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ABSTRACT Fusion of lipid bilayers proceeds via a sequence of distinct structural transformations. Its early stage involves
a localized, hemifused intermediate in which the proximal but not yet the distal monolayers are connected. Whereas the
so-called stalk model most successfully accounts for the properties of the hemifused intermediate, there is still uncertainty
about its microscopic structure and energy. We reanalyze fusion stalks using the theory of membrane elasticity. In our
calculations, a short (cylindrical micelle-like) tether connects the two proximal monolayers of the hemifused membranes. The
shape of the stalk and the length of the tether are calculated such as to minimize the overall free energy and to avoid the
formation of voids within the hydrocarbon core. Our free energy expression is based on three internal degrees of freedom of
a perturbed lipid layer: thickness, splay, and tilt deformations. Based on exactly the same model, we compare fusion stalks
with and without the ability included to form sharp edges at the interfacial region between the hydrocarbon core and the polar
environment. Requiring the interface to be smooth everywhere, our detailed calculations recover previous results: the stalk
energies are far too high to account for the experimental observation of fusion intermediates. However, if we allow the
interface to be nonsmooth, we find a remarkable reduction of the stalk free energy down to more realistic values. The
corresponding structure of a nonsmooth stalk exhibits sharp edges at the transition regions between the bilayer and tether
parts. In addition to that, a corner is formed at each of the two distal monolayers. We discuss the mechanism how membrane
edges reduce the energy of fusion stalks.

INTRODUCTION

Membrane fusion requires transient structural reorganiza-
tion of at least some lipids (for recent reviews, see Jahn and
Südhof, 1999; Lentz et al., 2000; Epand, 2000; Burger,
2000; Chernomordik and Zimmerberg, 1995). Experimental
(Chanturiya et al., 1997; Chernomordik et al., 1995a; Zim-
merberg et al., 1993) evidence points to the existence of
so-called hemifusion structures, which are relatively long-
living intermediates appearing during the early stage of
fusion. Such intermediate structures are found for fusion
events that do or do not involve specialized fusion proteins
(Chernomordik et al., 1997), suggesting their generic and
lipid-based nature.

Fusion intermediates are likely to set energy barriers that
the fusion process has to overcome. Thus, they are essential
determinants of the fusion rate. Fusion intermediates may
also have played a role for the evolution of the fusion
protein machinery (Lee and Lentz, 1997). Yet, until now
little structural information is available because experimen-
tal methods that probe structural aspects of the highly lo-
calized fusion intermediates are rather limited. Therefore,
various theoretical models of the fusion scenario have been
suggested (Siegel, 1993; Noguchi and Takasu, 2001; Müller
et al., 2002). Of particular interest is the formation of an
initial, hemifused; intermediate structure in which only the
lipids of the proximal monolayers of two fusing bilayers
mix. So far, the so-called stalk model (Kozlov and Markin,

1983) is the most consistent hypothesis for the hemifusion
intermediate (Gaudin, 2000; Basánez et al., 1997, 1998).
The stalk consists of a lipidic tether that connects the two
proximal monolayers of the fusing membranes1, as shown
in Fig. 1 A. The stalk represents a metastable state. That is,
even in its optimal conformation, it entails a positive free
energy penalty (compared with an unperturbed lipid bilay-
er). The magnitude of this energy is important for the rate of
the initial fusion events.

In previous models (Siegel, 1993, 1999), the free energy
of a fusion stalk was calculated based upon the energy
needed to bend the involved lipid monolayers. A second
energy contribution has to be included in this kind of
models. This so-called interstitial energy accounts for the
formation of a void region within the hydrophobic core of a
fusion stalk (a similar interstitial energy appears in the
inverse-hexagonal, HII, phase). It turned out that particu-
larly due to the interstitial energy the predicted energies of
the fusion stalks were too high to account for the experi-
mental observation of hemifusion intermediates. Stalks with
energies of considerably more than 100 kBT (in which kB is
the Boltzmann constant and T the absolute temperature) are
very unlikely to serve as the hemifusion intermediate. In
fact, Kuzmin et al. (2001) have estimated that the stalk
energy should not exceed a value of about 40 kBT to appear
within the experimentally observed time scale. Hence, the
apparent energetic discrepancy calls for either an alternative
structural model of the fusion stalk or a new concept in
calculating its energy.

