano Task Force,
many of which had been published (e.g. Arts et al., 2007; Ma-
Hock et al., 2009a, 2013; Van Ravenzwaay et al., 2009;
DeLorme et al., 2012, 2015; Keller et al., 2014; Landsiedel et al.,
2010, 2014a; Schuler et al., 2013; Wohlleben et al., 2013). No
new in vivo studies were performed for the case studies.

� Reports from joint research projects and actions at which
members of the ECETOC Nano Task Force had participated,
specifically the German Federal Ministry for Education and
Research funded projects NanoCare (Kuhlbusch et al., 2009;
Kroll et al., 2011) and nanoGEM (Hahn et al., 2014; Izak-Nau
and Voetz, 2014; Landsiedel et al., 2014b), the EU joint action
NANOGENOTOX (NANOGENOTOX, 2013a, 2013b), and the EU
7th research framework programme-funded SUN project (cf.
http://nanopartikel.info/projekte/abgeschlossene-projekte/
nanocare; www.nanoGEM.de; www.nanogenotox.eu; www.
sun-fp7.eu, respectively).

� Dossiers of the OECD Working Party on Manufactured NMs
Sponsorship Program on the testing of NMs (OECD, 2015a,b,c,d;
http://www.oecd.org/chemicalsafety/nanosafety/dossiers-and-
endpoints-testing-programme-manufactured-nanomaterials.
htm; and related documents: Singh et al. (2011, 2014));

� Peer-reviewed publications (or equivalent types of documents)
were only used if the identities of the tested materials and the
test methods used for physico-chemical characterization and
toxicity assessment were unequivocally described.
2.3. Grouping criteria

For all case studies, data for the following grouping criteria of
the three tiers of the DF4nanoGrouping were collected. Addition-
ally, available information related to the DF4nanoGrouping quali-
fiers and supplementary criteria (that are not essential for NM
assignment to one of the four MGs but that may relate to a NM's
mode-of-action) were gathered (Table 1).

� DF4nanoGrouping Tier 1 e intrinsic material properties: Water
solubility, particle size and shape (aspect ratio) and composition
(including surface functionalization, and noting the presence of
material components or impurities that have been assigned
Globally Harmonized System categories (GHS, cf. Section 2.4). As
described in Arts et al. (2015), these Tier 1 criteria may also be
used in a ‘Tier 0’ preceding the DF4nanoGrouping to define if a
material is in fact a NM. However, such a ‘Tier 0’ serves the
purpose to recognize mere material similarities. By contrast, the
DF4nanoGrouping serves the purpose to recognize similarities
in respect to hazards and risks. NMs may have differing nano-
forms that nevertheless have similar hazards.

� DF4nanoGrouping Tier 2 e system-dependent properties and
in vitro effects: Dissolution in biological media, surface reac-
tivity, dispersibility, cellular effects and in vitro genotoxicity;

� DF4nanoGrouping Tier 3 e in vivo effects: Apical toxic effects,
toxic potency, in vivo genotoxicity, reversibility of effects, (pri-
mary and secondary) organ burden and clearance, bio-
distribution and biopersistence;
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Table 1
DF4nanoGrouping: Grouping criteria, threshold values, relation to main group assignment as published in Arts et al. (2015).

DF4nano-grouping Tier Grouping criterion Threshold value for
grouping

Main group (MG)
assignment or indication

Preferred test methods and further explanations

Tier 1
Intrinsic material

properties

Water solubility >100 mg/L [a] Assignment to MG1 Water solubility was recorded at pH values � 4.
If water solubility data were available from different methods, preference was given to
ICP methods over, e.g. spectrophotometric methods.
If available water solubility data were expressed as dissolved percentage, values > 10%
were assessed as indicating high solubility even though the corresponding mass-per-
unit-volume value might not be equivalent to >100 mg/L.
For particles with high dispersibility in water, water solubility values may have high
variability due to traces of particles in the supernatant in which the ions are determined.

Particle size and shape Aspect ratio >3:1, length
>5 mm,
diameter <3 mm [b]

Indication for MG2 TEM/SEM; primary particles are measured by TEM as constituent particles of aggregates
and agglomerates (ISO, 2015)

Composition;
including impurities

�0.1% of component with
GHS
classification for systemic
effects

Indication for MG4 Inorganic nanomaterials: XRD, AA, NAA, ICP methods, EDAX
Organic nano-materials: NMR, FTIR
cf. Section 2.4 for determination of ‘activity’ potential of material components or
impurities by GHS classification

Tier 2
System-dependent

properties
In vitro effects

Dissolution in
biological fluids

>100 mg/L [a] Globular NMs: >100 mg/L:
Indication for MG1
Fibres: <100 mg/L:
Indication for MG2

For the inhalation route of exposure, data on the dissolution in DMEM þ FCS, PBS, PSF,
ALF or Gamble's solution (i.e. simulated lung fluid) were considered relevant.
Incubation time: 24-h in DMEM þ FCS, 24-h, 72-h or 28-d in Gamble's solution (as
specified together with the respective data), 72-h in ALF, 28-d in PBS or PSF (all: at
37 �C); followed by centrifugal separation and (for inorganic materials), ICP-MS, SEM or
TEM, supported by SAD, if necessary; or (for organic materials): AUC using an UVvis
detector

Surface reactivity �10% of Mn2O3 reactivity,
which is equal to: �0.19
mUFRAS/m2*h

Assignment to MG4 FRAS assay; comparing results to Mn2O3 surface reactivity (i.e. 1.921 mUFRAS/m2*h).
As laid down in Arts et al. (2015), the �10% of Mn2O3 surface reactivity threshold was
used for substance assignment to MG4. Additionally, surface reactivity values between
<10% and >1% of Mn2O3 surface reactivity were recorded as indicating intermediate
surface reactivity and values � 1% as indicating ‘non-oxidative’ surface reactivity.
Alternatively: ESR (CPH spin traps) with a threshold value of >10e20 relative to D2O
(2H2O). Assuming a 30% variability of themethodology, only ESRmeasurements >1.3 are
considered relevant, and also this value should only serve as a guiding principle, and not
as an absolute value.

Dispersibility AAN <3 or diameter
<100 nm

Assignment to MG2 or
MG4, as applicable

AUC, FFF; in case of differing AANs in different fluids, data obtained in DMEMþ FCS, i.e. a
complex medium containing a spectrum of physiologically relevant ingredients, or in
PSF were considered decisive.
Since the ‘AAN <3’ cut-off value serves to recognize NMs that prevail as individual
nanoparticles, the DF4nanoGrouping criterion dispersibility does not take into account
thematerials' effective density, which is relevant when assessing the behaviour of larger
nanoparticle agglomerates (Pal et al., 2015).
Data obtained in DMEM-F12 supplemented with bovine serum albumin were not used
since this dispersing agent generally elicits high nanomaterial dispersibility (Sauer et al.,
2014b).

Cellular effects Effect at �10 mg/cm2 [c] Assignment to MG4 In vitro alveolar macrophage assay
Alternatively: MTT or LDH assays with specified test protocols

Tier 3
In vivo screening

Toxic potency STIS NOAEC; four ranges:
I: <0.1 mg/m3 [d]
II: <1 mg/m3

III: <10 mg/m3

IV: �10 mg/m3

Ranges I-III: Confirmation
of MG2 or MG4; sub-
grouping of MG4;
Range IV: Confirmation of
MG3

STIS for inhalation exposure

Biopersistence t50 < 40 days Confirmation of MG1 Extrapolated from the STIS organ burdens immediately after the end of exposure and
upon completion of the 14e28-day post-exposure observation period. Of note, these
extrapolated values only provide an indication of the respective pulmonary half-times.
However, they should not be considered precise values, since they were calculated from
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two values (i.e. the time points immediately after exposure and at the end of the
observation period) and do not, e.g., distinguish between different stages of substance
clearance (i.e. the initial fast clearance that is followed by a phase of slower clearance).
Even though the t50 � 40 day value published in BAuA (2014) relates to data from
pulmonary instillation studies, this threshold value may also be used to evaluate
biopersistence upon inhalation, since the pulmonary t50 upon inhalation is identical to
the one upon instillation.

Qualifier Dustiness None assigned Indication of a substance's
emission potential

Rotating drum method

Supplementary criteria Surface area None assigned Not primary grouping
criteria

BET or Hg porosimetry

Surface chemistry None assigned Not primary grouping
criteria

XPS, SIMS

Surface charge Positive: z > 10 mV Joint evaluation with
‘dispersibility’
Pos. surface charge:
Indication for MG4

Zeta sizer (zeta potential in water at pH 7.4)
Electrophoretic mobility (pH titration method)

Hydrophobicity None assigned Joint evaluation with
‘dispersibility’

Water contact angle on pressed powder: 0�e90� (hydrophilic), 90�e180� (hydrophobic)
Lipid affinity using different lipids, such as DPPG or DOPG

Abbreviations: AA: Atomic adsorption; AAN: Average agglomeration number; ALF: Artificial lysosomal fluid; AUC: Analytical ultracentrifugation; BET: (Method of) Brunauer, Emmett and Teller; CPH: Centrophenoxine;
DMEM þ FCS: Dulbecco's modified Eagle's Medium supplemented with 10% foetal calf serum; DOPG: 1,2- Dioleolyl-sn-glycero- 3-phosphocholin; DPPG: 1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholin; EDAX: Energy
dispersive analysis of x-rays; ESR: Electron spin resonance; FFF: Field-flow-fractionation; FRAS: Ferric reducing ability of serum; FTIR: Fourier-transformed infrared; GHS: Globally harmonized system; ICP(-MS): Inductively
coupled plasma (- mass spectrometry); LDH: Lactate dehydrogenase; MG: Main group; MTT: C,N-diphenyl-N0-4,5-dimethyl thiazol-2-yl tetrazolium bromide; NAA: Neutron activation analysis; NMR: Nuclear magnetic
resonance; NOAEC: No observed adverse effect concentration; PBS: Phosphate buffered saline; PSF: Phagolysosomal fluid; SAD: Selected area diffraction; SEM: Scanning emission microscopy; SI: Supplementary Information;
SIMS: Secondary ion mass spectrometry; STIS: Short-term inhalation study; TEM: Transmission electron microscope; XPS: X-ray photoelectron spectroscopy; XRD: X-ray diffraction.
Based upon the outcome of the case studies, the following adaptations to the threshold values laid down in Arts et al. (2015) are made (cf. Section 4.1).
[a] While the threshold values for water solubility and dissolution are adequate for NMs that release ions with GHS classification for systemic effects, they may have to be reconsidered for substances that dissolve into non-toxic
components.
[b] NMs may be assigned to MG2 on account of high aspect ratio, fibre diameter, and insolubility/low dissolution in water or biological media, even though their length does not meet the WHO criterion (>5 mm).
[c] This threshold value applies for cytotoxicity tests performed with lung epithelial cells. For in vitro assays performed with alveolar macrophages, a threshold value of 4000 mm2 particle surface area/macrophage is laid down
since it corresponds to in vitro non-overload conditions (Wiemann et al., 2015b).
[d] The threshold value for STIS NOAEC Range I is amended to ‘<0.5 mg/m3 and no regression or progression of effects’.
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� DF4nanoGrouping e qualifiers: Release (dustiness);
� DF4nanoGrouping e supplementary criteria: Surface area, sur-
face chemistry, surface charge, and hydrophobicity.

Rigidity that Arts et al. (2015) had specified as criterion for NM
assignment to MG2 (biopersistent HAR NMs) was not addressed in
the case studies. To date, there are no established methods to
determine this criterion. Generally, fibre diameter may be used as a
proxy for rigidity, if the diameter of the material under investiga-
tion is comparable to the diameter of a MWCNT with known fibre
toxicity, e.g. Mitsui-7 (Poulsen et al., 2015). Further, the supple-
mentary criterion corona formation was not addressed in the case
studies: The predictive value of this system-dependent property is
sufficiently addressed by the intrinsic material properties hydro-
phobicity and surface charge, supplemented by the system-
dependent property dispersibility. Finally, droplet size, which Arts
et al. (2015) indicated as potential qualifier to evaluate NM
release, was exempt from the case studies since it is only relevant
for very specific use and release scenarios.
2.4. Nanomaterial assignment to the four main groups of the
DF4nanoGrouping

Criterion-by-criterion and tier-by-tier the recorded data were
evaluated against the respective criteria-specific threshold values
laid downwithin the DF4nanoGrouping (cf. Table 1 for an overview
of the criteria and threshold values). In brief, the three tiers and the
grouping criteria of the DF4nanoGrouping serve to answer the
following sequence of questions:

1. Is the NM soluble? Does it dissolve in biological media? Does it
have low biopersistence? In Tier 1, NMs are assigned to MG1 on
account of their solubility inwater (>100mg/L; BAuA (2013)), or
‘non-MG1’ if solubility is below this threshold value. Data from
Tier 2 may be used to additionally assign those NMs to MG1
which are not water soluble, but that highly dissolve in bio-
logical media (>100 mg/L). Likewise, in Tier 3, NMs may be
assigned to MG1 if their pulmonary half-life (t50) is less than 40
days (the threshold value set for biopersistent fibres in BAuA
(2014)). The further hazard assessment of NMs that have been
assigned to MG1 is based upon read-across to the bulk coun-
terpart and/or the dissolved ions as well as available data from
the NM itself.

