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In this paper we present an abstract framework for construction of Banach spaces
of distributions from group representations. This extends the theory of coorbit spaces
initiated by H.G. Feichtinger and K. Gröchenig in the 1980s. The coorbit theory sets up
a correspondence between spaces of distributions and reproducing kernel Banach spaces.
The original theory required that the initial representation was irreducible, unitary and
integrable. As a consequence not all Bergman spaces could be described as coorbits.
Our approach relies on duality arguments, which are often verifiable in cases where
integrability fails. Moreover it does not require the representation to be irreducible or even
come from a unitary representation on a Hilbert space. This enables us to account for the
full Banach-scale of Bergman spaces on the unit disk for which we also provide atomic
decompositions. Replacing the integrability criteria with duality also has the advantage
that the reproducing kernel need not provide a continuous projection from a larger Banach
function space. We finish the article with a wavelet characterization of Besov spaces on the
forward light cone.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the 1980s H.G. Feichtinger and K. Gröchenig presented a unified framework for generation of Banach spaces of dis-
tributions using group representations. Their results published in [13–15] and [19] are based on an irreducible unitary
representation (π, H) of a locally compact group G with left-invariant Haar measure dx. The construction of Feichtinger and
Gröchenig requires that the space of analyzing vectors

A w =
{

u ∈ H
∣∣∣ ∫

G

∣∣(π(x)u, u
)∣∣w(x)dx < ∞

}
is non-zero for a submultiplicative weight w : G �→ R+ . Here (u, v) is the inner product of u, v ∈ H . For a non-zero analyzing
vector u the space

H1
w =

{
v ∈ H

∣∣∣ ∫
G

∣∣(π(x)u, v
)∣∣w(x)dx < ∞

}

* Corresponding author.
E-mail addresses: jens@math.umd.edu (J.G. Christensen), olafsson@math.lsu.edu (G. Ólafsson).
URLs: http://www.math.umd.edu/~jens (J.G. Christensen), http://www.math.lsu.edu/~olafsson (G. Ólafsson).

1 The author gratefully acknowledges support from the Louisiana Board of Regents under grant LEQSF(2005-2007)-ENH-TR-21, NSF grant DMS-0801010
and ONR grants NAVY.N0001409103 and NAVY.N000140910324.

2 The research of the author was supported by NSF grants DMS-0402068 and DMS-0801010.
1063-5203/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.acha.2011.01.004

http://dx.doi.org/10.1016/j.acha.2011.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
mailto:jens@math.umd.edu
mailto:olafsson@math.lsu.edu
http://www.math.umd.edu/~jens
http://www.math.lsu.edu/~olafsson
http://dx.doi.org/10.1016/j.acha.2011.01.004


304 J.G. Christensen, G. Ólafsson / Appl. Comput. Harmon. Anal. 31 (2011) 303–324
is a Banach space, which does not depend on the chosen u ∈ A w . Denote by (H1
w)∗ the conjugate dual of H1

w . For a
left-invariant Banach function space Y on G define

CoFG Y = {v ∈ (H1
w

)∗ ∣∣ (x �→ 〈
v,π(x)u

〉)
is in Y

}
.

Feichtinger and Gröchenig show, that the coorbit space CoFG Y is a π -invariant Banach space of distributions which is
isometrically isomorphic to a reproducing kernel Banach subspace of Y . Further, they construct atomic decompositions and
frames for these spaces in the case where the analyzing vector u is chosen such that the mapping x �→ (π(x)u, u) is in a
certain Wiener amalgam space (see for example Lemma 4.6(i) in [18]).

Atomic decompositions have already been established for quite general classes of Hilbert spaces for which the wavelet
coefficients are not integrable (see for example [16,12] and [23]). In the article [7] we gave examples of non-trivial Banach
coorbits and atomic decompositions in cases where A w and CoFG Y are the zero space. In the present article we propose a
generalized coorbit theory, which is able to account for the examples from [7]. We have included the proofs that were left
out of [7] and further expanded on the examples from that paper. The idea of the new construction is to replace the space
H1

w with a Fréchet space S . For square integrable representations of Lie groups the space of smooth vectors is a natural
choice. As an example, the smooth vectors of the discrete series representation of the group

G =
{(

a b
0 a−1

) ∣∣∣ a > 0,b ∈ R
}

⊆ SL2(R)

are used to give a complete wavelet characterization of the Bergman spaces of holomorphic functions on the unit disk. We
further present a wavelet characterization of the Besov spaces on the forward light cone as defined in [1]. This example can
be described by the theory of Feichtinger and Gröchenig, however we include it here as it is of interest in its own right. We
expect that this characterization will generalize to other symmetric cones.

2. Coorbit spaces for dual pairs

Let S be a Fréchet space and let S∗ be the conjugate linear dual equipped with the weak* topology (any reference to
weak convergence in S∗ will always refer to the weak∗ topology). We assume that S is continuously embedded and weakly
dense in S∗ . The conjugate dual pairing of elements v ∈ S and φ ∈ S∗ will be denoted by 〈φ, v〉. Let G be a locally compact
group with a fixed left Haar measure dx, and assume that (π, S) is a continuous representation of G , i.e. x �→ π(x)v is
continuous for all v ∈ S . A vector v ∈ S is called cyclic if 〈φ,π(x)v〉 = 0 for all x ∈ G means that φ = 0 in S∗ . As usual,
define the contragradient representation (π∗, S∗) by〈

π∗(x)φ, v
〉= 〈φ,π

(
x−1)v〉.

Then π∗ is a continuous representation of G on S∗ . For a fixed vector u ∈ S define the linear map W u : S∗ → C(G) by

Wu(φ)(x) = 〈φ,π(x)u
〉= 〈π∗(x−1)φ, u

〉
.

The map W u is called the voice transform or the wavelet transform. If F is a function on G then define the left translation of
F by an element x ∈ G as

�x F (y) = F
(
x−1 y

)
.

A Banach space of functions Y is called left invariant if F ∈ Y implies that �x F ∈ Y for all x ∈ G and there is a constant Cx

such that ‖�x F‖Y � Cx‖F‖Y for all F ∈ Y . In the following we will always assume that the space Y of functions on G is a
left invariant Banach space for which convergence implies convergence (locally) in Haar measure on G . Examples of such
spaces are L p(G) for 1 � p � ∞ and any space continuously included in an L p(G).

Assumption 2.1. Assume that there is a non-zero cyclic vector u ∈ S satisfying the following properties:

(R1) The reproducing formula W u(v) ∗ Wu(u) = Wu(v) is true for all v ∈ S .
(R2) The mapping Y � F �→ ∫

G F (x)Wu(u)(x−1)dx ∈ C is continuous.
(R3) If F = F ∗ W u(u) ∈ Y , then the mapping S � v �→ ∫

F (x)〈π∗(x)u, v〉dx ∈ C is in S∗ .
(R4) The mapping S∗ � φ �→ ∫ 〈φ,π(x)u〉〈π∗(x)u, u〉dx ∈ C is weakly continuous.

A vector u satisfying Assumption 2.1 is called an analyzing vector. Note that assumption (R2) and the left invariance of Y
ensure that the convolution

F ∗ Wu(u)(y) =
∫

F (x)Wu(u)
(
x−1 y

)
dx
G
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is well defined for all F ∈ Y at every point y ∈ G . If F = F ∗ W u(u) ∈ Y then (R3) implies the existence of a unique φ ∈ S∗
such that

〈φ, v〉 =
∫
G

F (x)
〈
π∗(x)u, v

〉
dx.

This φ is denoted π∗(F )u. Also (R4) implies that there is an element v ∈ S such that

〈φ, v〉 =
∫ 〈

φ,π(x)u
〉〈
π∗(x)u, u

〉
dx

for all φ ∈ S∗ . This ensures that the vector v ∈ S can be weakly defined by

v = π
(
Wu(u)∨

)
u =

∫
G

Wu(u)∨(x)π(x)u dx

where we have used the notation f ∨(x) = f (x−1).
Define the subspace Yu of Y by

Yu = {F ∈ Y
∣∣ F = F ∗ Wu(u)

}
,

then the following result holds:

Lemma 2.2. If F and u satisfy (R2), then the space Yu is closed in Y and hence a reproducing kernel Banach space with reproducing
kernel K (x, y) = W u(u)(x−1 y).

Proof. Let {Fn} be a sequence in Yu which converges to F ∈ Y . Then, since we assumed that convergence in Y implies
convergence in measure, we know that there is a subsequence Fnk which converges to F almost everywhere. F ∗ W u(u)(y)

is defined for all y by assumption (R2) and we see that for a fixed y outside a null-set∣∣F (y) − F ∗ Wu(u)(y)
∣∣� ∣∣F (y) − Fnk (y)

∣∣+ ∣∣Fnk (y) − Fnk ∗ Wu(u)(y)
∣∣

+ ∣∣Fnk ∗ Wu(u)(y) − F ∗ Wu(u)(y)
∣∣.