Very recently, the “energy crisis” was solved by an
elegant work of Kozlovsky and Kozlov (2002). They have
suggested a modified structural model of the fusion stalk
(Fig. 1 B) in which the two proximal monolayers of fusing
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membranes are directly connected without the formation of
a lipidic tether. The key point of their model is the addition
of a new internal degree of freedom (that is, another so-
called order parameter) into the calculation of the stalk
energy. This new degree of freedom is the lipid tilt. It
expresses the ability of the hydrocarbon chains to adjust
their average orientation. In fact, it is the lipid tilt degree of
freedom that allows a fusion stalk to exist without the
formation of a void region inside. In the past, the possibility
of lipid tilt was frequently recognized (Helfrich, 1973;
MacKintosh and Lubensky, 1991; Seifert et al., 1996). Lipid
tilt was also investigated in connection with formation of
the inverse hexagonal, HII, phase (Hamm and Kozlov, 1998;
May and Ben-Shaul, 1999) and lipid-protein interactions
(May, 2000; Fournier, 1998, 1999). Kozlovsky and Kozlov
(2002) have added the lipid tilt to the ability of the lipid
layers to undergo splay deformations. In absence of lipid tilt
the splay deformation becomes equivalent to a bending
deformation of a lipid layer. Using both these order param-
eters (splay and tilt), the modified stalk was predicted to
have few times smaller energy compared with previous
models.

It should be noted that the new stalk structure (that of Fig.
1 B) has a property that is absent in previous models: the
interface between the hydrocarbon core and the polar envi-
ronment is no longer smooth at every point. In particular,
there is a sharp corner at each side of the stalk, located at the
axis of rotational symmetry (the z-axis in Fig. 1 B). In
addition to that, a sharp edge is formed at its waist, where
the stalk exhibits mirror symmetry. As discussed by Koz-
lovsky and Kozlov (2002), the possibility of nonsmooth
interfaces arises from the lipid tilt degree of freedom. It
allows the formation of a sharp membrane interface without
a concomitant divergence of the splay energy.

Let us shortly discuss two other recent approaches to
calculate the free energy of fusion stalks. Kuzmin et al.
(2001) have suggested a theoretical model that includes,
besides bending, tilt of the lipid molecules. The model starts
from preformed “nipples” that decrease the local distance of
two fusing membranes. It was estimated that this “nipple”-
containing bilayers are separated from a fusion stalk struc-
ture by an energy barrier of somewhat less than 40 kBT, in
agreement with their estimate (see above). However, cre-
ation of the “nipple”-containing bilayers also requires an
energy, which in fact is quite high (the authors estimated
200 kBT). Hence, also the model of Kuzmin et al. (2001)
requires an extraordinary high energy to form a stalk out of
two apposed, planar bilayers.

In another recent approach, Markin and Albanesi (2002)
have postulated a “stress free stalk.” The key point of their
model is the optimization of the cross-sectional shape of the
stalk’s neck in terms of its bending energy (rather than
being a circular arc, the authors suggest it to be a surface of
constant mean curvature). The approach of Markin and
Albanesi (2002) indeed leads to very small (in some cases
even negative) bending energies of a stalk. However, their
model does not solve the principal problem of the large
interstitial energy. Indeed, the authors use a reduced inter-
stitial energy and justify this assumption in terms of impu-
rities that fill the interstices and reduce their energy. The
lipid tilt degree of freedom is not included in the model of
Markin and Albanesi (2002), but the authors discuss its
possible influence. They find that, even if using the reduced
interstitial energy, a simple tilt deformation of the lipids
could give rise to a collapse of the void. This clearly
suggests that tilt deformations should be taken into account
self-consistently in the calculation of the stalk structure.