2. Does the size, aspect ratio, and biopersistence of the NM indi-
cate that it is a biopersistent HAR NM? An indication for
assignment to MG2 is based upon size and aspect ratio in Tier 1
(aspect ratio: >3:1, length: >5 mm; diameter: <3 mm; WHO
(2005)). The final assignment is based upon low dissolution
in biological media in Tier 2 (�100 mg/L) or high in vivo
biopersistence in Tier 3 (t50: �40 days). The further hazard
assessment of biopersistent HAR NMs may address their
potential to exert asbestos-like ‘fibre toxicity’ (Poland et al.,
2009).

3. Are ‘non-MG1 e non-MG2’ NMs passive or active (i.e. do they
have an inherent potential for toxicity)? NM assignment into
MG3 (passive NMs) is based upon fulfilment of all of the
following Tier 1/Tier 2 criteria:
a. Lack of (or no release of) components that have been

assigned a GHS category (<0.1% of the respective elements or
molecules);

b. Low dissolution in biological media (�100 mg/L);
c. Low surface reactivity (<10% of the reactivity of the reference

material Mn2O3 in the Ferric Reducing Ability of Serum
(FRAS) assay);
d. Low dispersibility (average agglomeration number (AAN)
�3);

e. Low cytotoxic potency (no effects up to 10 mg/cm2; i.e. over
the entire range of in vitro effective dosages that do not
reflect in vivo pulmonary overload conditions; Kroll et al.
(2011)).

By contrast, NMs are assigned to MG4 if any single decisive
property (or combinations of properties) listed for MG1, MG2, or
MG3 is (or are) not met. The Tier 2 assignment to MG3 or MG4may
be confirmed or revised by Tier 3 data from in vivo short-term
inhalation studies (STIS; MG4 if the no observed adverse effect
concentration (NOAEC) is <10 mg/m3), for the inhalation route of
exposure.

4. Do specific grouping criteria, qualifiers or supplementary
criteria enable sub-grouping of active NMs? Sub-grouping is
especially relevant for the MG4 active NMs because they may
possess specific hazards. Since no rules for sub-grouping were
established in Arts et al. (2015), the comprehensive data recor-
ded for the case study materials were evaluated to determine
whether specific grouping criteria, qualifiers or supplementary
criteria may provide a more detailed indication of the toxic
potential or potency of the NMs assigned to MG4.

In summary, for all NMs, the Tier 1 intrinsic material properties
chemical composition, morphology (i.e. size and aspect ratio) and
water solubility were evaluated as essential criteria, thereby
providing an indication for NM assignment as MG1 soluble NMs or
MG2HAR NMs. In Tier 2, thewater solubility-based NM assignment
as MG1 or MG2 (or non-MG1 or non-MG2) was reassessed evalu-
ating the system-dependent property dissolution in biological
media. Further in Tier 2, for the ‘non-MG1 e non-MG2’ NMs, data
on the system-dependent properties surface reactivity and dis-
persibility as well as on cellular effects were used as essential
criteria to distinguish MG3 passive NMs from MG4 active NMs.
Accordingly, based upon the outcomes of the non-animal testing
Tiers 1 and 2, the test materials were eventually assigned to one of
the four MGs.

Of note, materials or impurities were considered potentially
active if they had been assigned a GHS category for human health
or environmental hazards (United Nations (2011); cf. the ECHA's
‘Classification and Labelling inventory’; www.echa.europa.eu)
and, in the case of impurities, their proportion was �0.1%. Further,
the potential to release substances (e.g. copper ions) which elicit
cellular damage was recorded (either via assessment of water
solubility or dissolution in biological media). Of note, there is no
standardized in vitro assay having received regulatory acceptance
to determinewhether released ions (or substances in general) may
damage cells. Similarly, prediction models for in vitro assay eval-
uation in regard to in vivo toxic effects in the respective target
tissue are currently limited (Schrage et al., 2011; Sauer et al.,
2014a). Therefore, for ions released from NMs, GHS categories of
corresponding soluble salts may provide some indication of their
potential cytotoxicity. Effects observed with a salt (e.g. CuCl2) after
oral administration may, however, not accurately reflect the toxic
potential of the released ions in the respiratory tract (e.g. copper
ions would be harmful, but not toxic, as judged by the acute sys-
temic toxicity of CuCl2). Taking into account these limitations,
preferably data from the corresponding bulk material, which
release the same ions, were taken into consideration e while
noting that these bulk materials may exhibit different release
kinetics.

The following materials, material components or impurities had
been assigned the following GHS categories:

http://www.echa.europa.eu
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� CuO (CAS No.1317-38-0): Aquatic acute toxicity category (cat.) 1
(H400): Very toxic to aquatic life; Aquatic chronic toxicity cat. 3
(H412): Harmful to aquatic life with long lasting effects.

� ZnO (CAS No. 1314-13-2): Aquatic acute toxicity cat. 1 (H400):
Very toxic to aquatic life; Aquatic chronic toxicity cat. 1 (H410):
Very toxic to aquatic life with long lasting effects.

� TheMWCNT impurity cobalt nitrate (CAS No.10141-05-6): Skin
sensitization cat. 1 (H317): May cause an allergic skin reaction;
Respiratory sensitization cat. 1 (H334): May cause allergy or
asthma symptoms or breathing difficulties if inhaled; Mutage-
nicity cat. 2 (H341): Suspected of causing genetic defects; Car-
cinogenicity cat. 1B (H350): May cause cancer (inhalation route
of exposure); Reproductive toxicity cat. 1B (H360): may damage
fertility; Aquatic acute toxicity cat. 1 (H400): Very toxic to
aquatic life; Aquatic chronic toxicity cat. 1 (H410): Very toxic to
aquatic life with long lasting effects.
2.5. Evaluation of the Tier 1 and Tier 2 main group assignment
using Tier 3 short-term toxicity data

In Tier 3, the assignment of NMs to MG1 (soluble NMs) or MG2
(biopersistent HAR NMs) based upon Tier 1 and Tier 2 criteria was
evaluated focussing on the in vivo STIS pulmonary half-life (bio-
persistence). Similarly, Tier 3 evaluation of passive (MG3) or active
NMs (MG4) was based upon the STIS NOAEC (indicating toxic po-
tency in vivo). The STIS NOAEC was further used to sub-group the
NMs assigned to MG4 by specific levels of toxic potency, and it was
assessed whether further criteria could be discerned that would
support sub-grouping of these materials.

In Arts et al. (2015), the STIS NOAEC threshold values were
inadvertently misrepresented: NOAEC intervals are half-bound,
right-open, i.e. they extend upwards from the respective NOAECs.
The correct threshold values for the DF4nanoGrouping STIS NOAEC
ranges are:

� Range I: <0.1 mg/m3 (and not: �0.1)
� Range II: <1 mg/m3 (and not: �1)
� Range III: <10 mg/m3 (and not: �10)
� Range IV: �10 mg/m3 (and not: >10 mg/m3)

In the case studies, the correct NOAEC threshold values were
applied (Table 1). STIS NOAEC Range IV confirms NM assignment as
MG3 (passive), whereas STIS NOAEC Ranges I-III support the
assignment of ‘non-MG1 and non-MG2’ NMs as active (MG4) and
allow their sub-grouping by the given toxic potency range. Addi-
tionally, Tier 3 STIS data may be used to determine the nature of
toxic effects and to sub-group MG4 active NMs by the progression/
reversibility of effects or by their extent of systemic availability (no
systemic availability/systemic availability only in the MPS/systemic
availability also outside the MPS).

For Tier 3 data, published or unpublished STIS from members of
the ECETOC Nano Task Force were available for all case study ma-
terials with the following exceptions: For SiO2 NM-200 and NM-
203, STIS data published by a member of the ECETOC Nano Task
Force were available for SiO2 NMs that had been assessed as
‘equivalent’ in the corresponding OECD dossiers based upon pro-
duction process, minimum degree of material purity, and compa-
rability of specific surface area and agglomerate size (Arts et al.,
2007; OECD, 2015c,d). For 10 nm-CuO, STIS data conducted
within the EU SUN project (Gosens et al., 2015) were used.

The STIS protocol (cf. OECD, 2015e, pages 122e127) was devel-
oped in the EU 6th research framework-funded project NANOSAFE2
(www.nanosafe.org) and the German Federal Ministry for Educa-
tion and Research-funded project nanoCare (http://www.
nanopartikel.info/projekte/abgeschlossene-projekte). It is essen-
tially an adaptation of the OECD test guideline (TG) 412 Subacute
inhalation toxicity: 28-day study (OECD, 2009) test protocol. This
protocol was amended by appropriate aerosol generation and
characterisation, bronchoalveolar lavage parameters and lung
burden assessments. Instead of 28 days of exposure and an optional
post-exposure observation period, the STIS protocol foresees five
days of exposure and a 2- to 13-week post-exposure observation
period (Arts et al., 2007; Ma-Hock et al., 2007, 2009a; Landsiedel
et al., 2014a). NM acute inhalation toxicity, which is scarcely
investigated in the first place, was not used for NM grouping (or
evaluation of the DF4nanoGrouping) since the outcome of such
studies is expected to provide little useful information on NM
toxicity following repeated inhalation exposure (Landsiedel et al.,
2014c).

2.6. Overall evaluation of the DF4nanoGrouping using long-term
NOAEC

Data from long-term (as a rule, 90-day) studies were collected to
assess the suitability of the DF4nanoGrouping in predicting the
toxic potential and potency of NMs (and, more generally, of parti-
cles in aerosols), i.e. the appropriateness of NM (material) MG
assignment.

2.7. Evaluation of in vitro and in vivo genotoxicity, the qualifier
dustiness and the supplementary criteria

A definite assessment of the in vitro or in vivo genotoxic po-
tential of NMs is still under discussion. Prevailing knowledge gaps
had precluded the determination of threshold values or benchmark
materials for in vitro or in vivo genotoxicity in DF4nanoGrouping
(Arts et al., 2015). Therefore, available data for these endpoints
were collected for the case studies, but these datawere not used for
NM assignment to the MGs. Similarly, dustiness data, indicating a
material's emission potential, were recorded but not used for NM
assignment to the MGs since the present assessment of the suit-
ability of ‘DF4nanoGrouping’ is unrelated to exposure. Also data for
the supplementary criteria surface area, surface charge, surface
chemistry, and hydrophobicity were collected to further evaluate
their potential relevance for NM grouping.

2.8. Reassessment of the DF4nanoGrouping criteria, threshold
values and benchmark materials

Upon finalization of the DF4nanoGrouping MG assignment,
adequacy of the DF4nanoGrouping criteria as well as their corre-
sponding threshold values and benchmark materials as laid down
by Arts et al. (2015) was reassessed. Further, the need for additional
grouping criteria was reconsidered.

3. Outcome of the DF4nanoGrouping case studies

The following Section 3.1 presents the outcome of Tier 1 and
Tier 2 of the DG4nanoGrouping in assigning the case study mate-
rials to one of the four MGs (MG1: soluble NMs; MG2: biopersistent
HAR NMs; MG3: passive NMs; MG4: active NMs). Subsequently,
Section 3.2 compares the outcome of the Tier 1 and Tier 2 MG
assignment to the Tier 3 MG assignment by STIS data. Section 3.3
compares the overall outcome of the DF4nanoGrouping to avail-
able long-term NOAECs, and Section 3.4 summarizes the evaluation
of the genotoxicity data, supplementary criteria, and qualifiers.
Finally, a reassessment of all grouping criteria, threshold values and
benchmark materials is provided in Section 4.1.

http://www.nanosafe.org
http://www.nanopartikel.info/projekte/abgeschlossene-projekte
http://www.nanopartikel.info/projekte/abgeschlossene-projekte
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3.1. Nanomaterial MG assignment by Tiers 1 and 2 of the
DF4nanoGrouping

3.1.1. Carbonaceous NMs
Table 2 presents the details of the application of the Tiers 1 and 2

of the DF4nanoGrouping to the case study ‘carbonaceous NMs’.
Two materials (MWCNT NM-400 and NM-402) are assigned to
MG2 (biopersistent HAR NMs), one material (low surface carbon
black) to MG3, and two materials (graphene and graphite nano-
platelets) to MG4 (active NMs).

The WHO definition of fibres (WHO, 2005) was not specifically
conceived in regard to NMs, and, in fact, it may not be fully appli-
cable to NMs. MWCNT NM-402 was assigned to MG2 on account of
its high aspect ratio, fibre diameter, and insolubility in water/low
dissolution in biological media, even though its length (1.1 mm) did
not meet the WHO criterion (>5 mm). Further research is needed to
determine the critical length of biopersistent, high-aspect ratio
NMs. By contrast, graphene also has a high aspect ratio (in two
dimensions), but research is still ongoing to determine if graphene
and other two-dimensional platelet-like materials have the po-
tential to elicit ‘fibre toxicity’. Therefore, it was not assigned to MG2
in the current case studies.
3.1.1.1. MWCNT NM-400 and MWCNT NM-402

� In Tier 1, high aspect ratio and low water solubility indicate MG2.

� Additionally, for MWCNT NM-400, the Tier 1 criterion ‘impu-
rities’ indicates the presence of toxic cobalt nitrate at a pro-
portion�0.1% which would be indicative of an active NM (MG4)
if it had not yet been assigned to MG2.