The first term can be made arbitrarily small and the second term is zero. The last term can be estimated by

C‖�y−1 Fnk − �y−1 F‖Y

by assumption (R2) and the left invariance of Y ensures that it can be made arbitrarily small (using that Fnk converges to
F in norm). Therefore F = F ∗ W u(u) almost everywhere and F ∈ Yu . �

Define the space

Cou
S Y = {φ ∈ S∗ ∣∣Wu(φ) ∈ Y

}
(1)

equipped with the norm ‖φ‖ = ‖W u(φ)‖Y . The space Cou
S Y is called the coorbit space of Y with respect to u and S .

Theorem 2.3. Assume that Y and u satisfy Assumption 2.1, then

(a) W u(v) ∗ Wu(u) = Wu(v) for v ∈ Cou
S Y .

(b) The space Cou
S Y is a π∗-invariant Banach space.

(c) Wu : Cou
S Y → Y intertwines π∗ and left translation.

(d) If left translation is continuous on Y , then π∗ acts continuously on Cou
S Y .

(e) Cou
S Y = {π∗(F )u | F ∈ Yu}.

(f) Wu : Cou
S Y → Yu is an isometric isomorphism.

Remark 2.4. If we replace condition (R2) by the assumption that the mapping Y � F �→ F ∗ W u(u) ∈ Y is continuous, then
Yu = Y ∗ Wu(u) and the convolution operator F �→ F ∗ W u(u) is a continuous projection onto the image of W u . This is the
version of the assumptions found in [7] and in [6]. However we have opted for the more general assumption which only
ensures the existence of the convolution. The reason for this is that we aim at giving a wavelet characterization of Bergman
spaces related to symmetric cones, in which case the projection might not be continuous (see [2,1]). Further it is often
easier to show that the function W u(u) is in the dual of Y rather than Y ∗ W u(u) ⊆ Y .
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Proof of Theorem 2.3. (a) We show that the reproducing formula holds for all φ ∈ S∗ . The space S is weakly dense in S∗ ,
so choose a net vα in S for which vα → φ weakly in S∗ . By assumption (R1) the reproducing formula W u(vα) ∗ Wu(u) =
Wu(vα) holds for each vα . The continuity requirement (R4) gives that

φ �→
∫ 〈

π∗(y−1)φ,π(x)u
〉〈
π∗(x)u, u

〉
dx =

∫ 〈
φ,π(x)u

〉〈
u,π

(
x−1 y

)
u
〉
dx

= Wu(φ) ∗ Wu(u)(y)

is weakly continuous. Therefore W u(vα) ∗ Wu(u)(y) → Wu(φ) ∗ Wu(u)(y) for every y ∈ G . By assumption W u(vα)(y) →
Wu(φ)(y) for all y ∈ G , and we conclude that

Wu(φ)(y) = Wu(φ) ∗ Wu(u)(y) for all y ∈ G .

This reproducing formula is valid for all φ ∈ S∗ and hence also for φ ∈ Cou
S Y ⊆ S∗ .

(b)–(d) We now show that ‖φ‖ = ‖W u(φ)‖Y is indeed a norm. The only non-obvious property is that ‖φ‖ = 0 implies
φ = 0. If ‖φ‖ = 0 then ‖W u(φ)‖Y = 0 and so 〈φ,π(x)u〉 = 0 for almost all x. The function x �→ 〈φ,π(x)u〉 is continuous and
thus it is zero for all x. But u is cyclic in S , so φ = 0. This also proves the injectivity of W u .

Next we prove that the space Cou
S Y is complete. Assume that vn is a Cauchy sequence in Cou

S Y . Then Wu(vn) is a
Cauchy sequence in Yu and Wu(vn) converges to a function F ∈ Yu . Assumption (R3) implies that φ defined by

〈φ, v〉 =
∫

F (x)
〈
π∗(x)u, v

〉
dx

is in S∗ , and it follows that

Wu(φ)(y) = 〈φ,π(y)u
〉

=
∫

F (x)
〈
π∗(x)u,π(y)u

〉
dx

=
∫

F (x)
〈
u,π

(
x−1 y

)
u
〉
dx

= F ∗ Wu(u)(y)

= F (y).

Thus φ ∈ Cou
S Y .

The definition of π∗ and the left invariance of Y ensure that Cou
S Y is π∗-invariant and that W u intertwines π∗ and left

translation: Assume that φ is in Cou
S Y , then the voice transform of π∗(y)φ is

Wu
(
π∗(y)φ

)
(x) = 〈π∗(y)φ,π(x)u

〉= 〈φ,π
(

y−1x
)
u
〉= �y Wu(φ)(x).

This also shows that if left translation is continuous on Y , then π∗ acts continuously on Cou
S Y .

(f) We now show that W u(Cou
S Y ) = Yu . If φ ∈ Cou

S Y then Wu(φ) ∈ Y and also W u(φ) = Wu(φ) ∗ Wu(u) ∈ Yu . If on the
other hand F ∈ Yu then F = F ∗ Wu(u) and assumption (R3) again tells us that there is a φ ∈ S∗ defined by

〈φ, v〉 =
∫

F (x)
〈
π∗(x)u, v

〉
dx

for v ∈ S . Direct calculation shows that

Wu(φ) = F ∗ Wu(u) = F ∈ Y

such that φ ∈ Cou
S Y . Therefore W u : Cou

S Y → Yu is surjective. That W u is an isometry follows directly from the definition of
the norm.

(e) Above we have shown that for F ∈ Yu there is a φ ∈ Cou
S Y such that φ = π∗(F )u. If on the other hand φ ∈ Cou

S Y ,
then let F = W u(φ) = F ∗ Wu(u) ∈ Y ∗ Wu(u). Then by (R3) π∗(F )u defines an element in S∗ and〈

π∗(F )u,π(y)u
〉= ∫ F (x)

〈
π∗(x)u,π(y)u

〉
dx

= F ∗ Wu(u)(y)

= F (y)

= 〈φ,π(y)u
〉
.

This shows that π∗(F )u and φ agree for all π(y)u, and since u is cyclic in S , it follows that π∗(F )u and φ are the same
element in S∗ . �
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Corollary 2.5. If Assumption 2.1 holds for u and a Banach function space Y then it also holds for any quasi-Banach space Ỹ continuously
included in Y . In particular Cou

S Ỹ is a well-defined quasi-Banach space satisfying Theorem 2.3 and Cou
S Ỹ is continuously included in

Cou
S Y .

Remark 2.6. Theorem 4.2(i) in [14] states that CoFG Y is continuously included in (H1
w)∗ , and Theorem 4.5.13(d) in [24]

states further that H1
w is continuously included in CoFG Y . In general S � Cou

S Y , since for example the coorbit space
Cou

H L1(G) for an integrable representation does not contain H. It is an open problem if the inclusion Cou
S Y ↪→ S∗ is

continuous for the general coorbit theory.

The following theorem tells us which analyzing vectors will give the same coorbit space.

Theorem 2.7 (Dependence on the analyzing vector). If u1 and u2 both satisfy Assumption 2.1 and for i, j ∈ {1,2} the following
properties hold

• there are non-zero constants ci, j such that Wui (v) ∗ Wu j (ui) = ci, j Wu j (v) for all v ∈ S
• Yui � F �→ F ∗ Wu j (ui) ∈ Y is continuous
• S∗ � φ �→ ∫ 〈φ,π(x)ui〉〈π∗(x)ui, u j〉dx ∈ C is weakly continuous

then Cou1
S Y = Cou2

S Y with equivalent norms.

Proof. Assume that u1 and u2 are two analyzing vectors, i.e. they satisfy the properties Assumption 2.1. We claim first that

Wu1(v) ∗ Wu2(u1) = c1,2Wu2(v)

for all v ∈ S∗ . With v ∈ S this is true by the assumption. The space S is weakly dense in S∗ and therefore the identity
Wu1 (v) ∗ Wu2(u1) = c1,2Wu2 (v) is true for all v ∈ S∗ . This is verified by applying the third continuity condition to the
integral

Wu1(v) ∗ Wu2(u1)(y) =
∫ 〈

π∗(y−1)v,π(x)u1
〉〈
π∗(x)u1, u2

〉
dx.

If Wu1 (v) ∈ Y then W u1(v) ∈ Yu1 and Wu1 (v) ∗ Wu2 (u1) = c1,2Wu2(v) ∈ Y by assumption. The continuity assumption
gives the inequality∥∥Wu2(v)

∥∥
Y = c−1

1,2

∥∥Wu1(v) ∗ Wu2(u1)
∥∥

Y � C
∥∥Wu1(v)

∥∥
Y .

Symmetry then gives us that Cou1
S Y = Cou2

S Y with equivalent norms. �
In the following we will describe how the choice of the Fréchet space S affects the coorbit space. We will show that

there is great freedom when choosing S .

Theorem 2.8 (Dependence on the Fréchet space). Let S and T be Fréchet spaces which are weakly dense in their conjugate duals S∗
and T ∗ respectively. Let π and π̃ denote representations of G on S and T respectively. Assume there are vectors u ∈ S and ũ ∈ T such
that the requirements in Assumption 2.1 are satisfied by both (u, S) and (ũ, T ). Also assume that the conjugate dual pairings of S∗ × S
and T ∗ × T satisfy 〈u,π(x)u〉S = 〈ũ, π̃ (x)ũ〉T for all x ∈ G. Then Cou

S Y and Coũ
T Y are isometrically isomorphic. The isomorphism is

given by W −1
ũ Wu.