In the present work we recalculate the structure and
energy of fusion stalks using membrane elasticity theory.
One aim of our study is to show that (unlike in the modified
structural model suggested by Kozlovsky and Kozlov
(2002)) a fusion stalk is likely to contain a tether-like lipidic
connection between the two fusing membranes (similarly to
that shown in Fig. 1 A). To this end, we shall incorporate a
tether into our calculations and minimize the stalk free
energy with respect to its length. (This implies that the
presence of a tether will only be predicted if this is ener-
getically favorable). The main objective of the present study
is to clarify the role of the lipid tilt versus the ability of a
membrane to form edges (and corners). In particular, we
shall argue that the ability of the lipids to tilt is not sufficient
to substantially lower the free energy of a fusion stalk.
However, it is a necessary condition to allow for the for-
mation of membrane edges. In fact, it is the existence of
membrane edges that brings about a remarkable reduction
of the stalk’s free energy. We shall show this by using
exactly the same model to compare lipid stalks with and
without the ability to form edges (and corners) included. In
the former case, the interfacial region of the stalk can be
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FIGURE 1 Schematic illustration of the fusion stalk model (A), and the
new suggestion according to Kozlovsky and Kozlov (2002) (B). Both
structures are rotationally symmetric around the z axis and exhibit mirror
symmetry with respect to the equatorial plane. The broken lines correspond
to the bilayer midplanes. Some lipids are shown schematically. The stalk in
A consists of three different parts: distal monolayer (D), proximal mono-
layer (P), and tether (T). The tether contains all those lipids whose hydro-
carbon tails point, on average, onto the z axis. The stalk in B lacks the
tether-like connection between the fusing bilayers. Moreover, the profile of
the bilayer interfaces exhibits sharp edges and corners.
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nonsmooth, whereas in the latter case it is smooth every-
where. We show that the bare presence of a “smoothness-
constraint“ leads to a severalfold increase of the stalk’s free
energy. To this end, we use membrane elasticity theory to
optimize the size and shape of the fusion stalk without any
further structural assumptions. To summarize, we suggest
that, in contrast to most previous calculations of the fusion
stalk structure, the interfacial region of a fusion stalk is
nonsmooth. Instead, it exhibits edges and corners that cru-
cially influence the stalk’s free energy.

THEORY

The fusion stalk structure shown in Fig. 1 A is cylindrically
symmetric around the z axis and exhibits mirror symmetry
with respect to the equatorial plane. It consists of three
different regions. Two of them, denoted by D and P, form a
lipid bilayer with D and P assigned to the distal and prox-
imal monolayer, respectively. The third region, denoted by
T, is a tether-like lipidic connection between the two oppo-
site proximal monolayers. The difference between the bi-
layer part and the tether can clearly be understood in terms
of the packing properties of the corresponding lipid mole-
cules. The flexible hydrocarbon chains of the bilayer lipids
(that is, those residing in regions D and P) point, on average,
onto a two-dimensional surface, namely the midplane of the
bilayer (broken lines in Fig. 1 A). In contrast, the packing of
the lipid chains in the central, tether-like region (T) is
similar to that of a cylindrical micelle. Here, the hydrocarbon
chains are, on average, directed to a single one-dimensional
line. Due to the cylindrical symmetry, this line is straight and
corresponds to the z axis in Fig. 1 A. Consequently, in absence
of a tether-like lipidic connection (as is the case in Fig. 1 B) all
lipids are subject to a bilayer-like packing, and the midplanes
of the two apposed bilayers (broken lines in Fig. 1 B) touch
each other at a single point on the z axis.

It is important to realize that the lipids residing within
(and close to) a fusion stalk have different physical proper-
ties compared with those in a planar, unperturbed bilayer
membrane. We refer to these differences as a structural
perturbation of the lipids in a fusion stalk. This structural
perturbation entails a free energy penalty, F, of the stalk.
The extent of perturbation is determined by several require-
ments. First, the lipid chains must be able to fill out the
hydrophobic core of the stalk. That is, no void is allowed to
form within the entire hydrocarbon chain region. Second,
the lipid head groups must protect the hydrocarbon chains
from the unfavorable contact with the aqueous environment.
Finally, the actual lipid perturbation must minimize the
overall free energy, F, of the stalk structure.

Free energy of fusion stalk

The hydrophobic core of a fusion stalk (like that shown in
Fig. 1 A) consists of hydrocarbon chains that are chemically

linked to the corresponding polar head groups of the lipids
(often through a glycerol backbone, but the exact molecular
details do not enter into the present model). The interface
between the hydrophobic lipid chains and the polar envi-
ronment can be specified by a describing surface A that we
express mathematically by a vector x. (For example, in Fig.
1, A and B, x would describe the thick solid lines.) To each
position x we can assign a unit vector n � n(x), pointing
along the average direction of the hydrocarbon chain that
originates at x. (Note that we treat all hydrocarbon chains as
identical.) Besides by their direction, the lipid tails are also
characterized by their (effective) length, b, which results
from an average over a sufficiently large number of differ-
ent chain conformations. Most conveniently, we identify b
as the distance between x and the bilayer midplane (or the
z axis if x belongs to the tether part), measured along n(x).
Using these notations, the structure of the fusion stalk is
fully determined by x and the corresponding directors
b(x) � b n(x).

Because x describes a surface, we can associate with each
position at x a unit vector N that points normal to the
surface. Of course, n and N need not point into the same
direction at any given x. In general, there may be an angle,
�, between these two vectors. Mathematically, � is related
to the dot product N � n � cos�.