� In Tier 2, low dissolution confirms MG2 assignment.
Table 2
Assignment of the case study ‘carbonaceous nanomaterials’ to one of the four main grou

Abbreviations: AAN: Average agglomeration number; AMA: (in vitro) Alveolar macropha
fetal calf serum; FRAS: Ferric reducing ability of serum; LDH: Lactate dehydrogenase; MG
N/A: Not available; TEM: Transmission electron microscopy; wt%: Weight percentage.
For applied test methods, cf. Table 1.
# MWCNT NM-402 is assigned to MG2 in spite of its length < 5 mm (see text for further
Colour legend:
� Bold print with bold framing indicates nanomaterial assignment to MG2 (biopersiste
materials).
� Dark grey shading indicates the presence of potentially active components (that howe
� Nanomaterials are assigned to MG2 based upon particle size and high aspect ratio.
assignment to MG4. For nanomaterial assignment to MG3, all grouping criteria have to
The data for the case study ‘carbonaceous nanomaterials’ were retrieved from the follow
(2013); [d] OECD (2015b); [e] NANOGENOTOX (2012); [f] SCCS (2014); [g] Hsieh et al. (2
3.1.1.2. Graphene and graphite nanoplatelets

� Tier 1 criteria indicate non-MG1 (non-soluble in water), non-
MG2 (not fibres, see above for high aspect ratio of two-
dimensional NMs). There are no (or only <0.1%) material
components or impurities that have been assigned a GHS
category.

� In Tier 2, non-MG1 cannot be refuted since data on their dis-
solving properties in biological media are not available. How-
ever, graphene is not expected to dissolve in different solvents.

� Further in Tier 2, the essential MG3 criterion surface reactivity
could not be determined due to the hydrophobicity of gra-
phene and graphite nanoplatelets. Therefore, the respective
activity cannot be excluded, which by conservative default
implies MG4.
3.1.1.3. Low surface carbon black

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in different solvents confirms non-
MG1.

� Further in Tier 2, lack of cellular effects up to 10 mg/cm2 and
agglomeration in Dulbecco's Modified Eagle's Medium supple-
mented with 10% foetal calf serum (in the following:
DMEM þ FCS) consistently indicate passivity resulting in
assignment to MG3.
ps of the DF4nanoGrouping by application of its Tiers 1 and 2.

ge assay; DMEM+FCS: Dulbecco's modified Eagle's Medium supplemented with 10%
: Main group; MTT: C,N-diphenyl-N0-4,5-dimethyl thiazol-2-yl tetrazolium bromide;

details).

nt HAR NMs); light grey: MG 3 (passive nanomaterials); black: MG4 (active nano-

ver is only toxicologically relevant if these components may be released).
‘Activity’ recorded for a single relevant grouping criteria results in nanomaterial
indicate ‘passivity’. This is highlighted by the continuous light grey shading.
ing sources: Ma-Hock et al. (2009b); [b] Wohlleben et al. (2013); [c] Ma-Hock et al.
013); [h] Wiemann et al. (2015b); [i] Kuhlbusch et al. (2009).
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3.1.2. Metal oxides and metal sulphates
Table 3 presents the details of the application of the Tiers 1 and 2

of the DF4nanoGrouping to the case study ‘metal oxides and metal
sulphates’. Three materials (10 nm-CuO, ZnO NM-110 and NM-111)
are assigned to MG1 (soluble NMs), two materials (BaSO4 NM-220
and 15 nm-Fe2O3 hematite) to MG3 (passive NMs). Three materials
(CeO2 NM-211 and NM-212, TiO2 NM-105) are assigned to MG4
(active NMs) on account of their cellular effects.

3.1.2.1. BaSO4 NM-220

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in phagolysosomal simulant fluid (PSF)
and phosphate buffered saline (PBS) confirms non-MG1.

� Further in Tier 2, surface reactivity <10% Mn2O3 reactivity,
agglomeration, and lack of cellular effects consistently indicate
passivity (assignment to MG3).
3.1.2.2. CeO2 NM-211 and CeO2 NM-212

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.
Table 3
Assignment of the case study ‘metal oxides and metal sulphates’ to one of the four main

Abbreviations: AAN: Average agglomeration number; ALF: Artificial lysosomal fluid; AM
supplemented with 10% fetal calf serum; FRAS: Ferric reducing ability of serum; Gamb
simulant fluid; wt%: Weight percentage.
For applied test methods, cf. Table 1.
Colour legend:
� Bold print with bold framing indicates assignment to MG1 (soluble nanomaterials); lig
� Dark grey shading indicates the presence of potentially active components (that howe
� Nanomaterials are assigned to MG1 that have a high dissolution in biological media
assignment to MG4. For nanomaterial assignment to MG3, all grouping criteria have to
The data for the case study ‘metal oxides and metal sulphates’ were retrieved from the fo
study report; [d] Singh et al. (2011); [e] Izak-Nau and Voetz (2014); [f] Singh et al. (2014)
et al. (2014); [k] Fraunhofer ITEM, 2015; [l] Wiemann et al. (2015b); [m] Kuhlbusch et a
� In Tier 2, low dissolution in DMEM þ FCS, PSF or PBS confirms
non-MG1.

� Further in Tier 2, activity in the in vitro alveolar macrophage
assay results in assignment to MG4.

� Additionally, CeO2 NM-211 and NM-212 have positive surface
charge (cf. Section 3.4), which may be used as supplementary
indication for MG4.
3.1.2.3. 10 nm-CuO

� Tier 1 criteria indicate non-MG1 and non-MG2. Copper oxide
has been assigned GHS categories.

� In Tier 2, high dissolution in PSF results in 10 nm-CuO assign-
ment to MG1. This high dissolution also indicates that cytotoxic
copper ions may be released into biological media and fluids.

� Available cytotoxicity data indicate activity of 10 nm-CuO. Pre-
sumably, the cellular effects are caused by released copper ions.
This in return confirms MG1 assignment. Some authors discuss
additional effects that may be related to the high surface reac-
tivity of thismaterial (Karlsson et al., 2008, 2014; Sonet al., 2015),
but the observed effects seem to be dominated by copper ions.
groups of the DF4nanoGrouping by application of its Tiers 1 and 2.

A: Alveolar macrophage assay; DMEM+FCS: Dulbecco's modified Eagle's Medium
le: Gamble's solution; MG: Main group; N/A: Not available; PSF: Phagolysosomal

ht grey: MG 3 (passive nanomaterials); black: MG4 (active nanomaterials).
ver is only toxicologically relevant if these components may be released).
, ‘Activity’ recorded for a single relevant grouping criteria results in nanomaterial
indicate ‘passivity’. This is highlighted by the continuous light grey shading.
llowing sources: [a] Wohlleben et al. (2013); [b] Keller et al. (2014); [c] unpublished
; [g] OECD (2015a); [h] Gosens et al. (2015); [i] Rasmussen et al. (2014); [j] Konduru
l. (2009).
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3.1.2.4. 15 nm-Fe2O3 (hematite)

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in PSF and Gamble's solution confirms
non-MG1.

� Further in Tier 2, surface reactivity <10% Mn2O3 reactivity,
agglomeration, and lack of cellular effects consistently indicate
passivity (assignment to MG3).

3.1.2.5. TiO2 NM-105

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in PSF and PBS confirms non-MG1.

� Further in Tier 2, cellular effects observed in different test
methods result in assignment to MG4.

3.1.2.6. ZnO NM-110 and NM-111

� Tier 1 criteria indicate non-MG1 and non-MG2. Zinc oxide has
been assigned GHS categories.

� In Tier 2, their high dissolution in different media results in ZnO
NM-110 and NM-111 assignment to MG1. This high dissolution
Table 4
Assignment of the case study ‘amorphous silica nanomaterials’ to one of the four main g

Abbreviations: AAN: Average agglomeration number; CPH: Centrophenoxine; DMEM+FCS
Electron spin resonance; FRAS: Ferric reducing ability of serum; Gamble: Gamble's soluti
glycol; SF: Surface functionalization; TEM: Transmission electron microscopy; wt%: Wei
For applied test methods, cf. Table 1.
#CP_ID: The core particle is the identical batch as the aSiO2.susp: Solubility cannot reas
Colour legend:
� Bold print with bold framing indicates assignment to MG1 (soluble nanomaterials); lig
recorded for a single relevant grouping criteria results in nanomaterial assignment to
‘passivity’. This is highlighted by the continuous light grey shading.
The data for the case study ‘silica nanomaterials’were retrieved from the following sourc
Jürgen Nolde, Director Product Stewardship CT & MT EMEA, Grace GmbH & Co. KG, Wo
(2013); [f] NANOGENOTOX (2012); [g] Landsiedel et al. (2014a); [h] Izak-Nau and Voet
(2012); [l] Wiemann et al. (2015b).
also indicates that cytotoxic zinc ions may be released into
biological media and fluids.

� Available cytotoxicity data indicate activity of both ZnO NMs.
ZnO NM cellular effects are caused by released zinc ions (Xia
et al., 2008), which in return confirms MG1 assignment.
3.1.3. Amorphous silica NMs
Table 4 presents the details of the application of the Tiers 1 and 2

of the DF4nanoGrouping to the case study ‘amorphous silica NMs’.
Two materials (SiO2.amino and SiO2.PEG) are assigned to MG3
(passive NMs). Three materials are assigned to MG4 (active NMs):
aSiO2-susp on account of its cellular effects and SiO2.acrylate and
SiO2.phosphate on account of their high dispersibility indicating
the potential for mobility in the body, i.e. systemic availability.
Finally, two materials (SiO2 NM-200 and NM-203) are assigned as
‘borderline’ MG1 (soluble NMs) or MG4 (active NMs).
3.1.3.1. SiO2 NM-200 and SiO2 NM-203

� Tier 1 criteria indicate borderline MG1/non-MG1 (partial solu-
bility inwater, but below the DF4nanoGrouping threshold value)
and non-MG2. There are no (or only<0.1%)material components
or impurities that have been assigned a GHS category.

� In Tier 2, effects in the in vitro alveolar macrophage assay indi-
cate activity.

� Partial dissolution in DMEM þ FCS, but high dissolution in
Gamble's solution results in ‘borderline’ assignment to MG1 or
MG4.
roups of the DF4nanoGrouping by application of its Tiers 1 and 2.

: Dulbecco's modified Eagle's Medium supplemented with 10% fetal calf serum; ESR:
on; LMM: Low molar mass; MG: Main group; N/A: Not available; PEG: Polyethylene
ght percentage.

onably be higher than the solubility of the core particle.

ht grey: MG 3 (passive nanomaterials); black: MG4 (active nanomaterials). ‘Activity’
MG4. For nanomaterial assignment to MG3, all grouping criteria have to indicate

es: [a] OECD (2015c); [b] Personal communication from 14 September 2015 from Dr.
rms, Germany [c] OECD (2015d); [d] unpublished study report; [e] Wohlleben et al.
z (2014); [i] Schaefer et al. (2012); [j] Rasmussen et al. (2014); [k] Fraunhofer IKTS
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3.1.3.2. aSiO2-susp

� Tier 1 criteria indicate non-MG1 (very low solubility in water)
and non-MG2. There are no (or only <0.1%) material compo-
nents or impurities that have been assigned a GHS category.

� In Tier 2, low dissolution in PSF confirms non-MG1.

� Further in Tier 2, activity in the in vitro alveolar macrophage
assay results in assignment to MG4.

Research on the water solubility and dissolution in biological
media of amorphous SiO2 NM is ongoing. At the time of writing the
present article, most published data indicate partial solubility of
SiO2 NM-200 and SiO2 NM-203 inwater or DMEMþ FCS (below the
DF4nanoGrouping threshold value), but high dissolution in Gam-
ble's solution. Therefore, SiO2 NM-200 and NM-203 were assessed
as ‘borderline MG1 or MG4’. By contrast, for aSiO2-susp, both water
solubility and dissolution in biological media were well below the
respective threshold values, and this NM was assigned to MG4 on
account of its cellular effects.

Even though aSiO2-susp was assessed in a different medium
(PSF) than SiO2 NM-200 or NM-203 (DMEM þ FCS and Gamble's
solution), the choice of medium was assessed as not affecting
dissolution (and hence MG assignment). As reported by Luoto et al.
(1994), for amorphous SiO2-based man-made vitreous fibres,
dissolution is more strongly affected by the materials' chemical
composition (and impurities) than by the choice of medium.

In light of the ongoing research in respect to the solubility of
amorphous SiO2 (without surface functionalization), MG1 and/or
MG4 assignment of these NMs should not be considered irrevo-
cable. These materials may even be borderline cases, possibly
indicating that the DF4nanoGrouping threshold values of 100 mg/
L for water solubility and dissolution in biological media will
eventually require reconsideration for NMs that dissolve into
Table 5
Assignment of the case study ‘organic pigments’ to one of the four main groups of the D

Abbreviations: AAN: Average agglomeration number; DMEM+FCS: Dulbecco's modified E
of serum; Gamble: Gamble's solution; MG: Main group; N/A: Not available; TEM: Transm
For applied test methods, cf. Table 1.
Colour legend:
� Light grey shading indicates nanomaterial assignment to MG 3 (passive nanomaterials
� ‘Activity’ recorded for a single relevant grouping criteria results in nanomaterial assig
indicate ‘passivity’. This is highlighted by the continuous light grey shading.
All data for the case study ‘organic pigments’were retrieved from unpublished study rep
blue 15:1: Wiemann et al. (2015b).
non-toxic components. Furthermore, test methods to assess NM
dissolution have not yet been standardized to the same extent as
dissolution methods and benchmark materials for man-made
vitreous fibres (WHO, 1988). This lack of test method standardi-
zation for NMs seriously restricts inter-laboratory comparability
of test results. For instance, NM dissolution in Gamble's solution
was recorded as the absolute ionic concentration in mg/L in a
static medium after different incubation times ranging from 24 h
to 28 days (cf. Tables 3 and 4, specifically the corresponding
values for the MG1 and borderline MG1 substances 10 nm-CuO,
ZnO NM-110 and NM-111 and SiO2 NM-200 and NM-203). In
some studies, the percentage of ions per total solids was reported.
While no cut-off value has been proposed for this metric, it may
provide a basis to harmonize the assessment of NM dissolution
with the one for vitreous fibres. Notwithstanding, if amorphous
SiO2 NMs without surface functionalization are not assigned to
MG1 (soluble NMs), they are assigned to MG4 (active NMs) on
account of consistent recordings of cellular effects in protein-free
medium (cf. Section 4.1).
3.1.3.3. SiO2.amino and SiO2.PEG

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, non-MG1 cannot be refuted since data on dissolution
in biological media are unavailable. However, it is not expected
that the surface coating would increase the solubility of aSiO2-
susp which is non-MG1.