Proof. Let W u(φ)(x) = 〈φ,π(x)u〉S for φ ∈ CoS
u Y and Wũ(ṽ ′)(x) = 〈ṽ ′, π̃ (x)ũ〉T for ṽ ′ ∈ CoT

ũ Y . Since it is assumed that
Wu(π(x)u) = Wũ(π(x)ũ) for all x ∈ G the spaces CoS

u Y and CoT
ũ Y are both isometrically isomorphic to the space Yu = Yũ .

The isomorphism between Cou
S Y and Coũ

T Y is exactly W −1
ũ Wu : CoS

u Y → CoT
ũ Y . �

The use of Gelfand triples has been emphasized in for example [11] and it is natural to ask how the coorbit space
depends on the Gelfand triple used for its construction. Let π be a unitary irreducible representation of G on H. Assume
that the Fréchet spaces S and T are π -invariant and that (S, H, S∗) and (T , H, T ∗) are Gelfand triples with the common
Hilbert space H. Then S ∩ T is π -invariant. If we can choose a non-zero vector u ∈ S ∩ T , such that u is analyzing for both
S and T , then〈

u,π(x)u
〉
S = (u,π(x)u

)
H = 〈u,π(x)u

〉
T

and we are in the situation of the previous theorem. We summarize the statement as
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Corollary 2.9. Assume that (S, H, S∗) and (T , H, T ∗) are Gelfand triples and assume there is an analyzing vector u ∈ S ∩ T such that
both (u, S) and (u, T ) satisfy Assumption 2.1 for some Banach space Y , then Cou

S Y and Cou
T Y are isometrically isomorphic.

If the Fréchet space S is continuously included and dense in the Fréchet space T , then we can regard the space T ∗ as a
subspace of S∗ . With this identification the two coorbit spaces will be equal. We state the following

Theorem 2.10. Let (π, H) be a unitary representation of G, and let (S, H, S∗) and (T , H, T ∗) be Gelfand triples for which (π, S) and
(π, T ) are representations of G. Assume that i : S → T is a continuous linear inclusion and that there is u ∈ S such that both (u, S)

and (i(u), T ) satisfy Assumption 2.1. Then the map i∗ restricted to Coi(u)
T Y is an isometric isomorphism between Coi(u)

T Y and Cou
S Y .

Proof. Since the vector i(u) is assumed cyclic in T , we see that i(S) is dense in T , and therefore i∗ : T ∗ → S∗ is injective.
This allows us to view T ∗ as a subspace of S∗ .

Let Wu(φ)(x) = 〈φ,π(x)u〉S and W i(u)(ṽ ′) = 〈ṽ ′,π(x)i(u)〉T . For φ ∈ Cou
S Y we have

Wu(φ) ∗ W i(u)

(
i(u)

)
(x) =

∫
Wu(φ)(y)

(
i(u),π

(
y−1x

)
i(u)

)
H dy

=
∫

Wu(φ)(y)
(
u,π

(
y−1x

)
u
)

H dy

= Wu(φ) ∗ Wu(u)

= Wu(φ) (2)

which shows that W u(φ) ∈ Yi(u) . By (R3) there is an element ṽ ′ ∈ T ∗ such that for ṽ ∈ T〈
ṽ ′, ṽ

〉
T =

∫
Wu(φ)(x)

〈
π∗(x)i(u), ṽ

〉
T dx.

Furthermore i∗(ṽ ′) = φ in S∗ , since u is cyclic and〈
i∗
(

ṽ ′),π(x)u
〉
S = 〈ṽ ′,π(x)i(u)

〉
T = Wu(φ) ∗ W i(u)

(
i(u)

)
(x) = 〈φ,π(x)u

〉
S

for each x ∈ G . This shows that Cou
S Y ⊆ i∗(Coi(u)

T Y ).

If on the other hand ṽ ′ ∈ Coi(u)
T Y , then

Wu
(
i∗
(

ṽ ′))(x) = 〈i∗(ṽ ′),π(x)u
〉
S = 〈ṽ ′,π(x)i(u)

〉
T = W i(u)

(
ṽ ′)(x) ∈ Y

which shows that i∗(ṽ ′) ∈ Cou
S Y . This implies that i∗(Coi(u)

T Y ) ⊆ Cou
S Y .

That the mapping i∗ is an isometry when restricted to Coi(u)
T Y follows directly from the calculations in (2). �

Remark 2.11. If (π, S) is a representation of G and u is a cyclic vector for which it is true that 〈π∗(x)u, u〉 = 〈u,π(x)u〉 for
all x ∈ G and (R1) and (R4) are satisfied, then 〈v, w〉 is an inner product on S . The completion H of S with respect to the
norm ‖v‖H = √〈v, v〉 is a Hilbert space. The representation π extends to a unitary representation on H. This representation
will be cyclic, however in general it will not be irreducible.

Remark 2.12. In general the reproducing formula (R1) does not imply unitarity as demonstrated in [29]. There Zimmermann
obtains a reproducing formula from a non-unitary representation. It will be interesting to see if it is possible to construct
coorbit spaces in this setting.

The following theorem is a slight generalization of [14, Theorem 4.9], which in theory enables us to apply it to more
general coorbit spaces than the ones treated in [14]. The proof follows that of [14, Theorem 4.9] and is left to the reader.

Theorem 2.13. Let Y ∗ be the conjugate dual space of Y and assume it is also a Banach space of functions. Assume that u ∈ S is a vector
satisfying Assumption 2.1 for both Y and Y ∗ . If the conjugate dual pairing on Y ∗ × Y satisfies〈

F ∗ Wu(u), G
〉
Y ∗×Y = 〈F , G ∗ Wu(u)

〉
Y ∗×Y , (3)

then (Cou
S Y )∗ = Cou

S (Y ∗). If Y is reflexive so is Cou
S Y .

If the conjugate dual pairing of Y and Y ∗ is the extension of an integral then property (3) is true.
The following theorem shows that besides a reproducing formula a duality requirement is sufficient for the construction

of coorbit spaces. This is worth mentioning as some of the examples we treat later can be described in this manner.
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Theorem 2.14. Let π be a representation of a group G on a Fréchet space S with conjugate dual S∗ . Let u be a cyclic vector in S such
that Wu(v) ∗ Wu(u) = Wu(v) for all v ∈ S∗ . Assume that for the Banach space Y , the mapping

Y × S � (F , v) �→
∫
G

F (x)W v(u)
(
x−1)dx ∈ C

is continuous, then Cou
S Y = {φ ∈ S∗ | Wu(φ) ∈ Y } satisfies properties (a)–(f) of Theorem 2.3.

Note that for Y = L p(G) the requirement is in fact a duality requirement, i.e. we require that S � v �→ W v(u)∨ ∈ Lq(G) is
continuous for 1/p + 1/q = 1.

Proof. The proof follows that of Theorem 2.3. We note that the requirements (R1) and (R4) are used to prove the reproduc-
ing formula W u(φ)∗ Wu(u) = Wu(φ) for all φ ∈ S∗ (which we instead have assumed here). The requirement (R3) is satisfied
for F = F ∗ Wu(u) ∈ Y , since it is assumed true for all F ∈ Y . �
3. Existing coorbit theories

In this section we show that the coorbit theory of Feichtinger and Gröchenig is a special case of the coorbit theory for
dual pairs.

3.1. Coorbit theory by Feichtinger and Gröchenig

In the following let (π, H) be an irreducible unitary square-integrable representation on a locally compact group G . Then
the Duflo–Moore Theorem [9] ensures that we can choose u �= 0, such that the wavelet coefficients

Wu(v) = (v,π(x)u
)

satisfy a reproducing formula

Wu(v) ∗ Wu(u) = Wu(v)

for all v ∈ H. Let Y be a left invariant Banach function space continuously included in L1
loc(G). Since convergence in L1

loc(G)

implies convergence locally in Haar measure, the same is true for Y . Define the weight

w(x) = sup
‖F‖Y =1

‖�x−1 F‖Y

‖F‖Y
,

and assume that the space

H1
w = {v ∈ H

∣∣Wu(v) ∈ L1
w

}
contains u (and thus is non-zero) and equip it with the norm

‖v‖H1
w

= ∥∥Wu(v)
∥∥

L1
w
.

Denote the conjugate dual of H1
w by (H1

w)∗ , and define the coorbit space

CoFG Y = {φ ∈ (H1
w

)∗ ∣∣Wu(φ) ∈ Y
}
.

Feichtinger and Gröchenig prove all the properties of Theorem 2.3 are satisfied for CoFG Y (see Section 4 in [14]). The proofs
by Feichtinger and Gröchenig rely on Wiener amalgam spaces, which we briefly introduce here. For a compact neighborhood
Q of e ∈ G let 1Q be the characteristic function on Q and define the control function

K Q (F )(x) = ∥∥(�x1Q )F
∥∥

L∞ .