The next step is to write down for any given structure of
the fusion stalk, as characterized by b(x), a reasonable
expression for the elastic free energy, F. This will finally
allow us to find the structure of the fusion stalk such that
F � F[b(x)] adopts a minimum. Within the framework of
continuum elasticity, we shall express the free energy, F, of
the fusion stalk as an integration over the entire surface A

F��
A

da f̃ (1)

Assuming sufficiently small local perturbations, we shall
use for the elastic free energy density (energy per unit area),
f̃, the quadratic expression

f̃ �
K

2
s2 �

�

2
�� � n�2 � �c0�� � n� �

kt

2
�2 (2)

The first term in Eq. 2 describes the local compression (or
expansion) of the lipid layer; K is the corresponding com-
pression modulus (being equivalent to the lateral compres-
sion modulus of a monolayer), and s � b/b0 � 1 is the
relative chain dilation with respect to the equilibrium chain
length b0.

The second and third terms in Eq. 2 account for the splay
energy of the lipid chains in which � is the bending stiff-
ness, c0 is the spontaneous curvature, and � � n denotes the
divergence of the unit vector n. This energy contribution is
related to the effective “molecular shape” (Israelachvili,
1992; Evans and Wennerström, 1994) of the lipid mole-
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cules. Depending on their chemical structure, and in partic-
ular on the bulkiness of the head group versus that of the
hydrocarbon chains, lipid molecules may preferentially
adopt the shape of a cone, an “inverted” cone, or interme-
diately that of a cylinder. Deviations of the actual packing
geometry of a lipid layer from the preferred one cause an
energetic penalty, namely, the splay energy.

The last term in Eq. 2 is the tilt energy of the lipid
molecules; kt is the corresponding tilt modulus. The tilt
energy accounts for the angular deviation, �, of the lipid
director b (or, equivalently, n) from the normal direction N.
We finish this section with five remarks. 1) In their recent
approach, Kozlovsky and Kozlov (2002) have used an elas-
tic free energy that is identical to the last three terms of Eq.
2. The only difference of the present approach is, thus, the
consideration of the compression/expansion term Ks2/2.
Yet, it is exactly this term that is required for a comparison
of fusion stalks with and without membrane edges. 2) Gen-
erally, there is an additional energetic contribution present
in Eq. 2 that accounts for a saddle-splay deformation of the
lipid layer. Yet, this term is irrelevant for membrane shape
optimization because of the Gauss-Bonnet theorem. Simi-
larly, in the present case, a saddle-splay term would con-
tribute only a constant to the actual minimization of the
fusion stalk structure and hence is omitted. 3) The free
energy, F, is an excess free energy with respect to a planar
and unperturbed lipid layer (for which s � � � � � n � 0).
The present work, thus, assumes thermal equilibrium of the
lipids residing in the fusion stalk with those far away from
it. 4) Generally, the molecular lipid volume remains con-
stant during an elastic deformation of a lipid layer. This
conservation would enter the free energy density f̃ in Eq. 2
at higher order than quadratic (unless c0 � 1/b0 (May,
2000), but we shall consider sufficiently small spontaneous
curvature in the present work). Hence, even though the
molecular lipid volume is conserved, it does not enter into
the free energy f̃. 5) The expression for the free energy
density in Eq. 2 refers to a specific choice of the describing
surface, namely the so-called neutral surface. For lipid
layers, it is generally reasonable to assume that the neutral
surface is located near the interface between the hydropho-
bic lipid chains and the polar environment (Szleifer et al.,
1990).

In the following we shall use the expression for F, de-
fined in Eqs. 1 and 2, to calculate the free energy of a fusion
stalk. It is convenient to rewrite the free energy, F, of the
entire stalk as a sum of the corresponding free energies of
all involved subregions

F � Fbl � FT � FP � FD � FT (3)

in which Fbl, FP, FD, and FT denote the free energy contri-
butions of the bilayer, proximal monolayer, distal mono-
layer, and tether, respectively.