� Further in Tier 2, low surface reactivity, agglomeration and lack
of cellular effects consistently indicate likelihood of passivity
(assignment to MG3).
F4nanoGrouping by application of its Tiers 1 and 2.

agle's Medium supplemented with 10% fetal calf serum; FRAS: Ferric reducing ability
ission electron microscopy; wt%: Weight percentage.

); black: MG4 (active nanomaterials).
nment to MG4. For nanomaterial assignment to MG3, all grouping criteria have to

orts. For the cellular effect data recorded for DPP orange (bulk or nano) and Pigment
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3.1.3.4. SiO2.acrylate and SiO2.phosphate

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, non-MG1 cannot be refuted since data on dissolution
in biological media are unavailable. However, it is not expected
that the surface coating would increase the solubility of aSiO2-
susp which is non-MG1.

� Further in Tier 2, dispersibility in DMEM þ FCS indicating po-
tential for mobility in the body, results in assignment to MG4.
3.1.4. Organic pigments
Table 5 presents the details of the application of the Tiers 1 and 2

of the DF4nanoGrouping to the case study ‘organic pigments’. DPP
orange (bulk and nano) as well as Pigment red 254-2 are assigned
toMG3 (passive NMs). Pigment blue 15:1 is assigned toMG4 (active
NMs) on account of cellular effects.
3.1.4.1. DPP orange 1 (bulk), DPP orange 2 (nano), and pigment red
254-2

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in PSF, PBS or Gamble's solution con-
firms non-MG1.

� Further in Tier 2, low surface reactivity, agglomeration and lack
of cellular effects consistently indicate passivity (assignment to
MG3).
Table 6
Assignment of the additional materials to one of the four main groups of the DF4nanoG

Colour legend: Black shading indicates nanomaterial assignment to MG4 (active nanom
Data for quartz dust DQ12 and C60 fullerene were retrieved from the following sources: [a
et al, (2008); [e] Morimoto et al. (2010); [f] Baker et al. (2008); [g] Oberd€orster (2004); [h] T
KG, Germany, www.doerentrup.de); [j] unpublished study reports; [k] Wiemann et al. (
3.1.4.2. Pigment blue 15:1

� Tier 1 criteria indicate non-MG1 and non-MG2. Pigment blue
15:1 contains �0.1% copper (that is tightly bound into the
molecule).

� In Tier 2, low dissolution in PSF and PBS confirms non-MG1.
Further, these data indicate that copper ions are not released
into biological media. Hence, this is not an indication for MG4
(as would have been concluded from potential for ion release).

� Further in Tier 2, activity in the in vitro alveolar macrophage
assay results in assignment to MG4.

3.1.5. Additional materials
The Tier 1 and Tier 2 data recorded for the additional materials

quartz dust DQ12 and C60 fullerene are presented in Table 6.

3.1.5.1. Non-nanosized crystalline quartz dust DQ12

� Tier 1 criteria indicate non-MG1 and non-MG2. There are no (or
only <0.1%) material components or impurities that have been
assigned a GHS category.

� In Tier 2, low dissolution in PSF confirms non-MG1.

� Further in Tier 2, high surface reactivity and observation of
cellular effects result in assignment to MG4.
3.1.5.2. C60 fullerene

� Data on Tier 1 criteria obtained in the literature for different
preparations of C60 fullerene consistently indicate non-MG1 and
non-MG2. There are no (or only <0.1%) material components or
impurities that have been assigned a GHS category.
rouping by application of its Tiers 1 and 2.

aterials).
] Wohlleben et al. (2013); [b] Marcus et al. (2001); [c] Baierl et al. (1996); [d] Jacobsen
otsuka et al. (2009); [i] supplier's product information (D€orentrup Quarz GmbH& Co.
2015b).

http://www.doerentrup.de
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� In Tier 2, available information on the overall low dissolution of
C60 fullerene in different solvents confirms non-MG1.

� Further in Tier 2, the available information points to C60
fullerene agglomeration, and none of the retrieved in vitro
studies reports pronounced cellular effects. However, since data
on C60 fullerene surface reactivity were not found in the pub-
lished literature, a decisive Tier 2 distinction between MG3 or
MG4 was not possible.
3.2. Evaluation of Tier 1 and Tier 2 nanomaterial MG assignment
using Tier 3 short-term toxicity data

Table 7 provides an overview of the evaluation of the DF4na-
noGrouping Tier 1 and Tier 2 nanomaterial MG assignment using
Tier 3 short-term toxicity data. Further, Figs. 1e4 illustrate appli-
cation of the DF4nanoGrouping for carbonaceous NMs, soluble
Table 7
Evaluation of Tier 1/Tier 2 nanomaterial MG assignment using Tier 3 STIS biopersistence

Tier 1 and Tier 2 
MG assignment 

Test material Tier 3 STIS
NOAEC (mg/m3) 

Tier 3 STIS 
biopersistence 

MG1 ‘soluble NMs’ 

8<011-MNOnZ [1] Rapid clearance 
ecnaraelcdipaR5.0111-MNOnZ

A/N6.0OuC-mn01
SiO2 1002-MN [2] 1 and 5 mg/3: always 

< detection limit; 
25 mg/m3: Full 

clearance 

SiO2 1302-MN [2]

MG2 ‘biopersistent 
HAR NMs’ 

MWCNT NM-400 <0.5 d.n.p. 
MWCNT NM-402 <0.5 d.n.p. 

MG 3 ‘passive NMs’ 

LS carbon black ≥10 d.n.p. 
BaSO4 NM-220 ≥50 t50 <40 days 
15 nm-Fe2O3 ≥30 t50 <40 days 
SiO2.amino ≥50 t50 <40 days 
SiO2.PEG ≥50 t50 <40 days 

DPP orange (bulk) ≥10 
Not decisive for 

grouping DPP orange (nano) ≥30 
Pigment red 254-2 (nano) ≥30 

MG 4 ‘active NMs’ 

SiO2.phosphate ≥50 t50 <40 days 
Pigment blue 15:1 ≥30 N/A 
Graphite nanoplatelets ≥10 d.n.p. 

aSiO2 A/N5.2psus-
.p.n.d5.2<enehparG

TiO2 t2<501-MN 50 syad04>

SiO2.acrylate 0.5 (splenic effects; 
pulmonary effects: 

≥10) 

t50 syad04>

CeO2 t5.0<112-MN 50 syad04>
CeO2 t5.0<212-MN 50 syad04>

Quartz dust DQ12 0.1 [4] t50 syad04>

Abbreviations: d.n.p.: Determination not possible for technical reasons (the (non-radio-la
A: Not available.
The STIS NOAEC ranges correspond to: Range I: <0.1 mg/m3; Range II: <1 mg/m3; Range
Colour legend: Grey shading: In Tier 2, SiO2 phosphate was assigned to MG 4 on accoun
activity in the in vitro alveolar macrophage assay, and graphite nanoplatelets were assig
reasons. In Tier 3, high STIS NOAEC (Range IV) are recorded for all 3 substances indicatin
STIS data were retrieved from the following sources: [a] Bellmann (2011); [b] Landsiedel e
[f] Ma-Hock et al. (2013); [g] Unpublished study report; [h] Ma-Hock et al. (2009a); [i] K

a 14-day exposure, only 1 test substance concentration (i.e. 8 mg/m3).
b For equivalent substance.
c Furthermore, there are strong indications that BaSO4 is at least partially soluble in vi
d The findings from Henderson et al. (1995) were recorded for alpha-quartz (median p

DQ12 was used as positive control in two rat STIS, in which it was only tested at one (h
gressively severe effects over the 3-month post-exposure period (Arts et al., 2007) and a
Ravenzwaay et al., 2009).
ZnO NMs, amorphous SiO2 NMs, and organic pigments,
respectively.
3.2.1. Case study materials assigned to main group 1 (soluble NMs)
For ZnO NM-110 and NM-111, rapid elimination during the 2e3-

week post-exposure period was reported in the corresponding
STISs (Bellmann, 2011; Landsiedel et al., 2014a). These findings
reflect high solubility also in the lung, thereby confirming MG1
assignment of the ZnO NMs.

For all three metal oxide NMs that were assigned to MG1, low
STIS NOAEC values (Range II) were recorded. For ZnO NM-111, a
NOAEC of 0.5 mg/m3 was assigned (Landsiedel et al., 2014a) and for
10 nm-CuO a NOAEC of 0.6 mg/m3 (Gosens et al., 2015). In a rat 14-
day inhalation study, ZnO NM-110 and NM-111 and a micron-scale
ZnO showed comparable effects: The NOAEC values were<8mg/m3

for ZnO NM-110 and the micron-scale ZnO (only one concentration
tested) and 2 mg/m3 (LOAEC 8 mg/m3) for ZnO NM-111 (Bellmann,
2011). Concordantly, a NOAEC of 2.0 mg/m3 was recorded for ZnO
NM-111 in the 5-day range finding study to the 14-day inhalation
or toxic potency (NOAEC).

Tier 3 MG 
assignment 

Progression of 
effects? 

MG4 sub-grouping by 
NOAEC range 

Reference 
in vivo data 

Solubility 
confirmed 

Full reversibility 

[Different NOAEC ranges; 
grouping by ‘solubility’ does 

not per se relate to toxic 
potency] 

a 
bytilibisreverlaitraP
cytilibisreverlluFA/N

Solubility 
supported 

dytilibisreverlaitraP
dytilibisreverlaitraP

Biopersistence Progression
[Range I or II] e 

f 

MG3 ‘passive 
NMs’ 

No adverse effects 

[Range IV = MG3] 

f 
b [3]

g 
b 
b 
g 
g 
g 

No adverse effects 
b 
g 
f 

MG4 ‘active 
NMs’ 

Progression 
Range III 

b 
fstceffefoecnetsisreP
hytilibisreverlaitraP

cinelpsfoytilibisreverlluF
effects; no pulmonary 

effects at any time point Range II 

b 

inoissergorP
inoissergorP

IIroIegnaRnoissergorP j [4]

belled) main component C is indistinguishable from the biological environment), N/

III: <10 mg/m3; Range IV: �10 mg/m3.
t of its high dispersibility, Pigment blue 15:1 was assigned to MG4 on account of its
ned to MG4 since determination of surface reactivity was not possible for technical
g MG3 ‘passivity’. Further, the pulmonary half-life of SiO2. phosphate is <40 days.
t al. (2014a); [c] Gosens et al. (2015); [d] Arts et al. (2007); [e] Ma-Hock et al. (2009b);
eller et al. (2014); [j] Henderson et al. (1995).

vo after inhalation (Konduru et al., 2014).
article size 1.7 mm) in a 28-day subacute inhalation study. Additionally, quartz dust
igh) concentration, each, i.e. at 25 mg/m3 at which concentration it produced pro-
t 100 mg/m3, where additionally biopersistence (t50 > 40 days) was reported (Van
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Fig. 1. Application of the DF4nanoGrouping to the case study ‘carbonaceous nanomaterials’.
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study (Creutzenberg, 2009). These low STIS NOAECs are consistent
with the dissolution of hazardous ions.

3.2.2. Case study materials assigned borderline main group 1
(soluble NMs) or main group 4 (active NMs)

For SiO2 NM-200 and NM-203 (respectively, the equivalent
materials that were tested in the STIS), full clearance within the 1-
month post-exposure period was recorded for the high concen-
tration test group (25 mg/m3). For the lower concentration test
groups (1 and 5 mg/m3), pulmonary Si-content was below the
detection limit at all time points (i.e. on the day after the final
exposure and 1 and 3 months thereafter; Arts et al., 2007).

Further, STIS NOAECs of 1 mg/m3 (Range III) were recorded for
the two equivalent materials to SiO2 NM-200 and NM-203. The
differing NOAEC ranges (as compared to the MG1metal oxide NMs)
underline that NM assignment as soluble (or partially soluble) is
not ‘effect-based’. The intrinsic and system-dependent properties
water solubility and dissolution in biological media are not directly
related to in vivo toxic potential or potency. Depending on their
chemical composition, the dissolved materials may be toxic, or not,
at the given lung burden and dissolution. For SiO2 NM-200 and NM-
203, the rapid elimination following 5-day inhalation exposure
reflects MG1, while the pulmonary effects that are not caused by
released toxic ions indicates MG4. Hence, the STIS data confirm the
assignment of these two materials as ‘borderline MG1 or MG4’.

3.2.3. Case study materials assigned to main group 2 (biopersistent
HAR NMs)

Also for NM assignment to MG2, the essential grouping criterion
HAR does not refer to a biological effect, but to a material property
that is critical to develop and exhibit a biological effect. Tier 3 organ
burden or pulmonary half-life of the MWCNTs could not be
assessed in order to confirm low solubility in water or biological
media, since the (non-radio-labelled) main component of the ma-
terial, carbon, can hardly be quantified in lung tissue. However, the
outcomes of the STISs indicate a progression of effects for both
MWCNT NM-400 and NM-402. This supports their assignment as
biopersistent HAR NMs. Additionally, for both MWCNT NM-400 and
NM-402, Tier 3 STIS NOAEC values of <0.5 mg/m3 (NOAEC Ranges I
or II) indicate toxic potency of these materials which is consistent
with fibre toxicity. The available STISs were, however, not designed
to identify a mode-of-action according to the fibre paradigm. In
fact, some of the NMs assigned to MG2 in Tier 1 and 2 may turn out
to act more like granular particles due to the agglomeration and
tangling of the fibres (Poland et al., 2008).