Then the space W (Y ) defined by

W (Y ) = {F ∈ Y
∣∣ K Q (F ) ∈ Y

}
with norm ‖F‖W (Y ) = ‖K Q (F )‖Y does not depend on Q (up to norm equivalence). These spaces were used to verify
properties (R2) and (R3), which are often easier to prove by duality (see Theorem 2.14) allowing us to avoid the Wiener
amalgam machinery. Feichtinger and Gröchenig further use Wiener amalgam spaces to define the set of better vectors

B w = {u ∈ H
∣∣Wu(u) ∈ W

(
L1

w

)}
, (4)

and they show that a non-zero better vector will provide atomic decompositions for the coorbit space CoFG Y (see Theo-
rem 6.1 in [14]).
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Remark 3.1. We expect that the coorbit theory developed by Dahlke, Steidl and Teschke in [8] can also be generalized in a
manner similar to our approach presented in Section 2.

3.2. Coorbit theory for quasi-Banach spaces

In [25] Rauhut introduces coorbits for a quasi-Banach space Y . The notation in this section follows that of the coorbit
theory by Feichtinger and Gröchenig. Rauhut uses Wiener amalgam spaces to define the coorbit for Y to be the space

C(Y ) = { f ∈ (H1
w

)∗ ∣∣Wu( f ) ∈ W (Y )
}= Co W (Y ).

The use of W (Y ) ensures that the convolution by W u(u) ∈ L1
w is defined, while convolutions on quasi-Banach spaces are

generally not defined. In [26] is shown that W (Y ) is continuously included in L∞
1/w(G) (which is a Banach space for which

the properties in Assumption 2.1 can be verified with S = H1
w ). By Corollary 2.5 it then follows immediately, that C(Y ) is a

quasi-Banach space.
If w is a weight for which W u(u) ∈ L1

w it is in fact possible to define coorbit spaces for any quasi-Banach space Y ′
continuously included in L∞

1/w . In particular if Y is a quasi-Banach space the space Y ′ = Y ∩ L∞
1/w can be used. In the case

of the modulation spaces described in [17] it turns out that W (Y ), Y ∩ L∞
1/w (and even Y ) give the same coorbits. If this is

the case in general we do not know.

4. Bergman spaces on the unit disk

Let D be the unit disk in C equipped with area measure dz. For 1 � p < ∞ and σ > 1 the Bergman spaces are the
classes of holomorphic functions

Ap
σ (D) =

{
f ∈ O(D)

∣∣∣ ‖ f ‖p
A p

σ (D)
=
∫
D

∣∣ f (z)
∣∣p(1 − |z|2)σ−2

dz < ∞
}
.

In this section we give a wavelet characterization of these spaces.

4.1. Coorbits for discrete series

Let G ⊆ SL2(R) be the connected subgroup of upper triangular matrices, i.e.

G =
{(

a b
0 a−1

) ∣∣∣ a > 0,b ∈ R
}

with left-invariant measure da db
a2 . Through the Cayley transform this group can be regarded as the subgroup of SU(1,1)

consisting of matrices(
α β

β̄ ᾱ

)
= 1

2

(
a + a−1 + ib b + i(a − a−1)

b − i(a − a−1) a + a−1 − ib

)
.

For real numbers s > 1 the pairing

(u, v)s = s − 1

π

∫
D

u(z)v(z)
(
1 − |z|2)s−2

dz = s − 1

π

∫
D

u
(
reiθ )v(reiθ

)(
1 − r2)s−2

r dr dθ

is an inner product on the Hilbert space

Hs = A2
s (D) = {v ∈ O(D)

∣∣ (v, v)s < ∞}.
The discrete series representations (πs, Hs) are defined by

πs

(
α β

β̄ ᾱ

)
v(z) = (−β̄z + α)−s v

(
ᾱz − β

−β̄z + α

)
.

Since G acts transitively on the disk D an argument by Kobayashi [21] shows that πs is irreducible. From now on we denote
by u the wavelet in Hs which is identically 1 on the disk

u(z) = 1D(z).

Then the wavelet coefficients W s
u(u) for s > 1 can be calculated explicitly as

W s
u(u)(a,b) = (u,πs(a,b)u

)= 2s(a + a−1 − ib
)−s

.

The following basic fact is useful to us
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Lemma 4.1.∫ ((
a + a−1)2 + b2)−t

ar da db

a2
< ∞

if and only if 2(1 − t) < r < 2t.

This shows that the representations πs are square integrable for all s > 1 and integrable for s > 2. That πs is not
integrable for 1 < s � 2 turns out to not matter for the construction of coorbit spaces for these representations.

Given the submultiplicative weight wr(a,b) = 2r[(a + a−1)2 + b2]r/2 for r � 0, let L p
r (G) denote the space

Lp
r (G) =

{
f
∣∣∣ ‖ f ‖L p

r
=
(∫ ∣∣ f (a,b)wr(a,b)

∣∣p da db

a2

)1/p

< ∞
}
.

We now construct coorbit spaces for the representations πs related to the spaces L p
r (G). For this we use the smooth vec-

tors of the representation πs . A vector v ∈ Hs is called a smooth vector if the mapping G � x �→ π(x)v ∈ Hs is smooth. The
space of smooth vectors in Hs will be denoted H∞

s . It is a Fréchet space when equipped with the topology induced by the
semi-norms

√
(π(D)v,π(D)v)s , where D is in the universal enveloping algebra of the Lie algebra of G . The following char-

acterization of H∞
s and its conjugate dual H−∞

s can be found in [22] and more generally in [4]. The binomial coefficients
for non-integer s > k are defined as(

s

k

)
= s(s − 1) · · · (s − k + 1)

k!

Lemma 4.2. The smooth vectors H∞
s for πs are the power series

∑∞
k=0 akzk for which there for any m exists a constant C such that

|ak|2 � C

(
s + k − 1

k

)
(1 + k)−m.

The conjugate dual H−∞
s of this space consists of formal power series

∑∞
k=0 bk zk for which there is an m and a constant C such that

|bk|2 � C

(
s + k − 1

k

)
(1 + k)m.

By [28, p. 254] we know that H∞
s is irreducible if and only if Hs is, and thus u is cyclic in H∞

s . Furthermore the smooth
vectors H∞

s are weakly dense in the conjugate dual H−∞
s .

Theorem 4.3. The spaces Cou
H∞

s
L p

r are non-zero πs-invariant Banach spaces when 2 − s < r + 2/p < s.

Proof. It is a simple matter to show that the mapping

Lp
r (G) � f �→

∫
G

∣∣ f (a,b)
∣∣∣∣W s

u(u)(a,b)
∣∣da db

a2
∈ R

is continuous for 2 − s < r + 2/p. We now show that for a given f ∈ L p
r the mapping

H∞
s � v �→

∫ ∫
f (a,b)W s

u(v)(a,b)
da db

a2

is continuous for 2 − s < r + 2/p. Let v be a smooth vector with expansion
∑∞

k=0 ak zk . Since W s
u(zk) = ᾱ−s(β/ᾱ)k it can be

shown that∣∣W s
u(v)(a,b)

∣∣� ∣∣W s
u(u)(a,b)

∣∣ ∞∑
k=0

|ak|.

Therefore |W s
u(v)| � Cv |W s

u(u)|, where the constant Cv depends continuously on v . Thus we only need to require that the
integral∫ ∫ ∣∣ f (a,b)W s

u(u)(a,b)
∣∣da db

a2

is finite, which we have proven above.
Lastly, by Lemma 4.1 we see, that u is in the coorbit space for r + 2/p < s. Thus the coorbit space Cou

H∞
s

L p
r is a non-zero

Banach space when 2 − s < r + 2/p < s. �
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In the next section we will prove that the spaces defined in Theorem 4.3 are in fact Bergman spaces. This was mentioned
in [13, Section 7], but not many details were given.

4.2. Continuous description of Bergman spaces

We start with a lemma

Lemma 4.4. Assume that 2 − s < r + 2/p < s. If f ∈ A p
(s−r)p/2(D) then f ∈ H−∞

s .

Proof. We need to estimate the coefficients bk where f (z) =∑∞
k=0 bk zk . For this let us first estimate f (k)(0). The condition

on s, r and p means in particular that (s − r)p/2 − 1 < (s − 1)p and we can use Theorem 1.10 in [20] to get

f (z) = (s − 1)

π

∫
D

f (w)
(1 − |w|2)s−2

(1 − zw̄)s
dw.

Differentiate under the integral sign k times (which is allowed when for example |z| � 1/2)

f (k)(z) = (s − 1)s(s + 1) · · · (s + k − 1)

∫
D

f (w)
(1 − |w|2)s−2

(1 − zw̄)s+k
w̄k dw

and insert z = 0 to get

f (k)(0) = (s − 1)s(s + 1) · · · (s + k − 1)

∫
D

f (w)
(
1 − |w|2)s−2

w̄k dw.

The absolute value of the integral can be estimated by∫
D

∣∣ f (w)
∣∣(1 − |w|2)s−2

dw =
∫
D

∣∣ f (w)
∣∣(1 − |w|2)(s−r)/2−2/p(

1 − |w|2)(s+r)/2−2/q
dw

� C‖ f ‖A p
(s−r)p/2

(∫
D

(
1 − |w|2)(s+r)q/2−2

dw

)1/q

.

The last integral is finite when 2 − s < r + 2/p, and therefore the coefficients bk can be estimated by

|bk| = | f (k)(0)|
k! � C‖ f ‖A p

(s−r)p/2

(
s + k − 1

k

)
.

Let τ = �s� then we can estimate(
s + k − 1

k

)
� (τ + k − 1)!

k! = (τ + k − 1)(τ + k − 2) · · · (1 + k)︸ ︷︷ ︸
τ−1 terms

� τ τ−1(1 + k)τ−1,

and since τ is fixed there is a constant C such that

|bk|2 � C‖ f ‖A p
(s−r)p/2

(
s + k − 1

k

)
(1 + k)τ−1.

This shows that f ∈ H−∞
s . �

Theorem 4.5. For 1 < (s − r)p/2 < (s − 1)p + 1 the space A p
(s−r)p/2(D) corresponds to the coorbit Cou

H∞
s

L p
r (G) from Theorem 4.3

up to equivalence of norms.

Proof. Assume that f ∈ A p
(s−r)p/2(D). We already know that f ∈ H−∞

s , so we find that the wavelet coefficient of f is

W s
u( f )(a,b) = 1

ᾱs
f

(
β

ᾱ

)
.

In the last step we applied Theorem 1.10 in [20] provided that (s − r)p/2 − 1 < (s − 1)p. Then taking L p
r (G)-norm of W s

u( f )
and changing to an integral over the disk we get
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1

2(s+r)p

∫
G

∣∣W s
u( f )(a,b)wr(a,b)

∣∣p da db

a2
= ‖ f ‖p

A p
(s−r)p/2

. (5)

We now show that an element of the coorbit space is in the Bergman space. Since any f ∈ H∞
s is in A2

s (D) we know that
(5) is valid by Proposition 1.4 in [20]. Because H∞

s is weakly dense in H−∞
s , this equality also holds for f ∈ H−∞

s . Therefore
the calculations above are valid, and if f ∈ Cou

H∞
s

L p
r (G) then f is also in A p

(s−r)p/2(D). �
4.3. Discretization

In this section we obtain sampling theorems and atomic decompositions for the Bergman spaces by use of the wavelet
transform. We point out that these results include the non-integrable representations which cannot be described by the
work of Feichtinger and Gröchenig.

Lemma 4.6. The mappings f �→ f ∗ W s
u(u) and f �→ f ∗ |W s

u(u)| are continuous L p
r (G) → L p

r (G) for s > r + 2/p.

Proof. In the following denote by Fs the absolute value of the wavelet coefficient belonging to πs , i.e. Fs(a,b) =
|(u,πs(a,b)u)| and notice that

Fs(a,b) = w−s(a,b).

In the calculations below we make some assumptions in order for the estimates to be true. At the end of the proof we
collect these assumptions.

Let p > 1 and assume that f ∈ L p
r (G). Let q such that 1/p + 1/q = 1 and further let t be such that the following

calculations hold (we will investigate this later)∣∣∣∣∫ ∫ f (a,b)Fs
(
(a,b)−1(a1,b1)

)da db

a2

∣∣∣∣p
�
(∫ ∫ ∣∣ f (a,b)

∣∣∣∣w−r−s(1/p+1/q)

(
(a,b)−1(a1,b1)

)∣∣1/p+1/q
wr
(
(a,b)−1(a1,b1)

)
at da db

a2

)p

�
(∫ ∫ ∣∣ f (a,b)

∣∣w−rp−s
(
(a,b)−1(a1,b1)

)
a−tp da db

a2

)

×
(∫ ∫

atq wrq−s
(
(a,b)−1(a1,b1)

)q da db

a2

)p/q

.

We know that |wr((a,b))| = |wr((a,b)−1)| so the second integral becomes∫ ∫
atq
∣∣wrq−s

(
(a1,b1)

−1(a,b)
)∣∣da db

a2
=
∫ ∫

(aa1)
tq
∣∣wrq−s

(
(a,b)

)∣∣da db

a2

= Catq
1

provided that wrq−s(a,b)atq ∈ L1(G). Thus we get∣∣∣∣∫ ∫ f (a,b)Fs
(
(a,b)−1(a1,b1)

)da db

a2

∣∣∣∣p
� Catp

1

∫ ∫ ∣∣ f (a,b)
∣∣pa−tp

∣∣w−rp−s
(
(a,b)−1(a1,b1)

)∣∣da db

a2

and we can estimate the norm of f ∗ Fs using Fubini’s theorem

‖ f ∗ Fs‖L p
r

� C

∫ ∫ ∫ ∫ ∣∣ f (a,b)
∣∣pa−tp w−rp−s

(
(a,b)−1(a1,b1)

)da db

a2
wrp(a1,b1)a

tp
1

da1 db1

a2
1

= C

∫ ∫ ∣∣ f (a,b)
∣∣pa−tp

∫ ∫ ∣∣w−rp−s
(
(a,b)−1(a1,b1)

)∣∣wrp(a1,b1)a
tp
1

da1 db1

a2
1

da db

a2
.

A change of variable and using submultiplicativity of the weight wrp then gives
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= C

∫ ∫ ∣∣ f (a,b)
∣∣pa−tp

∫ ∫
w−rp−s

(
(a1,b1)

)
wrp
(
(a,b)(a1,b1)

)
(aa1)

tp da1 db1

a2
1

da db

a2

� C

∫ ∫ ∣∣ f (a,b)
∣∣p wrp(a,b)

da db

a2

∫ ∫
w−s

(
(a1,b1)

)
atp

1
da1 db1

a2
1

� C‖ f ‖L p
r
,

where we in the last inequality have assumed that w−s(a1,b1)a
tp
1 ∈ L1(G).

To sum up the map f �→ f ∗ Fs is continuous if we are able to choose a t such that both wrq−s(a,b)atq and w−s(a,b)atp

are in L1(G). This is the case if both 2 − s + rq < tq < s − rq and 2 − s < tp < s and such a t can be shown to exist if and
only if r + 2/p < s.

For p = 1 Fubini can be applied immediately and the requirement becomes that wr−s(a,b) is integrable. This is the case
if 2 + r < s, so the result also holds for p = 1. �

The key to finding atomic decompositions will be the following result which generalizes Lemma 4.3 from [7].

Lemma 4.7. For each ε > 0 there is a neighborhood U of the identity such that∣∣∣∣W s
u(u)((a,b)(x, y))

W s
u(u)(x, y)

− 1

∣∣∣∣< ε

for (a,b) ∈ U .

From this result follows easily

Corollary 4.8. There exist a neighborhood U of the identity and constants C1, C2 > 0 such that

C1
∣∣W s

u(u)(x, y)
∣∣� ∣∣W s

u(u)
(
(a,b)(x, y)

)∣∣� C2
∣∣W s

u(u)(x, y)
∣∣

for all (x, y) ∈ G with (a,b) ∈ U . These constants can be chosen arbitrarily close to 1, by choosing U small enough.

Definition 4.9. Let V be a compact neighborhood of the identity, then the points xi are V -separated if the sets xi V are
pairwise disjoint. Let U be a compact neighborhood of the identity, then the points xi are U -dense if the sets xi U cover G .

Proposition 4.10. Let V ⊆ U be compact neighborhoods of the identity. Assume that the points {xi} are V -separated and U -dense and
that U satisfies Corollary 4.8. Let {ψi} be a partition of unity for which supp(ψi) ⊆ xi U . Define the sequence space

�
p
r =

{
(λi)

∣∣∣ ∥∥(λi)
∥∥

�
p
r

=
(∑∣∣λi wr(xi)

∣∣p)1/p
}
.

Then the following is true:

(a) The mapping �
p
r � (λi) �→∑

i λi�xi W s
u(u) ∈ L p

r (G) ∗ W s
u(u) is continuous.

(b) The mapping L p
r (G) ∗ W s

u(u) � f �→ ( f (xi))i∈I ∈ �
p
r is continuous.

(c) The mapping L p
r (G) ∗ W s

u(u) � f �→ (
∫

G f (x)ψi(x)dx)i∈I ∈ �
p
r is continuous.

As in [18] sums are understood as limits of the net of partial sums over finite subsets with convergence in L p
r (G). The

proof is similar to the proof of Proposition 4.6 from [7].
Finally, the following proposition gives reconstruction formulas that provide atomic decompositions for the coorbit

spaces. The proof is similar to that of Proposition 4.7 in [7] so we omit it here.

Proposition 4.11. We can choose a compact neighborhood U , U -dense points {xi} and a partition ψi of unity with supp(ψi) ⊆ xi U
such that the operators T1, T2, T3 : L p

r (G) ∗ W s
u(u) → L p

r (G) ∗ W s
u(u) defined below are invertible with continuous inverses

(a) T1 f =∑i f (xi)ψi ∗ W s
u(u).