3.2.4. Case study materials assigned to main group 3 (passive NMs)
For all 8 NMs assigned to MG3 in Tiers 1 and 2 of the DF4na-

noGrouping, STIS NOAEC �10 mg/m3 were recorded in Tier 3 con-
firming assignment of these materials as passive NMs. Accordingly,
NMs assigned to MG3 are expected to induce adverse effects in the
lung only if aerosol concentrations, lung deposition and impaired
clearance result in lung overload conditions (ECETOC, 2013).

3.2.5. Case study materials assigned to main group 4 (active NMs)
For 7 of 10 materials assigned to MG4 in Tiers 1 and 2 of the

DF4nanoGrouping (i.e. aSiO2-susp, graphene, TiO2 NM-105,
SiO2.acrylate, CeO2 NM-211 and NM-212 and quartz dust DQ12),
STIS NOAEC <10 mg/m3 were recorded in Tier 3 confirming
assignment of these materials as MG4 active NMs. For graphite
nanoplatelets, SiO2.acrylate and Pigment blue 15:1, high STIS
NOAEC values (�10 mg/m3) indicated MG3 passivity, thereby
refuting the Tier 2 assignment as MG4 active NMs.

Graphite nanoplatelets were assigned to MG4 in Tier 2, since
data on surface reactivity were unavailable for technical reasons,
and hence, the respective activity of this material could not be
excluded. In Tier 3, however, the STIS NOAEC (�10mg/m3) indicates
MG3 passivity of graphite nanoplatelets.

For SiO2.acrylate, the NOAEC for lung effects was �10 mg/m3. At
aerosol concentrations of 10 mg/m3, however, the material was
detected in the spleen (albeit below 1% of the total mass in the
body) where it caused organ changes. This indicates extra-
pulmonary translocation (inside the MPS) of the inhaled NM
which qualifies SiO2.acrylate as an active NM. Indeed, this NM had
been assigned to MG4 in Tier 2 on account of its high dispersibility,
which is indicative of mobility in the body. For SiO2.phosphate that
had been assigned to MG4 in Tier 2 on account of its high dis-
persibility, a high STIS NOAEC (>50 mg/m3) exceeding the
threshold value for MG4 ‘active nanomaterials’ was recorded, and
no extra-pulmonary translocation or systemic alterations were
observed (either clinically or during histopathological evaluation).
This lack of findings andmobility in the STIS provides evidence that
SiO2.phosphate is unlikely to be an active NM. Hence, Tiers 1 and 2
over-predicted the outcome of the in vivo study.

Pigment blue was assigned to MG4 in Tier 2 on account if its
activity in the in vitro alveolar macrophage assay. In Tier 3 its STIS
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NOAEC of �30 mg/m3 (Range IV) indicated MG3 ‘passivity’. Hence,
again, Tiers 1 and 2 over-predicted the outcome of the in vivo
study.

The NMs assigned toMG4 in Tier 3 encompass a broad spectrum
of different materials, and their NOAEC values cover all three STIS
NOAEC ranges allocated to MG4 (Range I: <0.1 mg/m3; Range II:
<1mg/m3; Range III: <10mg/m3; cf. Section 2.5 and Table 7). Hence
hazard and risk assessment for different MG4 NMs will not be alike
and may require further considerations to specify the toxic poten-
tial and potency. In this respect, sub-grouping of the MG4 NMs by
STIS NOAEC range, reversibility/progression of effects and
bioavailability may provide important indications to determine
(and specify, if applicable) the need for additional information.

Sub-grouping of the MG4 NMs by STIS NOAEC range results in
the following assignments:

� Range I or II: Non-nanosized quartz dust DQ12
� Range II: Both CeO2 NMs and SiO2.acrylate (the latter on account
of translocation and splenic alterations; respiratory tract effects
were not recorded at any point of time)

� Range III: aSiO2-susp, graphene, graphite nanoplatelets and TiO2

NM-105

Evaluation of the reversibility or progression of effects elicited
by the MG4 NMs results in the following sub-groups:

� Full reversibility of splenic alterations: SiO2.acrylate
� Partial reversibility of pulmonary effects: TiO2 NM-105
� Persistence of pulmonary effects: Graphene and graphite
nanoplatelets

� Progression of pulmonary effects: Quartz dust DQ12 (within the
STIS NOAEC Ranges I or II); both CeO2 NMs (within Range II);
and aSiO2-susp (within Range III)

Additionally, NMs may be sub-grouped by their pattern of bio-
distribution. Arts et al. (2015) foresee distinguishing between NMs
that only become available in the primary organ (i.e. the respiratory
tract for the inhalation route of exposure), NMs that are addition-
ally found in the MPS, and, finally, NMs that become systemically
available outside the MPS (at >1 mass% of the total dose, each).

� SiO2.acrylate is assigned to the sub-group of NMs that may
become available in the MPS.

� None of the case study materials is assigned to the sub-group of
test materials with systemic availability outside the MPS.
Table 8
Evaluation of DF4nanoGrouping main group assignment using long-term NOAEC (as ava

DF4nanoGrouping MG assignment Test substance

MG1 ‘soluble NMs’ ZnO NM-111
SiO2 NM-200
SiO2 NM-203

MG2 ‘biopersistent HAR NMs’ MWCNT NM-400
MWCNT NM-402

MG 3 ‘passive NMs’ Low surface carbon black
BaSO4 NM-220

MG 4 ‘active NMs’ CeO2 NM-212
TiO2 NM-105
Quartz dust DQ12

Long-term in vivo data were retrieved from the following references: [a] Creutzenberg
(2009b); [e] Pothmann et al. (2015); [f] Elder et al. (2005); further discussed in UBA (20
and Sellers et al. (2015); [i] Muhle et al. (1995); further discussed in SCGOS (2014).

a Concordantly, for a variety of different MWCNTs, very low long-term NOAECs of 0.
Schuler et al. (2013).
Also in Tier 3, C60 fullerene could not be assigned to either MG3
or MG4 with certainty. However, the available data point to the low
toxic potential of this material upon short-term exposure and no
translocation to extra-pulmonary organs, which indicates MG3
passivity. This estimation is confirmed in an extensive literature
review that was conceived to reflect a “classical regulatory risk
assessment” (Aschberger et al., 2010). Also Aschberger et al. caution
that their estimation should not be considered definite due to
limitations in the dataset. In a 28-day rat inhalation study, 0.12 mg/
m3 C60 fullerene (cf. Table 6 [e] for material properties) did not elicit
adverse effects either during treatment or throughout the 3-month
post-exposure period (Morimoto et al. (2010). In a further rat short-
term inhalation study, 2 mg/m3 C60 fullerene (cf. Table 6 [f] for
material properties) only affected a few parameters in the blood
and bronchoalveolar fluid (Baker et al., 2008). However, in this
study the rats were only exposed to the test material for 3 h per day
(over a 10-day period), and Baker et al. (2008) assessed the
outcome of their study as inconclusive. Of note, neither study (i.e.
Baker et al., 2008; Morimoto et al., 2010) was performed as
concentration-response study. In juvenile fish (largemouth bass),
olfactory translocation of C60 fullerene (0.5 ppm; cf. Table 6 [g] for
material properties) was observed after 48-h exposure resulting in
oxidative stress reactions in the brain (Oberd€orster, 2004). Clearly,
it is not possible to relate these fish data to mammal NOAEC extra-
pulmonary translocation upon inhalation exposure. Also
Oberd€orster et al. (2009) and Aschberger et al. (2010) caution that
the human health implications of central nervous system findings
for NMs, as such, remain to be determined.

3.3. Overall evaluation of the DF4nanoGrouping using long-term
NOAEC

As Table 8 reveals, the two NMs assigned to MG3 for which data
from long-term studies were available (i.e. low surface carbon black
and BaSO4 NM-220) had high 90-day NOAECs (50 mg/m3, each),
whereas all other NMs (assigned to MG1, MG2, or MG4) had
considerably lower long-term NOAEC values ranging from 0.3 to
1.5 mg/m3. Hence, even though long-term data were only available
for 10 of the 25 materials (including quartz dust DQ12), these
findings confirm the passivity of NMs that are assigned to MG3.

In regard to C60 fullerene, Shinohara et al. (2011) calculated the
90-day NOAEC to be 3.1 mg/m3 basing this figure on a combined
evaluation of published rat instillation and 28-day inhalation
studies that assessed different forms of C60 fullerene. Since this
long-term NOAEC was not derived from a 90-day inhalation study
ilable).

Published 90-day NOAEC (mg/m3) References

1.5 a
1 b
1 (for equivalent substance) c

<0.1 d
0.25 e a

50 (for equivalent substance) f
50 g

0.3 g
0.5 h
2-yr: 1 (only one dose group) i

(2011); [b] Creutzenberg et al. (2014); [c] Reuzel et al. (1991); [d] Ma-Hock et al.
14); [g] Keller (2015); [h] Bermudez et al. (2004); further discussed in UBA (2014)

1 mg/m3 or lower were recorded by Pauluhn (2010); DeLorme et al. (2012, 2015);



Table 9
Supplementary grouping criteria for the case study ‘carbonaceous nanomaterials’.

Abbreviations: N/A: Not available.
For applied test methods, cf. Table 1.
The data for the case study ‘carbonaceous nanomaterials’were retrieved from the following sources: [a] Ma-Hock et al. (2009b); [b] Wohlleben et al. (2013); [c] Ma-Hock et al.
(2013); [d] unpublished study report.
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and Shinohara et al. further did not provide any estimations for a
LOAEC (so that the true NOAEC may well be much higher than
3.1 mg/m3), this study was not used to reassess the tentative
assignment of C60 fullerene to MG3 (passive NMs) in Tier 3 of the
DF4nanoGrouping.
3.4. Evaluation of in vitro and in vivo genotoxicity, the qualifier
dustiness and the supplementary criteria

The Supplementary Information Table SI-1 presents the in vitro
and in vivo genotoxicity data collected for the case study materials.
Of note, only data from in vivo genotoxicity tests that were part of
inhalation or instillation studies were used. Concordantly, in vitro
genotoxicity studies were included in the evaluation if pulmonary
cells or tissues had been used as test systems.

In vitro genotoxicity datawere available for all materials except
for graphene, graphite nanoplatelets, and SiO2 NM-203. For CuO,
in vitro genotoxicity data were available for NMs with larger PPS
than 10 nm-CuO, i.e. 42 nm- and 55 nm-CuO. Predominantly, the
in vitro genotoxicity data had been obtained in the alkaline Comet
assay or micronucleus test using standard cell lines (mostly
A549 cells) or a three-dimensional reconstruct of the human
airway epithelium (EpiAirway™). In vitro genotoxic effects that
encompass a broad variety of different DNA damaging and muta-
genic effects were recorded for case study materials from all four
MGs, i.e.
Table 10
Supplementary grouping criteria for the case study ‘metal oxides and metal sulphates’.

Abbreviations: N/A: Not available.
For applied test methods, cf. Table 1.
Colour legend: Black shading indicates that positive surface charge may be used as supp
The data for the case study ‘metal oxides and metal sulphates’ were retrieved from the fo
info/projekte/abgeschlossene-projekte/nanogem; [b] OECD (2015a); [c] NANOGENOTOX
unpublished study report; [h] Landsiedel et al. (2014a); [i] Izak-Nau and Voetz (2014).
MG1: ZnO NM-110 and NM-111 and 42 nm- and 55 nm-CuO.

� MG2: different types of MWCNTs
� MG3: SiO2.phosphate (and C60 fullerene)
� MG4: Both CeO2 NMs and aSiO2-susp

Only for the MG1 materials ZnO NM-110 and NM-111 and
55 nm-CuO as well as for the MG2 material MWCNT NM-400, were
these in vitro genotoxic effects recorded at �10 mg/cm2, i.e. at test
material concentrations lying within the DF4nanoGrouping range
for relevant in vitro effects that do not correspond to in vivo over-
load conditions. By contrast, none of the MG3 or MG4 materials
were reported to elicit in vitro genotoxic effects at �10 mg/cm2. It
remains to be determined whether the general threshold value of
�10 mg/cm2 set by Arts et al. (2015) for in vitro effects is specifically
relevant for in vitro genotoxicity.

In vivo genotoxicity data were available for ZnO NM-110 and
NM-111, SiO2 NM-200 and NM-203, MWCNT NM-400, BaSO4 NM-
220, both CeO2 NMs, TiO2 NM-105, aSiO2-susp, and SiO2.amino.
Mostly, the in vivo tests were part of intratracheal instillation or
short-term inhalation studies using rats and the datawere obtained
in alkaline Comet assays using lung cells or in micronucleus tests
using bone marrow cells. The exceptions are MWCNT NM-400, for
which data from rat and mouse intratracheal instillation studies
were available, and ZnO NM-111, for which additionally genotox-
icity data were obtained in the course of a mouse intraperitoneal
lementary criterion for nanomaterial assignment to MG4 (active nanomaterials).
llowing sources: [a] nanoGEM final report (2014); available at: http://nanopartikel.
(2013b); [d] Tantra et al. (2012); [e] Keller et al. (2014); [f] Gosens et al. (2015); [g]

http://nanopartikel.info/projekte/abgeschlossene-projekte/nanogem
http://nanopartikel.info/projekte/abgeschlossene-projekte/nanogem


Table 11
Supplementary grouping criteria for the case study ‘amorphous silica nanomaterials’.