(b) T2 f =∑i ci f (xi)�xi W s
u(u) (with ci = ∫ ψi ).

(c) T3 f =∑i(
∫

f (x)ψi(x)dx)�xi W s
u(u).

Remark 4.12. Note that we have avoided the use of integrability in the results above. This allows us to treat the cases
1 < s � 2 which could not be treated in [13]. In particular the space A p

p is not equal to CoFG L p for the representation π2.
It should be mentioned that Feichtinger and Gröchenig anticipated the possibility of a coorbit construction for these non-
integrable representations. However, the machinery developed in [13] did not provide a suitable approach and also could
not provide atomic decompositions for these spaces.
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5. A wavelet characterization of Besov spaces on the forward light cone

The classical wavelet transform is related to the group R+ � R and the representation π(a,b) f (x) = 1√
a

f (a−1(x − b)).

In the present section we replace R+ with the group R+SO0(n − 1,1) acting transitively on the forward light cone in Rn .
This leads to the construction of wavelets and coorbits for the group R+SO0(n − 1,1) � Rn . We show that the constructed
coorbits correspond to Besov spaces for the forward light cone introduced in [1]. The representations involved are integrable
and thus the theory of Feichtinger and Gröchenig is sufficient. However we find the construction interesting enough to be
included here.

5.1. Wavelets and coorbits on the forward light cone

We review the wavelet transform already studied in [3] and [10], and introduce coorbit spaces related to the forward
light cone.

Let B(x, y) be the bilinear form on Rn given by

B(x, y) = xn yn − xn−1 yn−1 − · · · − x1 y1

and let SO0(n − 1,1) be the closed connected subgroup of GL(n,R) which leaves B invariant. The group SO0(n − 1,1) has
the Iwasawa decomposition AN K

A =
⎧⎨⎩at =

⎛⎝ cosh t 0 sinh t
0 In−2 0

sinh t 0 cosh t

⎞⎠ ∣∣∣∣ t ∈ R

⎫⎬⎭ ,

N =
⎧⎨⎩nc =

⎛⎝1 − |c|2/2 −cT |c|2/2

c In−2 −c

−|c|2/2 −cT 1 + |c|2/2

⎞⎠ ∣∣∣∣ c ∈ Rn−2

⎫⎬⎭ ,

K =
{

kσ =
(

σ 0

0 1

) ∣∣∣∣ σ ∈ SO(n − 1)

}
,

where cT means the transpose of c.
The forward light cone is the subset Λ of Rn satisfying

Λ = {(x1, . . . , xn)
∣∣ B(x, x) > 0, xn > 0

}
with determinant given by

Det(x) =√B(x, x).

An element γ atnckσ ∈ R+SO0(n − 1,1) acts from the left on x ∈ Λ by matrix multiplication, i.e. γ atnckσ x. This action is
transitive on Λ and the measure Det(x)−n dx, where dx is the Lebesgue measure on Rn , is R+SO0(n − 1,1)-invariant. The
left-regular representation of R+SO0(n − 1,1) on L2(Λ) is

�(γ atnckσ ) f (x) = f
(
(γ atnckσ )−1x

)
.

The subgroup K leaves the base point e = (0, . . . ,0,1)T invariant and therefore the group H = R+ AN acts simply transitively
on the forward light cone, i.e. every x ∈ Λ can be written x = γ atnce. In particular if

γ atnce = γ

⎛⎝ sinh t + et |c|2/2

−c

cosh t + et |c|2/2

⎞⎠=
⎛⎜⎝

x1

...

xn

⎞⎟⎠
then γ , t and c are determined uniquely by

γ = Det(x), c = −γ −1(x2, . . . , xn−1)
T , t = − ln

(
γ −1(xn − x1)

)
.



316 J.G. Christensen, G. Ólafsson / Appl. Comput. Harmon. Anal. 31 (2011) 303–324
The left invariant measure on H is given by∫
H

f (h)dh =
∫
H

f (γ atnc)
dγ dc dt

γ

where dt , dc and dγ are the Lebesgue measures on R, Rn−2 and R+ respectively. We can pass from an integral over the
cone to an integral over the group by∫

Λ

f (x)
dx

Det(x)n
=
∫
H

f (γ atnce)
dγ dc dt

γ
.

An integral over the light cone with respect to Lebesgue measure can therefore be written as an integral over the group in
the following way∫

Λ

f (x)dx =
∫
H

f (γ atnce)γ n−1 dγ dc dt.

The right Haar measure on H is given by

f �→
∫

R+×R×Rn−2

f (γ atnc)e(n−2)t dγ dt dc

γ
.

The modular function on H is then �(λatnc) = e(n−2)t satisfying∫
H

f (γ atncλat1nc1)
dγ dt dc

γ
= �(λat1nc1)

∫
H

f (γ atnc)
dγ dt dc

γ

and ∫
H

f
(
(γ atnc)

−1)dγ dt dc

γ
=
∫
H

f (γ atnc)�(γ atnc)
−1 dγ dt dc

γ
.

Introduce the Fourier transform related to the bilinear form B by letting

f̃ (w) = F̃ ( f )(w) = 1√
2π

n

∫
Rn

f (x)e−iB(x,w) dx

for f ∈ L1(Rn). We know that F̃ extends to a unitary operator on L2(Rn) and is a topological isomorphism from S(Rn)

onto S(Rn). It acts on convolutions like the usual Fourier transform

f̃ ∗ g(w) = √
2π

n
f̃ (w)g̃(w).

Denote by S(Rn) the space of rapidly decreasing smooth functions with topology induced by the semi-norms

‖ f ‖k,l = sup
|α|�k

sup
x∈Rn

∣∣Dα f (x)
∣∣(1 + |x|2)l.

Here α is a multi-index and k, l � 0 are integers. Since F̃ : S(Rn) → S(Rn) is a topological isomorphism, we can extend
the Fourier transform to tempered distributions in the usual way. In this text we work with the conjugate dual S ∗(Rn) of
S(Rn) (in order for it to resemble an inner product) and thus we define the Fourier transform φ̃ for φ ∈ S ∗(Rn) by

〈φ̃, f̃ 〉 = 〈φ, f 〉.
The group G = H � Rn has a natural representation on

L2
Λ = { f ∈ L2(Rn) ∣∣ supp( f̃ ) ⊆ Λ

}
given by

π(γ atnc,b) f (x) = 1

γ n/2
f
(
(γ atnc)

−1(x − b)
)
.

This generalizes the quasi-regular representation of the group R+ � R from the classical wavelet transform. In the Fourier
domain this representation becomes
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π̃ (γ atnc,b) f̃ (w) = γ n/2 f̃
(
γ (atnc)

−1 w
)
)e−iB(b,w)

and we recognize that it arises from the left action of H on the cone Λ, and that F̃ is an intertwining operator. The group
G has left invariant measure given by∫

G

f (g)dg =
∫

f (γ atnc,b)
dγ dc dt db

γ n+1
.

The following result has a generalization to symmetric cones (see for example [10] and [3]) and ensures that wavelets
for this representation exist.

Theorem 5.1. The representation (π, L2
Λ) is square-integrable.

We introduce the space SΛ of rapidly decreasing functions whose Fourier transform is supported on the closure of the
cone, i.e.

SΛ = { f ∈ S
(
Rn) ∣∣ supp( f̃ ) ⊆ Λ

}
.

This space will be equipped with the subspace topology it inherits from S(Rn). The representation π can be restricted
to SΛ and we denote the resulting representation by (π, SΛ) or simply π .

Lemma 5.2. Let u ∈ SΛ be compactly supported such that 0 � ũ � 1 and also 1/2 < ũ � 1 on a neighborhood U of e. Then u is cyclic
in (π, SΛ). Further let

Cu =
∫
Λ

∣∣ũ(w)
∣∣2Det(w)2(1−n)(wn − w1)

n−2 dw.

Then the reproducing formula

Wu(v) ∗ Wu(u) = Cu Wu(v)

holds for v ∈ SΛ .

Proof. The Fourier transform F̃ has the same properties as the usual Fourier transform. The calculations below are imme-
diate adaptations of results found in for example [27, Chapters 6 and 7].

Let L be in the conjugate dual of SΛ and assume that 〈L,π(γ atnc,b)u〉 = 0 for all (γ atnc,b) ∈ G . Then the Fourier
transform can be used to obtain〈

L̃, π̃ (γ atnc,b)ũ
〉= 0.

Let eb(w) = e−iB(b,w) . The equation above can be rewritten as

0 = 〈 L̃, ebπ̃ (γ atnc,0)ũ
〉= 〈(π̃ (γ atnc,0)ũ

)̃
L, eb

〉
which shows that the compactly supported functional (π̃ (γ atnc,0)ũ)̃L is equal to 0 (see [27, Theorem 7.23]). This means
that for all v ∈ SΛ for which ṽ has compact support C ⊆ Λ we have the equalities〈

L̃, ṽπ̃ (γ atnc,0)ũ
〉= 〈π̃ (γ atnc,0)ũ L̃, ṽ

〉= 0.