Abbreviations: N/A: Not available; SIMS: Secondary ion mass spectrometry.
For applied test methods, cf. Table 1.
The data for the case study ‘amorphous silica nanomaterials’were retrieved from the following sources: [a] NANOGENOTOX (2013b); [b] OECD (2015c); [c] OECD (2015d); [d]
Wohlleben et al. (2013); [e] Schaefer et al. (2012); [f] Landsiedel et al. (2014a); [g] Izak-Nau and Voetz (2014); [h] unpublished study report.

a Presence of C considered to result from surface contamination.
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administration study.
In vivo genotoxic effects were not recorded for any of these

materials that cover all four MGs of the DF4nanoGrouping. Hence,
the in vitro genotoxic effects (recorded at test material concentra-
tions lying within ranges reflecting in vivo non-overload condi-
tions) recorded for the MG1 and MG2 materials did not correlate
with the outcomes of the available in vivo genotoxicity studies. This
observation confirms the mentioned problems in correlating
in vitro genotoxicity data for NMs with in vivo genotoxicity data
(Landsiedel et al., 2010; Maser et al., 2015). Most likely, they further
point to the overall low in vivo genotoxic potential of NMs.

The additional material C60 fullerene was the only material for
which in vivo genotoxicity was recorded. These findings were ob-
tained in an in vivo alkaline Comet assay performed as a part of an
intratracheal instillation study with C57BL/6J mice (Totsuka et al.,
2009).

In summary, the outcome of the case studies does not reveal
principles allowing a grouping of NMs by in vitro or in vivo geno-
toxic effects, and a threshold value or benchmark material for
in vitro or in vivo genotoxicity that had not been laid down in Arts
et al. (2015) is again not suggested.

Tables 9e13 present the data on the DF4nanoGrouping qualifier
dustiness and the supplementary criteria specific surface area,
surface chemistry, surface charge and hydrophobicity recorded for
the 24 case study materials, quartz dust DQ12 and C60 fullerene.

In regard to the qualifier dustiness, it should be noted that the
Table 12
Supplementary grouping criteria for the case study ‘organic pigments’.

Abbreviations: N/A: Not available.
For applied test methods, cf. Table 1.
All data for the case study ‘organic pigments’ were retrieved from unpublished study re
case study materials do not cover the entire range of relevant de-
grees of dustiness. All of the case study materials are mono-
constituent materials, and since most of them are delivered as
powders, as such, they are more or less dusty (as compared to, e.g.
resinated materials). Nevertheless, the qualifiers ‘dustiness’ or
‘droplet size’ may be used to prioritize the need for inhalation
toxicity studies. They may further be used for the refinement of
testing requirements, e.g. to select relevant biological media to
assess dissolution and dispersibility.

No relevant principles for NM grouping (or relevant threshold
values) could be recognized from the data collected for the supple-
mentary criteria surface area, surface chemistry, and hydrophobic-
ity. However, as the example of CeO2 NM-211 and NM-212 reveals,
the supplementary criterion surface charge may provide added
value forNMgrouping andhazard assessment (Maruccoet al., 2015),
especially when the DF4nanoGrouping is expanded to additionally
include ecotoxicological assessment. Ruenraroengsak and Tetley
(2015) recorded that positive surface charge of polystyrene nano-
particles may enhance in vitro toxicity in primary human alveolar
macrophages and lung epithelial cells. Similarly, neutral or posi-
tively charged TiO2 NMs, but not negatively charged ones, were
taken up by in vitro airway epithelial cells (Boland et al., 2014).
4. Discussion

The four case studies that were performed to evaluate the
ports.



Table 13
Supplementary grouping criteria for the ‘additional materials’.

Abbreviations: IEP: Iso-electric point; N/A: Not available.
The data for quartz dust DQ12 and C60 fullerene were retrieved from the following sources: [a] Wohlleben et al. (2013); [b] Jacobsen et al. (2008); [c] Chen and
Elimelech (2009); Aschberger et al. (2010).
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appropriateness of the DF4nanoGrouping were set up to encom-
pass three main types of inorganic NMs, i.e. carbonaceous NMs,
metal oxides and metal sulphates, silica NMs, as well as nanosized
and non-nanosized organic pigments. Further, for each of the case
studies, materials were selected that are economically relevant and
cover a broad spectrum of intrinsic material properties.

4.1. Reassessment of the DF4nanoGrouping criteria, threshold
values and benchmark materials

4.1.1. Reassessment of Tier 1 and Tier 2 criteria
Arts et al. (2015) identified a limited number of Tier 1 (intrinsic

material properties) and Tier 2 (system-dependent properties and
cellular effects) criteria as essential for NM assignment to one of the
four MGs. For Tier 1, these were water solubility, morphology and
composition (including impurities). For Tier 2, these were disso-
lution in biological media, surface reactivity, dispersibility and
cellular effects.

The outcome of the case studies confirms the adequacy of these
DF4nanoGrouping criteria (Table 14). All Tier 1 and Tier 2 criteria
proved relevant in assigning NMs to one of the four MGs. Further,
the high concordance between Tier 1 and Tier 2 MG assignment
and Tier 3 MG assignment confirms the relevance and adequacy of
all grouping criteria and threshold values for NM hazard assess-
ment. The threshold values set for the Tier 1 and Tier 2 criteria are
conservative in that hazardmay be over-predicted (as the examples
of SiO2.phosphate and Pigment blue 15:1 reveal), but it was never
under-predicted. Finally, also the available long-term NOAECs that
were used as ‘gold standard’ for the evaluation of the case studies
are consistent with the overall assignment of the case study ma-
terials to the four MGs.

Hence, the overall outcome of the case studies confirms the
usefulness of the DF4nanoGrouping as a relevant tool to support
NM hazard assessment. At the same time, the outcome of the case
studies highlights prevailing knowledge gaps which stand in the
way to the final assignment of individual NMs to one of the MGs.

The metal oxide NMs assigned to MG1 (soluble NMs) were
assigned to this MG based upon their high dissolution in biological
media. By contrast, these materials did not meet the threshold
value for the Tier 1 criterion water solubility that was only altered
in the borderline findings for SiO2 NM-200 and NM-203. As
compared to the soluble metal oxides, amorphous SiO2 NMs have a
complex dissolution and reaction behaviour. In aqueous media,
amorphous SiO2 NMs gradually transform into polymeric silicic
acids, which in water and under certain conditions may again
condense to colloidal structures. Hence, for amorphous SiO2 NMs, it
is not appropriate to strictly differentiate between solubility (Tier 1)
and dissolution (Tier 2). Instead, both criteria should be assessed
jointly. Of note, in a modified OECD TG 105 solubility test, using
molybdate to precipitate orthosilicic acid released from SiO2 NMs, a
borderline value of 115 mg/L was recorded for precipitated SiO2

NM-200 and 210 mg/L for pyrogenic SiO2 NM-203 (unpublished
study reports). Depending on the methodologies applied to remove
and detect the released species, the recorded results may differ
between studies.

Generally, the available data on water solubility and dissolution
were found to be very heterogeneous in terms of methodologies
and dose metrics applied. Especially, the testing methods to assess
dissolution in biological media have obviously not yet been clearly
defined or standardized. Applied test material concentrations
ranged between 0.1 and 10 g/L. Further, for a given medium, in-
cubation times ranged between 24 h and 28 days, and results were
either expressed in dissolved mass per volume or relative to the
total concentration. In Arts et al. (2015), the grouping criterion
‘dissolution rate in biological media’ (i.e. dissolved amount after a
pre-determined incubation time) had been set. However, due to the
mentioned inconsistencies in assessing and expressing the rate of
dissolution, for the present case studies, ‘dissolution in biological
media’ was used instead (still recording the applied incubation
times).

Further research should aim at determining cut-off values for
the incubation times that are relevant for the respective media. The
evaluation of test results should be standardized to express the
amount of dissolved material both as absolute mass per volume as
well as relative to the total applied material. The latter option is
recommended by the WHO for the in vitro assessment of man-
made vitreous fibres, for which the key role of benchmark mate-
rials and dissolution rates (in units of ng/cm2/h) is well-established
(WHO,1988). For NMs, a cut-off value in rate units does not exist. In
this respect, an OECD draft technical guidance on the Dissolution
rate of nanomaterials in aquatic media is currently being finalized
(OECD, 2015f), and the DF4nanoGrouping criterion dissolution in
biological media should be amended in accordance with its pro-
visions, as relevant.

Finally, it has been recommended to assess particle dissolution
(for the inhalation route of exposure) both at acidic (4.5) and
neutral (7.5) pH values to reflect both the acidic environment of the
lung lining fluid and the neutral environment of the alveolar
macrophages (Guldberg et al., 1995). In the present case studies,
dissolution in PSF or artificial lysosomal fluid (ALF) was assessed at
acidic pH values and dissolution in Gamble's solution at neutral pH
values.

For soluble metal oxides (e.g. ZnO and CuO NMs), effects are
expected to be dominated by the released toxic ions. Nevertheless,



Table 14
Reassessment of the DF4nanoGrouping benchmark materials as laid down in Arts et al. (2015).

Benchmark material DF4nanoGrouping
criterion or qualifier

DF4nanoGrouping benchmark for: Consistency with outcome of case studies/necessary adaptations

MWCNT NM-400 Toxic potency (STIS) STIS NOAEC Range I; recovery: no With the current threshold, for MWCNTNM-400, a STIS NOAEC Range of
I or II was recorded. Additionally, the original Range I threshold does not
address the reversibility or progression of effects which is a further
relevant toxicological parameter for hazard assessment. Therefore, the
threshold value for STIS NOAEC Range I is amended to ‘<0.5 mg/m3 and
no regression or progression of effects’.

BaSO4 NM-220 1 Surface reactivity
2 Cellular effects
3 Toxic potency (STIS)
4 Clearance a

1 Not oxidative
2 Passive
3 STIS NOAEC Range IV
4 Accelerated

1 yes
2 yes
3 yes
4 yes

CeO2 NM-211 and NM-212 1 Cellular effects
2 Toxic potency
3 Clearance a

4 Bioavailability
5 Surface charge

1 Activity
2 STIS NOAEC Range II
3 Decelerated
4 Local
5 Positive

1 yes
2 yes
3 yes
4 yes; available data indicate a lack of systemic translocation or effects
5 Supplementary criterion for ‘activity’

TiO2 NM-105 1 Dustiness powders
2 Water solubility
3 Toxic potency
4 Regression of effects
5 Clearance a

1 High
2 Low
3 STIS NOAEC Range III
4 Recovery: yes
5 Physiological

1 No, but all case study substances have some degree of dustiness
2 yes
3 yes
4 Effects partially reversible
5 yes, at substance concentrations below pulmonary overload in rats

ZnO NM-110 and NM-111 1 Water solubility
2 Cellular effects

1 Limited
2 Activity (shedding of toxic ions)

1 yes
2 In vitro activity was recorded that is most likely attributable to

dissolved ions. Therefore, this criterion appears appropriate for the
benchmark material ZnO, even though it is not essential for
nanomaterial assignment to MG1.

SiO2 NM-200 and NM-203 1 Toxic potency (STIS)
2 Dispersibility

1 SiO2 NM-200 (large agglomerates);
SiO2 NM-203 (small agglomerates)

2 STIS NOAEC range III

1 and 2. While for both SiO2 NM-200 and NM-203 agglomeration and
the STIS NOAEC Range III were recorded, these criteria are not essential
for nanomaterial assignment to MG1.
Instead, the following benchmark materials are suggested: SiO2.acrylate
for dispersible substances (AAN <3), and aSiO2-susp for agglomeration
and STIS NOAEC Range III.

10 nm-CuO 1 Water solubility
2 Dissolution

1 Limited
2 High (active)

10 nm-CuO had not yet been assigned as benchmark material in Arts
et al. (2015). Based upon the outcome of the case studies, it appears as
appropriate benchmark material for the essential MG1 criteria water
solubility (limited) and dissolution (high).

Quartz dust DQ12 1 Surface reactivity 1 High Non-nanosized crystalline quartz dust DQ12 had not yet been assigned
as benchmark material in Arts et al. (2015). Based upon the outcome of
the case studies, it appears as appropriate benchmark material for the
essential MG4 criterion high surface reactivity.

Abbreviations: MG: Main group; NOAEC: No observed adverse effect concentration; STIS: Short-term inhalation study.
The STIS NOAEC ranges correspond to: Range I: <0.1 mg/m3; Range II: <1 mg/m3; Range III: <10 mg/m3; Range IV: �10 mg/m3.

a Of note, physiological alveolar macrophage-derived pulmonary clearance of inhaled particles in rats corresponds to a pulmonary half-time of approximately 60 days
(ECETOC, 2013), i.e. longer than the threshold value of >40 days set for biopersistent fibres in BAuA (2014).
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particle effects may additionally contribute to or modify these ef-
fects. The proposed solubility threshold of 100 mg/L is low. How-
ever, based upon the outcome of the case studies, it appears
adequate to indicate that a sufficient amount of ions is released that
cause adverse effects. By contrast, if materials release substances
that do not cause adverse effects, such as in the case of SiO2 NM-
200 and NM-203, only effects of the particles will be seen. This is
reflected in the relatively low STIS NOAECs recorded for these two
materials. As discussed above taking the example of SiO2 NM-200
and NM-203, the threshold values for water solubility and disso-
lution in biological media may have to be reconsidered for mate-
rials that dissolve into components that do not cause adverse
effects. For the time being, these two SiO2 NMs are assessed as
partly dissolving ‘borderline MG1 or MG4’.