We will now show that 〈v, L〉 is also 0. Since C is compact we can cover C by a finite number of translates of U

C ⊆
m⋃

i=1

(γ atnc)i U .

Define the function

Ψ =
m∑

i=1

π
(
(γ atnc)i,0

)
ũ

which has support containing C (here we use that ũ is bounded away from 0 on U ). Then ṽ/Ψ is in C∞
c and we see that

〈̃L, ṽ〉 = 〈Ψ L̃, v/Ψ 〉 =
n∑〈

π̃
(
(γ atnc)i,0

)
ũ L̃, v/Ψ

〉= 0.
i=1
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Lastly, any function in SΛ can be approximated by a function whose Fourier transform is compact, and therefore L = 0 in
the conjugate dual of SΛ . �

We will need the following lemma, which corresponds to Lemma 3.11 in [1].

Lemma 5.3. If f ∈ SΛ and k, l are non-negative integers then there is a constant Ck such that∣∣ f̃ (w)
∣∣� Ck‖ f̃ ‖k,l

Det(w)k

(1 + |w|2)l
.

We will further need an estimate of the wavelet coefficients of Schwartz functions. The estimate actually shows that the
wavelet coefficients are integrable.

Lemma 5.4. The mapping

SΛ � v �→
∫
G

∣∣Wu(v)(γ atnc,b)
∣∣γ r dγ dt dc db

γ n+1
∈ R+

is continuous for all r ∈ R.

Proof. First note that the wavelet coefficients can be rewritten as

Wu( f )(γ atnc,b) = ( f ,π(γ atnc,b)u
)

= γ n/2
∫
Λ

f̃ (w)ũ(γ n−ca−t w)e−iB(w,b) dw

= −b−2
i γ n/2

∫
Λ

∂2

∂ w2
i

[
f̃ (w)ũ(γ n−ca−t w)

]
e−iB(w,b) dw

where we have used integration by parts twice. Therefore, if L = −∑n
k=1

∂2

∂ w2
k

is the Laplacian we obtain

(
1 + |b|2)Wu( f )(γ atnc,b) = γ n/2

∫
Λ

(1 + L)
[

f̃ (w)ũ(γ n−ca−t w)
]
e−iB(w,b) dw.

If we repeat the argument we are able to obtain∣∣Wu( f )(γ atnc,b)
∣∣� (1 + |b|2)−N

γ n/2
∫
Λ

∣∣(1 + L)N[ f̃ (w)ũ(γ n−ca−t w)
]∣∣dw

for any N , thus proving that the wavelet coefficients are indeed integrable in b. We have

(1 + L)N[ f̃ (w)ũ(γ n−ca−t w)
]= ∑

|α+β|�2N

pβ(γ n−ca−t)∂
α f̃ (w)∂β ũ(γ n−ca−t w)

where α,β are multi-indices and pβ(γn−ca−t) are polynomials in the entries of the matrix γn−ca−t (see the form of this
matrix in (8)). We thus have to show the integrability in γ , t and v of expressions of the form∣∣pβ(γ n−ca−t)

∣∣γ n/2
∫
Λ

∣∣∂α f̃ (w)∂β ũ(γ n−ca−t w)
∣∣dw.

A change of variable and use of the fact that C = supp(ũ) is compact, reduces this to show that

γ −n/2
∣∣pβ(γ n−ca−t)

∣∣∥∥∂β ũ
∥∥∞
∫
C

∣∣∂α f̃
(
γ −1atnc w

)∣∣dw

is integrable. By Lemma 5.3 we can estimate any such expression by

Ckγ
−n/2

∣∣pβ(γ n−ca−t)
∣∣∥∥∂β ũ

∥∥∞
∥∥∂α f̃

∥∥
k,l

∫
Det(γ −1 w)k

(1 + |γ −1atnc w|2)l
γ n/2 dw (6)
C
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for arbitrary k, l. Since the set C is compact, w is bounded away from 0 and we see that

C1
(
1 + ∣∣γ −1atnce

∣∣2)� 1 + ∣∣γ −1atnc w
∣∣2 � C2

(
1 + ∣∣γ −1atnce

∣∣2),
and we can estimate (6) by

Ck
∥∥∂β ũ

∥∥∞
∥∥∂α ṽ

∥∥
k,l

|pβ(γ n−ca−t)|γ −k−n/2

(1 + |γ −1atnce|2)l
.

All that is left now is to show that∫
H

|pβ(γ n−ca−t)|γ −k−n/2

(1 + |γ −1atnce|2)l
γ r dγ dt dc

γ n+1
< ∞. (7)

We split this integral into two cases.

Case 1. 0 < γ � 1.

The expression (7) can be estimated by

∫
Rn−2

∫
R

1∫
0

|pβ(n−ca−t)|γ r−k−3n/2−1

|γ −1atnce|2l
dγ dt dc

=
∫

Rn−2

∫
R

1∫
0

|pβ(n−ca−t)|γ 2l+r−k−3n/2−1

|atnce|2l
dγ dt dc.

The integral over γ is finite for 0 < γ � 1 if l is chosen large enough (and k = 0). Now

n−ca−t =
⎛⎝ cosh t − et |c|2 cT − sinh t + et |c|2

−etc I etc

− sinh t − et |c|2 cT cosh t + et |c|2

⎞⎠ (8)

and

atnce =
⎛⎝ sinh t + et |c|2

−c

cosh t + et |c|2

⎞⎠ ,

so we see that |pβ(n−ca−t)| will be dominated by |atnce|2l � 1 if l > deg(pβ). Thus choosing l large enough, the integral
in (7) will be finite.

Case 2. γ � 1.

In this case (7) can be estimated by

∫
Rn−2

∫
R

|pβ(n−ca−t)|
|atnce|2l

dt dc

∞∫
1

γ r+2l+deg(pβ )−k−3n/2−1 dγ .

The first integral is finite if l is large enough, and the second integral is finite when k is chosen large enough (depending
on l).

To sum up we have obtained the following estimate∫
G

∣∣Wu(v)(γ atnc,b)
∣∣γ r dγ dt dc db

γ n+1
� C

∑
|α+β|�2N

∥∥∂β ũ
∥∥∞
∥∥∂α ṽ

∥∥
k,l,

which shows the continuous dependence on v . �
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Denote by L p,q
s (G) the space of measurable functions f on the group for which

‖ f ‖L p,q
s

=
(∫

H

(∫
Rn

∣∣ f (γ atnc,b)
∣∣p db

)q/p

γ s dγ dt dc

γ n+1

)1/q

< ∞

then the integrability of W u(v) shows that

Lemma 5.5. For u, v ∈ SΛ it holds that L p,q
s ∗ Wu(v) ⊆ L p,q

s and

Lp,q
s � F �→ F ∗ Wu(v) ∈ Lp,q

s

is continuous.

Further the integrability also shows that for 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1 the wavelet coefficient W u(v) is in L p′,q′
1/s

and therefore

Lemma 5.6. The mapping

SΛ � v �→
∫
G

∣∣F (γ atnc,b)Wu(v)(γ atnc,b)
∣∣dγ dt dc

γ n+1
∈ C

is continuous for all F ∈ L p,q
s .

This verifies the assumptions for construction of coorbit spaces for the spaces L p,q
s and therefore we can define

Cou
SΛ

Lp,q
s = {Φ ∈ S ′

Λ

∣∣Wu(Φ) ∈ Lp,q
s
}
.

Furthermore, Lemma 5.5 shows that this space is independent on the wavelet u.

Remark 5.7 (Discretization). The representation used for this construction is integrable (as we have shown) and therefore the
discretization procedure by Feichtinger and Gröchenig can be used directly. For the quasi-regular representation in question
the Fréchet space SΛ is contained in the set of better vectors B w defined in (4) for weights of the type

w(γ atnc,b) = γ s.

This can be shown by direct calculations. Another approach builds on smoothness of the representation coefficients, and
this will be explored in [5].

5.2. Besov spaces as coorbits

In this section we introduce Littlewood–Paley decompositions and a family of Besov spaces related to these decomposi-
tions. The construction has been carried out for all symmetric cones in [1] and we refer to this article for proofs. The last
result of this paper is a wavelet description of the Besov spaces. In particular we show that the Besov spaces are the coorbit
spaces defined in the previous section.

The group R+ A is an abelian group with exponential function exp : R × R → R+ A given by exp(t, s) = etas (here et

denotes the usual exponential function on R). Let Vr = {(s, t) ∈ R × R|s2 + t2 < r} and define the K -invariant ball Br(e) =
K exp(Vr)e ⊆ Λ. For w = he ∈ Λ with h ∈ H we define the ball of radius r centered at w to be

Br(w) = hBr(e).

The following covering lemma for the cone can be extracted from Lemma 2.6 in [1] and is illustrated in Fig. 1.

Lemma 5.8 (Whitney cover with lattice points w j ). Given δ > 0, there exists a sequence {w j} ⊆ Λ such that Bδ/2(w j) are disjoint and
Bδ(w j) cover Λ with the property that there is an N such that any w ∈ Λ belongs to at most N of the balls Bδ(w j) (finite intersection
property).