Within the DF4nanoGrouping, particle size and shape are
assessed to distinguish HAR from globular NMs. Currently, the
essential criteria for NM assignment to MG2 (biopersistent HAR
NMs) are based upon the WHO definition of fibres (WHO, 2005)
and the biopersistence threshold value set by BAuA (2014). How-
ever, theWHO definitionwas not specifically conceived in regard to
NMs. Further research is needed to determine the critical length of
biopersistent, high-aspect ratio NMs that have the potential to elicit
‘fibre toxicity’ and to determine if two-dimensional platelet-like
materials, such as graphene, may also elicit such in vivo effects.
Based upon the outcome of such research, the threshold values for
NM assignment to MG2 (biopersistent HAR NMs) may have to be
adapted (and for the time being the name ‘biopersistent fibres’may
be more appropriate for MG2 than ‘biopersistent HAR NMs’).

The Tier 2 grouping criterion dispersibility, assessed in media
that are relevant for the route of exposure under investigation, al-
lows predicting a NM's mobility in the organism. Therefore, it is an
important criterion to distinguish between passive (MG3) and
active NMs (MG4). The example of SiO2.acrylate that was assigned
to MG4 in Tier 2 on account of its high dispersibility and for which
splenic effects were observed in the Tier 3 STIS underlines the
relevance of the criterion dispersibility for NM grouping. The in-
fluence of NM agglomeration (or dispersibility) on NM hazard may
be manifold. Outside the body, NM agglomeration greatly reduces
human exposure. After uptake, agglomeration reduces NM trans-
location across the pulmonary barrier (or the skin and
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gastrointestinal tract), preventing exposure of secondary organs
(Bruinink et al., 2015). Further, Bruinik et al. caution that agglom-
eration may represent a risk factor if it occurs after translocation
across the primary barriers, which may result in reduced clearance
efficiency.

Nevertheless, high dispersibility alone does not provide
conclusive evidence of a NM's potential for extra-pulmonary
translocation, let alone its potential to elicit systemic effects:
SiO2.phosphate was one of the three ‘false positive’ case study
materials: It was assigned to MG4 in Tier 2 on account of its high
dispersibility in DMEMþ FCS, but this assignment was corrected to
MG3 in Tier 3. In the rat STIS, SiO2.phosphate neither elicited pul-
monary (or systemic) effects, nor was it detected in extra-
pulmonary organs. By comparison, there were no ‘false negative’
case study materials, i.e. none of the Tier 1 and Tier 2 assignments
to MG3 (passive NMs) had to be corrected in Tier 3.

Surface reactivity was the only Tier 2 criterion that was not
pivotal e on its own e for NM assignment to MG3 or MG4: High
surface reactivity was only observed for one MG4material, i.e. non-
nanosized quartz dust DQ12, and additionally for the MG1material
10 nm-CuO. Quartz dust DQ12 further tested positive in the in vitro
alveolar macrophage assay. While 10 nm-CuO was grouped as a
soluble NM and its effects may largely be attributed to released Cu-
ions, other mechanisms, such as surface reactivity, may have a
minor contribution to the biological effects.While surface reactivity
alone was not decisive for the grouping of the case study materials,
nevertheless, low surface reactivity confirms NM assignment to
MG3. The relevance of surface reactivity for NM hazard assessment
has also been confirmed by other research groups (Karlsson et al.,
2008, 2014).

Apart from the data recorded for SiO2.PEG (that were obtained
with electron spin resonance (ESR)), all surface reactivity data
collected for the present case studies were obtained in the FRAS
assay. This assay has proven robust, and it is well adaptive to
routine testing. Even though the application of the FRAS assay for
NMs is relatively new (Hsieh et al., 2013), its results are promising:
The ranking of results from the FRAS assay is concordant with those
from the cytochrome c assay, that was not used for the case studies
(in-house data and Zhang et al. (2012)), or ESR with cen-
trophenoxine (CPH) spin trap (Izak-Nau and Voetz, 2014). In
contrast to the ESR or cytochrome c assay, the FRAS signal of the
reference material Mn2O3 is at least a factor 100 above noise.
Hence, the differentiation between active and passive NMs is more
reliable, and the FRAS assay was used for the present case studies.

Research to further optimize the FRAS assay is ongoing. In
addition to the Mn2O3erelated FRAS assay threshold value of �10%
of Mn2O3 surface reactivity indicating high surface reactivity (laid
down in Arts et al. (2015)), an absolute threshold value of >0.1
mUFRAS/m2*h may be suggested. In the present case studies, a
second Mn2O3erelated threshold value was introduced to relate
values >1% and <10% of the reference material Mn2O3 to ‘inter-
mediate surface reactivity’. Such intermediate surface reactivity
was recorded for all metal oxides andmetal sulphates for which the
respective data are available as well as for the nanosized and bulk
forms of pigment orange. Further investigations should aim at
determining the hazard implications of different levels of surface
reactivity in order to hone the discriminatory power of this
grouping criterion.

For five of the seven NMs that were correctly assigned to MG4 in
Tier 2, cellular effects were the decisive grouping criterion. Hence,
the outcome of the case studies underlines the relevance of in vitro
investigations for NM hazard assessment. However, the case
studies also highlight a number of requirements that have to bemet
to ensure that in vitro data are relevant for hazard assessment.

Taking into account recent research on the in vitro alveolar
macrophage assay, prevalence was given to data from this assay
since it has been shown to be predictive of in vivo respiratory tract
effects (Wiemann et al., 2015a, 2015b). The in vitro alveolar
macrophage assay uses the NR8383 rat alveolar macrophage cell
line which is similar to alveolar macrophages in the rat lung that
further sequester the vast majority of particles inhaled during the
STIS. The NR8383 assay jointly assesses cellular release of lactate
dehydrogenase (LDH), glucuronidase, tumour necrosis factor alpha,
and reactive oxygen species. Significant effects observed at ‘non
in vitro cellular overload’ conditions are interpreted as indicating
activity. Particles usually agglomerate in the in vitro alveolar
macrophage assay since it uses a protein-free culture medium.
Hence, they sediment to the bottom of the wells, and NM effects
elicited at ‘non in vitro cellular overload’ conditions are assessed as
specific biological effects that are not merely caused by the burden
of the particle volume on the cells. While the cellular effect range of
�10 mg/cm2 laid down in Arts et al. (2015) applies for cytotoxicity
tests performed with lung epithelial cells, for in vitro assays per-
formed with alveolar macrophages, a threshold value of 4000 mm2

particle surface area per macrophage is laid down. This value cor-
responds to non-overload conditions in the phagocytically-active
cells (Wiemann et al., 2015b).

In the current case studies, the example of SiO2 NM-200 and
NM-203 highlights how FCS-supplementation of the culture me-
diummay affect the outcome of cytotoxicity assays. These twoMG1
materials tested positive in the in vitro alveolar macrophage assay
that uses a protein-free culture medium (Minimum Essential Me-
dium; MEM). This outcome correctly reflects their low STIS NOAEC
in Tier 3 (1 mg/m3, each, for equivalent materials) that, however, is
not essential for NM assignment to MG1. By contrast, these same
materials did not induce cellular effects in the MTT or colony
forming efficiency assays using BALB/3T3 mouse fibroblasts
cultured in FCS-supplementedMEM at test material concentrations
from 1 to 100 mg/mL and up to 72-h incubation (Uboldi et al., 2012).
Concordantly, also other studies report that the cytotoxicity of SiO2
NMs is mitigated in the presence of FCS (Landsiedel et al., 2014c).

However, in the in vitro alveolar macrophage assay MWCNT
NM-400 and carbon black could not be assessed because these NMs
could not be dispersed in the protein-free culture media. If data
from the in vitro alveolar macrophage assay were unavailable, data
from test methods addressing standard cell viability endpoints,
such as LDH release, reduction in metabolic activity (reduction of
the tetrazolium salt MTT), or cell proliferation (resazurin reduction
in the alamarBlue® assay) in standard cell lines with respiratory
tract originwere recorded (Kuhlbusch et al., 2009; Landsiedel et al.,
2014b). Accordingly, low surface carbon black and ZnO NM-110 did
not elicit cellular effects in A549 cells using the LDH and MTT tests
up to test material concentration of 25 mg/cm2, whereas 10 nm-CuO
was assessed as causing cellular effects, based upon the positive
outcome of an alamarBlue® assay using macrophages.

4.1.2. Reassessment of Tier 3 grouping and sub-grouping criteria
InTier 3, pulmonarybiopersistence in the STIS serves to confirmor

refute NM assignment to MG1 or MG2. NMs that are assessed as sol-
uble inwaterorquicklydissolving inbiologicalmedia inTier 1andTier
2 are expected to have short pulmonary half-lives. By contrast, NMs
that are assigned toMG2 (biopersistent HARNMs) in Tier 1 and Tier 2
are expected to have prolonged pulmonary half-lives. Nevertheless,
NM grouping based on water solubility and dissolution in biological
media does not always reflect the in vivo situation. This is highlighted
by the example of BaSO4 NM-220 that is not soluble in water or bio-
logicalmedia.Nevertheless, thismaterialwasobserved topossessonly
very short in vivo biopersistence (Keller et al., 2014; Konduru et al.,
2014). The mechanisms by which BaSO4 NM-220 is rapidly elimi-
nated from the lung and Ba is transported to extra-pulmonary
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locations are currently under investigation (Cefic LRI, 2015). The
DF4nanoGrouping tiered assessment of biopersistence is conserva-
tive: Lower tiers may under- but not over-estimate. Besides aerosol
concentration and deposition efficiency, in vivo biopersistence affects
lungburdenoveragivenperiodof time. Lowlungclearancemay result
in high lung burdens, which may result in pulmonary overload con-
ditions. Moreover, slow clearance may prolong or abolish the regres-
sion of lung effects after the inhalation exposure period has ended (cf.
sub-grouping by STIS NOAEC, below). Accordingly, in vivo bio-
persistence has to be taken into account when assessing a material's
hazard at actual exposure concentrations and exposure durations. Of
note, however, rats are especially sensitive to pulmonaryoverload and
resulting tumour formation, whereas the human health relevance of
these effects is at least questionable (ECETOC, 2013).

For the assessment of NMs as active (MG4) based on systemic
bioavailability (extra-pulmonary translocation for the inhalation
route), Arts et al. (2015) laid down a threshold value for organ
burden of 1 mass% of the total dose further distinguishing whether
this level was recorded in the MPS or outside the MPS. In addition
to this original threshold value, organ burden <1% that is accom-
panied by extra-pulmonary effects (as was observed for SiO2.acry-
late) may be used as a further grouping parameter.

As laid down in Arts et al. (2015), the STIS NOAEC may be used
for the sub-grouping of MG4 NMs by potency. Using a threshold
value for STIS NOAEC Range I (<0.1 mg/m3), no single case study
material was clearly assigned to this potency range. For technical
reasons, the lowest aerosol concentration applied in inhalation
studies oftentimes does not undercut 0.5 mg/m3. Additionally, the
original Range I as described by Arts et al. (2015) does not address
the reversibility or progression of effects which is a further relevant
toxicological parameter for hazard assessment. Therefore, the
threshold value for STIS NOAEC Range I should be amended to
‘<0.5 mg/m3 and no regression or progression of effects’. Further,
evaluation of STIS data should take into account that the progres-
sion of effects is not only determined bymaterial pathogenicity, but
also by its respective organ clearance.

Generally, grouping and sub-grouping of NMs assigned to MG4
(active NMs) provides information to identify and specify the need
for further testing.

� If NMs are detected outside the respiratory tract and/or induce
effects in extra-pulmonary tissues, specific testing of systemic
effects is warranted.

� Likewise, if pulmonary effects other than inflammation or upper
airway necrosis are observed, further testing may be necessary
for an in-depth assessment of these effects.

� If a NM's pulmonary clearance in the STIS is prolonged, it may
accumulate in the lung, and studies covering an appropriate
exposure and/or post-exposure period may be warranted.

� For NMs that exhibit inflammatory responses in the lung, but do
not elicit any other effects, sub-grouping based on STIS data
(STIS NOAEC range, the progression or reversibility of effects,
systemic bioavailability) may be useful. Whether this informa-
tion is sufficient for hazard assessment largely depends on the
availability of data for read-across-source NMs within the same
sub-group that may serve the specific read-across for the NM
under investigation.

Of note, for those NMs evaluated in the present case studies for
which data from sub-chronic studies were available, these data did
not reveal a new quality of effects or a toxic potency in a different
order of magnitude. However, in vivo chronic studies with NMs are
largely unavailable, and little is known about the progression of
short-term effects during life-time exposure. A rat life-time study
assessing two NMs (BaSO4 NM-220 and CeO2 NM-212) is currently
ongoing (Gebel and Landsiedel, 2013), and it remains to be seen to
which extent its results will be applicable to other NMs. Given the
limited number of potential modes-of-action of NMs in the lung,
most of the testing needs beyond Tier 3 of the DF4nanoGrouping
are expected to arise from indications of extra-pulmonary effects or
the need to consider for distinct biokinetics due to increased lung
deposition or prolonged clearance.