We now construct a smooth partition of unity subordinate to a cover from Lemma 5.8. Let 0 � ϕ � 1 be a smooth
function with support in B2δ(e) such that ϕ = 1 on Bδ(e). Each of the points w j ∈ Λ can be written w j = γ jat j nc j e for

g j = γ jat j nc j ∈ R+ AN and now we define ϕ j(w) = ϕ(g−1
j w). Then the function Φ =∑ j ϕ j is smooth and bounded from

above and below (by the finite intersection property), and we can finally define the function ψ j by letting ψ̃ j = ϕ j/Φ . We
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Fig. 1. Covering of the cone.

then see that ψ̃ j is smooth and with compact support in B2δ(w j), ψ̃ j = 1 on Bδ/2(w j) and
∑

j ψ̃ j(w) = 1 for all w ∈ Λ.
Such a partition of unity is called a Littlewood–Paley decomposition of the cone subordinate to a Whitney cover.

We note that the convolutions encountered in this section are distributional convolutions in Rn . We are now ready to
define the Besov spaces on the light cone as in [1]:

Definition 5.9. Let ψ j be a Littlewood–Paley decomposition of the cone subordinate to a Whitney cover with lattice points
w j . For 1 � p,q < ∞ define the norm

‖ f ‖B p,q
s

=
(∑

j

Det−s(w j)‖ f ∗ ψ j‖q
p

)1/q

then the space B p,q
s consist of the f ∈ S ′

Λ for which ‖ f ‖B p,q
s

< ∞.

In [1, Lemma 3.8] it is further proven, that B p,q
s does not depend (up to norm equivalence) on the functions ψ j nor on

the Whitney decomposition. We will use this in the sequel.

Theorem 5.10. The Besov space B p,q
n−s−nq/2 corresponds to the coorbit Cou

SΛ
L p,q

s (G) with equivalent norm.

Proof. First show that B p,q
s+nq/2−n ⊆ Cou

SΛ
L p,q

s (G). Assume that f ∈ B p,q
s+nq/2−n and that φ̃i is a Littlewood–Paley decomposi-

tion of the cone with lattice points wi = gie = γiati nci e. Further assume that the sets gi V cover the cone for an open set
V with compact closure. Denote by U the subset of H given by U = {g ∈ H|ge ∈ V } Let u ∈ SΛ be a non-zero wavelet for
which ũ has compact support containing the identity. By uγ atnc denote the function

uγ atnc (x) = γ −nu
(
(γ atnc)−1x

)
,
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then

Wu( f )(γ atnc,b) = γ −n/2
∫

f (x)u
(
(γ atnc)−1(x − b)

)
dx = γ n/2 f ∗ uγ atnc (b).

Let the disjoint sets V i ⊆ Λ cover Λ and satisfy V i ⊆ gi V . Now choose the subsets Ui to be Ui = {g ∈ H | ge ∈ V i}. We can
then write the L p,q

s norm of the wavelet coefficient as∥∥Wu( f )
∥∥

L p,q
s

=
(∫

H

γ s+nq/2−n‖ f ∗ uγ atnc ‖q
p

dγ dt dc

γ n+1

)1/q

=
(∫

H

γ n−s−nq/2‖ f ∗ uγ −1atnc
‖q

p
dγ dt dc

γ 1

)1/q

�
(∑

i

∫
Ui

γ n−s−nq/2‖ f ∗ uγ −1atnc
‖q

p
dγ dt dc

γ

)1/q

� C

(∑
i

γ
n−s−nq/2
i

∫
Ui

‖ f ∗ uγ −1atnc
‖q

p
dγ dt dc

γ

)1/q

,

where we have used that γ is comparable to γi = Det(wi) when γ atnc ∈ Ui . For any j define φ̃i, j = �g j φ̃i . Since {φ̃i}i is a

Littlewood–Paley decomposition of the cone the systems {φ̃i, j} j (with index j) and {φ̃i, j}i (with index i) are also Littlewood–
Paley decompositions of the cone. For fixed i we thus can write ‖ f ∗ uγ −1atnc

‖p as

‖ f ∗ uγ −1atnc
‖p =

∥∥∥∥∑
j∈ J

f ∗ uγ −1atnc
∗ φi, j

∥∥∥∥
p

�
∑
j∈ J

‖ f ∗ uγ −1atnc
∗ φi, j‖p .

The index set J in this sum is finite, since both ũ and φ̃ are compactly supported and wi are well-spread. Further the index
set J can be chosen large enough that it neither depends on i nor on γ atnc ∈ Ui . The L1(Rn)-norm of uγ −1atnc

is uniformly
bounded from above, in fact ‖uγ −1atnc

‖L1(Rn) = ‖u‖L1(Rn) , so we obtain that

‖ f ∗ uγ −1atnc
‖p �

∑
j∈ J

‖ f ∗ φi, j‖p .

Therefore

∥∥Wu( f )
∥∥

L p,q
s

� C

(∑
i

γ
n−s−nq/2
i

∫
Ui

(∑
j∈ J

‖ f ∗ φi, j‖p

)q dγ dt dc

γ

)1/q

� C

(∑
i

γ
n−s−nq/2
i

(∑
j∈ J

‖ f ∗ φi, j‖p

)q)1/q

,

where we have used that the Ui ⊆ gi U have uniformly bounded measure. The triangle inequality for the �q-norm then
yields ∥∥Wu( f )

∥∥
L p,q

s
� C

∑
j∈ J

(∑
i

γ
n−s−nq/2
i ‖ f ∗ φi, j‖q

p

)1/q

.

Now set γi, j = Det(g j wi) = γiγ j , then, since the sum over J is finite, each γi is comparable to γi, j for all j, and finally we
obtain

‖ f ‖L p,q
s

� C
∑
j∈ J

(∑
i

γ
n−s−nq/2
i ‖ f ∗ φi, j‖q

p

)1/q

� C
∑
j∈ J

(∑
i

γ
n−s−nq/2
i, j ‖ f ∗ φi, j‖q

p

)1/q

= C
∑(∑

Det(gi wi)
−(s+nq/2−n)‖ f ∗ φi, j‖q

p

)1/q

.

j∈ J i
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Each of the {φi, j}i form a Littlewood–Paley decomposition of the cone, so the terms(∑
i

Det(g j wi)
−(s+nq/2−n)‖ f ∗ φi, j‖q

p

)1/q

are Besov space norms. Each norm is comparable to ‖ f ‖B p,q
s+nq/2−n

by [1, Lemma 3.8 and expression (3.20)]. This shows, that

there is a C > 0 such that∥∥Wu( f )
∥∥

L p,q
s

� C‖ f ‖B p,q
s+nq/2−n

.

It remains to show that Cou
SΛ

L p,q
s (G) ⊆ B p,q

s+nq/2−n . Let φ̃ be the smooth function with support in B2δ(e) used to generate
a Littlewood–Paley decomposition. The coorbit spaces are independent of the wavelet u, so we choose u and a compact
neighborhood U ⊆ H such that U supp(φ̃) is contained in ũ−1({1}). It holds that the gi U ’s have finite overlap (the gi ’s
come from the lattice points wi = gie which are well-spread). This means that supp(φ̃i) is contained in (ũγ −1atnc

)−1({1})
for γ atnc ∈ gi U . Therefore φ̃i ũγ −1atnc

= φ̃i for all γ atnc ∈ gi U . We exploit this to see that

‖ f ∗ φi‖q
p = 1

|U |
∫

gi U

‖ f ∗ φi‖q
p

dγ dt dc

γ

= 1

|U |
∫

gi U

‖ f ∗ φi ∗ uγ −1atnc
‖q

p
dγ dt dc

γ

� C

∫
gi U

‖ f ∗ uγ −1atnc
‖q

p
dγ dt dc

γ
,

where dγ dt dc
γ is the invariant measure on the group H . In the last step we used that ‖φi‖L1(Rn) is uniformly bounded (see

[1, Proposition 3.2(3)]). For γ atnc ∈ gi U we see that γ is comparable to γi . Further the sets gi U overlap a finite amount of
times, so we obtain the estimate∑

i

γ
−(s+nq/2−n)

i ‖ f ∗ φi‖q
p � C

∫
H

γ −(s+nq/2−n)‖ f ∗ uγ −1atnc
‖q

p
dγ dt dc

γ

= C

∫
H

γ s+nq/2−n‖ f ∗ uγ atnc ‖q
p

dγ dt dc

γ
.

We use this to find the estimate of the Besov space norm

‖ f ‖B p,q
s+nq/2−n

=
(∑

i

Det(wi)
−(s+nq/2−n)‖ f ∗ φi‖q

p

)1/q

=
(∑

i

γ
−(s+nq/2−n)

i ‖ f ∗ φi‖q
p

)1/q

� C

(∫
H

γ s+nq/2‖ f ∗ uγ atnc ‖q
p

dγ dt dc

γ n+1

)
= C

∥∥Wu( f )
∥∥

L p,q
s

.

This proves the equivalence of the norms of the two spaces. �
Remark 5.11. The wavelet characterization of Besov spaces on forward light cones seems to generalize to all symmetric
cones. We will deal with this in future work.
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