4.1.3. Reassessment of benchmark materials
As presented in Table 14, the outcome of the case studies

generally confirms adequacy of the benchmark materials suggested
in Arts et al. (2015), with the following adaptations:

Using the revised threshold value for NM assignment to the STIS
NOAEC Range I (i.e. ‘�0.5 mg/m3 and no regression or progression
of effects’), MWCNT NM-400 (STIS NOAEC <0.5 mg/m3) is main-
tained as benchmark material for this STIS NOAEC range. Never-
theless, its toxic potency in the STIS does not per se provide a
definite indication that this MWCNT e or other MWCNTs ewill act
according to the fibre paradigm (Pauluhn, 2010; DeLorme et al.,
2012, 2015; Ma-Hock et al., 2013; Schuler et al., 2013).

Taking into account that the case study materials do not cover
the entire range of relevant degrees of dustiness (cf. Section 3.4),
TiO2 NM-105 is not a suitable benchmark material for ‘high dusti-
ness’. However, the case study confirms the usefulness of TiO2 NM-
105 as benchmark material for low water solubility, STIS physio-
logical pulmonary clearance, STIS NOAEC Range III as well as re-
covery of in vivo effects (that were only partially reversible within
the 21-day post-exposure observation period which stands in
accordance with the lung clearance rate). Of note, physiological
alveolar macrophage-derived pulmonary clearance of inhaled
particles in rats corresponds to a pulmonary half-life of approxi-
mately 60 days (ECETOC, 2013), i.e. longer than the threshold value
of >40 days set for biopersistent fibres in BAuA (2014).

SiO2 NM-200 and NM-203, which have been assigned as
‘borderlineMG1 orMG4’ on account of research accomplished since
the publication of Arts et al. (2015), should not be benchmark ma-
terials for ‘dispersibility’, since this is an essential criterion for MG3
and MG4 grouping. Instead, SiO2.acrylate is put forward as bench-
markmaterials for dispersiblematerials (AAN<3) and aSiO2-susp as
benchmark material for agglomeration and NOAEC Range III.

Additionally, 10-nm CuO is suggested as new benchmark ma-
terial for the essential MG1 criteria water solubility and dissolution
in biological media supplementing the benchmark materials ZnO
NM-110 and NM-111. Furthermore, non-nanosized crystalline
quartz dust DQ12 is suggested as benchmark material for the MG4
criterion high surface reactivity.

4.2. Usefulness of the DF4nanoGrouping for nanomaterial hazard
assessment

The DF4nanoGrouping Decision-making framework for the
grouping and testing of nanomaterials is the first decision-tree-based
tool for the grouping of NMs that comprehensively addresses all
aspects of a NM's life cycle and biological pathways that are rele-
vant for hazard and risk assessment with a focus in the inhalation
route of exposure. The number of criteria that are essential for NM
assignment to one of the four MGs is limited and clearly defined,
and the present case studies confirm the usefulness of these criteria
for NM grouping. Criteria that are relevant for the further sub-
grouping of the heterogeneous group of MG4 active NMs are
likely to be more complex and therefore have not been defined, but
some suggestions weremade. In the case studies, the NMs assigned
to MG4 (active NMs) were sub-grouped by in vivo parameters
recorded in the STIS, i.e. toxic potency range, the reversibility of
effects, and systemic bioavailability. Such sub-grouping may
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contribute to identifying the need for further testing, e.g. if effects
are progressive or if materials have the potential for extra-
pulmonary translocation.

Generally, the need for decision-tree based tools and methods
enabling a rapid categorization of NM hazard potential for regula-
tory purposes is unanimously acknowledged. It has been requested
that such tools and methods should enable to target materials of
high concern for additional scrutiny, while material categories that
pose the least hazard should receive expedited review (Godwin
et al., 2015). In this respect, the four MGs defined in DF4nanoG-
rouping (i.e. soluble, biopersistent HAR, passive and active NMs)
stand in line with the requirements and stipulations from different
organisations, authorities and research groups (ISO, 2014; UBA,
2014; EPA, 2015; Sellers et al., 2015).

The DF4nanoGrouping allows such an expedited review for
soluble NMs (MG1), biopersistent HAR NMs (MG2) and passive
NMs (MG3). For NMs assigned to MG1 because they rapidly release
hazardous constituents, these dissolved constituents or the bulk
material may serve as a basis for the hazard assessment. Actual
dose considerations may, however, be more complex since depo-
sition and dissolution in biological media have to be figured in.
Future research should aim at specifying test methods to measure
dissolution in relevant media, and it should address whether the
MG1 100 mg/L threshold value needs to be revised. Moreover, it
should be discussed whether NMs that dissolve into non-toxic
components may merit a different threshold value than the MG1
threshold value established for NMs that release cytotoxic ions. For
NMs assigned to MG2 (biopersistent HAR NMs), the general fibre
OEL will apply. Here, further research should aim at clarifying
whether the general fibre paradigm is equally applicable to NMs
(and further, specifically, to NMs that have a HAR in two di-
mensions) and if so, whether the same OEL is suitable for all MG2
NMs.

Just as NMs assigned to MG1 or MG2, NMs assigned to MG3
(passive NMs) may not require further testing for human hazard
assessment. In respect to long-term human exposure to NMs, the
DF4nanoGrouping assignment to MG3 versus MG4 may serve to
determine whether a general dust OEL is applicable or not. Passive
NMs are those for which a general dust OEL is sufficient, whereas
active NMs (MG4) are those requiring specific, lower OELs (and,
accordingly, specific further investigations, as relevant). Passive
NMs may nevertheless have the potential to induce inflammation
and potentially lung tumours in rats, if the aerosol concentration is
high and pulmonary clearance is sufficiently prolonged, even
though the human health relevance for such overload conditions is
questionable (ECETOC, 2013). Of note, even though the term pas-
sive, on its own, might not be self-explanatory, the MG3 for passive
NMs is precisely defined. Generally, this MG addresses a similar
type of particles as are subsumed by the terms ‘dusts’, ‘poorly
soluble low toxicity (PSLT) particles’, or ‘granular biodurable par-
ticles (GBP)s, but many of these terms lack a detailed definition.

Just as the MGs defined in the DF4nanoGrouping reflect groups
of NMs recognized by other research groups, authorities or orga-
nisations, the essential criteria for NM assignment to the four MGs
of the DF4nanoGrouping stand in accordance with the groups and
criteria put forward by different organisations and authorities. Also
the need to distinguish between ‘intrinsic’material properties (Tier
1) and ‘extrinsic’, environment-related properties or ‘functionality’
(Tier 2) for proper NM hazard assessment is widely recognized
(Lynch et al., 2014; Hendren et al., 2015; Nel et al., 2015). The
present case studies confirm the usefulness of these criteria and
distinctions for NM grouping and for the prediction of the likeli-
hood of NM in vivo activity.

The DF4nanoGrouping MG assignments and grouping criteria
also provide preliminary information on the mode-of-action of
NMs. Generally, the four MGs relate to four specific modes-of-
actions of NMs (Landsiedel et al., 2014c, Landsiedel, 2015). MG1
relates to toxic ion release (Nel et al., 2013), MG2 to the fibre
paradigm (Poland et al., 2009), MG3 to lung overload as the only
cause for pulmonary effects (Moreno-Horn and Gebel, 2014), and
MG4 to specific surface properties that result in cellular effects and/
or mobility in the organism (Nel et al., 2013, 2015; Wiemann et al.,
2015b). These principles may lay a foundation for the future
development of adverse AOPs (Ankley et al., 2010) for NMs and the
subsequent development of AOP-based integrated approaches for
the testing and assessment (IATAs) of NMs (Arts et al., 2014; Oomen
et al., 2014). In fact, the DF4nanoGrouping may provide key ele-
ments for such IATAs (Arts et al., 2015). The DF4nanoGrouping
provides a mechanistic and biokinetic rationale to steer the
assessment. Thereby, the DF4nanoGrouping provides a sound sci-
entific basis for read-across and weight-of-evidence approaches to
derive information on specific endpoints (cf. ‘hypothesis develop-
ment’ in Oomen et al. (2015)). Generally, the DF4nanoGrouping will
recognize common hazard potentials of materials belonging to
different or same nanoforms (cf. Information box for definition).
Depending on the regulatory context, this may be applied widely
(occupational regulations on fibre OELs and general dust OELs) or
restrictively (only within a nanoform).

A number of grouping criteria laid down in the DF4nanoG-
rouping that were assessed as essential for grouping, such as water
solubility, dissolution in biological media, surface reactivity, dis-
persibility or in vitro cellular effects are not yet regularly addressed
in NM hazard assessment. In recognition of the relevance of these
parameters, collection of data for these criteria should be encour-
aged. Evidently, this may imply the need to introduce new test
methods into a company's or laboratory's test method portfolio.
Nevertheless, application of the DF4nanoGrouping may make NM
hazard assessment more efficient, and it may serve to reduce the
need for animal testing. Evidently, none of the Tier 1 or Tier 2
criteria require animal studies. The STIS requires 40 animals per test
material, whereas the 90-day inhalation study performed in
accordance with OECD TG 413 requires 80 animals (and 120 ani-
mals if the optional post-exposure observation period is included)
for each single material.

The DF4nanoGrouping truly uses animal studies only as a last
resort as is mandatory by Article 25(1) of the EU REACH regulation
(EP and Council of the EU, 2006): It exclusively relies on non-animal
studies in Tier 1 and 2 in order to group those NMs into MG1, MG2
and MG3 that do not require animal testing to perform a hazard
assessment. MG4 NMs may have specific hazardous properties
upon inhalation exposure. These can be identified and possibly sub-
grouped by refined and reduced animal testing using the STIS
protocol. After testing in the STIS, only a fraction of the NMs may
require further animal testing. This will be tailored to the specific
information needs, thereby reducing the overall testing pro-
gramme. In summary, even if animal testing is required for the
DF4nanoGrouping, significantly less animals will be needed than
when a standard testing battery is applied.

In spite of the possible need to introduce the determination of
properties that are not yet routinely addressed, the present case
studies show that, provided that data for the essential grouping
criteria have been collected, the DF4nanoGrouping can be easily
applied. Similarly, existing information can be used, if the test
materials and applied test methods are unequivocally described.
Thereby, redundant testing may be avoided. The example of C60
fullerene supports this presupposition. Data for this material were
exclusively taken from the peer-reviewed literature. Albeit not
having a consistent data base to serve all DF4nanoGrouping criteria,
it was possible to tentatively assign C60 fullerene to MG3 based on
the available literature data only. The DF4nanoGrouping was also
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applied to non-nanosized quartz dust DQ12, which resulted in its
assignment to MG4 in Tier 2 based upon cellular activity and high
surface reactivity. In Tier 3, this assignment was confirmed by
in vivo activity. Likewise, for the non-nanosized DPP orange (bulk)
the Tier 1 and Tier 2 assignment to MG3 was confirmed by a high
STIS NOAEC. These observations may indicate that the DF4nanoG-
rouping is potentially applicable to inhaled particles irrespective of
their size.

Even though intended use and release-related exposure sce-
narios were addressed as important qualifiers for NM testing and
grouping in Arts et al. (2015), the present case studies were
conceived and performed without taking into account specific NM
uses or release scenarios. Thereby, the case studies highlight that
the DF4nanoGrouping may be applied irrespective of specific
exposure scenarios. Overall, knowledge on how different life cycle
changes may affect the release potential and different properties
and effects of NMs is only beginning to evolve (Froggett et al., 2014).
A few examples for no or low release scenarios have been pub-
lished, such as use of the concrete hardening accelerator X-Seed®

(Br€au et al., 2012) or TiO2, Ag and SiO2 NMs that are firmly
embedded in complex paint matrices (Smulders et al., 2015). If NM
release from a given product may be ruled out with certainty,
exposure-based waiving should be justifiable. Observations that
particles that are embedded in products during use and/or storage
may be significantly changed compared to the pristine NMs un-
derline the need for a holistic view on the impact of NMs through
the entire value chain from production, through use and finally to
disposal (Mitrano et al., 2015).
5. Conclusion

The present case studies assessing a broad spectrum of
economically relevant inorganic NMs covering carbonaceous NMs,
metal oxide and metal sulphate NMs, amorphous silica NMs and
non-nanosized and nanosized organic pigments confirm the use-
fulness of the DF4nanoGrouping Decision-making framework for the
grouping and testing of nanomaterials as a relevant tool for NM
hazard assessment (with very minor modifications as compared to
the framework published in Arts et al., 2015; cf. footnotes to
Table 1). In two tiers that rely exclusively on non-animal test
methods followed by a third tier, if necessary, in which data from
the STIS are evaluated, NMs are assigned to one of four MGs. In the
case studies, the DF4nanoGrouping has proven highly efficient in
sorting out NMs that may undergo hazard assessment without
further testing. These are the MG1 soluble NMs, whose further
hazard assessment should rely on read-across to the dissolved
materials, MG2, HAR NMs, which may be assessed as asbestos-like
fibres, and the MG3 passive NMs for which a general dust threshold
may be applicable. Thereby, the DF4nanoGrouping allows identi-
fying MG4 active NMs that merit further in-depth investigations. It
provides a solid approach to sub-group active NMs which in return
provides a scientific rationale to determine specific additional in-
formation needs.

NM assignment to one of the four MGs of the DF4nanoGrouping
further provides preliminary information on the mode-of-action of
NMs. This may also lay a foundation for the future development of
AOPs. Finally, the present case studies may form the scientific basis
for the justification of read-across applications, e.g. by using the
DF4nanoGrouping benchmark materials as source NMs for read-
across. Since the DF4nanoGrouping is a hazard assessment strat-
egy that strictly uses animal studies as a last resort as required by
the REACH regulation (EP and Council of the EU, 2006), its general
application for NM hazard assessment not only serves scientific, but
also animal welfare needs.
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