Internal degrees of freedom of a fusion stalk

To find the optimal stalk structure and its free energy, F, we
shall not rely on any specific assumption on the size and
shape of the fusion stalk. Rather, we seek to fully optimize
the stalk structure with respect to all relevant degrees of
freedom. However, we shall adopt the two following evi-
dent structural assumptions. 1) There is an axis of rotational
symmetry and a plane of mirror symmetry. This assumption
is justified because there is no energetic incentive in our free
energy expression that could give rise to a break of sym-
metry. Conveniently, we use cylindrical coordinates {r, �,
z} and identify the axis of rotational symmetry with the z
axis (see Fig. 1 A). 2) The topological structure of the fusion
stalk corresponds to that in Fig. 1 A. That is, a single lipidic
tether connects two perturbed bilayers. Of course, the length
of the tether can vary such as to minimize F (for vanishing
tether length, the structure in Fig. 1 B would be recovered).

Due to the symmetry, we only need to consider, say, the
upper one-half of a cross-section of the fusion stalk, which
is schematically shown in Fig. 2. The structure of the stalk
shown in its cross-section consists of three regions: distal

FIGURE 2 Cross-section of a stalk in the r, z-plane; two lipids are shown
schematically. Because of the mirror symmetry only the part above the
equatorial plane is shown. The structure is rotationally symmetric with
respect to the z axis. The thick lines mark the describing surfaces in each
of the three regions: distal monolayer, proximal monolayer, and tether. The
describing surfaces are located in proximity to the interface between the
hydrophobic lipid chains and the polar environment. The broken line
between the distal and proximal monolayer marks the midplane of the
perturbed bilayer. The proximal monolayer is characterized at its radial
coordinate r (with rA 	 r 	 rB) by the height h � h(r) of the describing
surface, by the tilt angle 
 � 
(r) of the lipid director with respect to the
z axis, and by the director length, b � b(r). Similarly, the distal monolayer
is characterized at its radial coordinate rD (with 0 	 rD 	 rB

D) by the
corresponding functions hD � hD(rD), 
D � 
D(rD), and bD � bD(rD). Note
the angle � between the bilayer wing and the r axis. Finally, we describe
the tether (which has half-length l) with respect to its z coordinate by the
tilt angle, 
T � 
T(z), of the lipid director (measured with respect to the r
axis), and by the director length bT � bT(z).
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monolayer, proximal monolayer, and tether. The length of
the tether is 2l; proximal and distal monolayers range from
rA 	 r 	 rB and 0 	 rD 	 rB

D, respectively (the radial
coordinate of the distal monolayer is denoted by rD).

The shape and structure of each of the three hydrophobic
regions is fully characterized by the corresponding function
b(x). As introduced above, x specifies the shape of the
describing surface, A, that separates the hydrophobic inte-
rior from the polar environment, and b � b n is the corre-
sponding lipid director (of direction n and length b). Within
the z, r-plane, the stalk structure, b(x), can be represented in
each region (proximal monolayer, distal monolayer, and
tether) by a number of conveniently chosen functions. In the
following, we shall introduce these functions (see also Fig.
2).

The shape vector x of the proximal monolayer is fully
characterized by the local height function, h � h(r), of the
describing surface. The corresponding lipid director at po-
sition r (with rA 	 r 	 rB) is given by the tilt angle with
respect to the z axis, 
 � 
(r), and by the director length,
b � b(r).

Analogously to the proximal monolayer, the structure of
the distal monolayer, as a function of the radial coordinate
rD (with 0 	 rD 	 rB

D), is given by the local height function
of the describing surface, hD � hD(rD), by the tilt angle with
respect to the z axis, 
D � 
D(rD), and by the director length
bD � bD(rD).

Whereas the two perturbed monolayers are both de-
scribed in terms of the radial coordinate, it is more conve-
nient to characterize the tether region with respect to the z
axis. One needs two functions, we choose first the tilt angle,

T � 
T(z), of the lipid director, measured with respect to
the r axis, and second the director length bT � bT(z).

Fig. 2 visualizes the geometrical meaning of the functions
h, 
, b, hD, 
D, bD, 
T, and bT; mathematical definitions of
the parameterization, b(n), in terms of these internal degrees
of freedom are given in the Appendix.

So far, the perturbed bilayer (consisting of the proximal
and distal monolayer) is characterized by the six functions
h, 
, b, hD, 
D, and bD. However, these functions cannot be
chosen independently because the two monolayers are
structurally coupled. That is, the hydrocarbon chain regions
of the respective monolayers have to fit each other without
leaving any void. This requirement can easily be put into a
simple mathematical condition: For two lipids, whose head-
groups are anchored at opposite leaflets of the bilayer, one
at position r and the other one at position

rD � r � b sin 
 � bD sin 
D (4)

the constraint

hD�rD� � h � b cos 
 � bD cos 
D (5)

must be fulfilled. Consequently, we refer to Eqs. 4 and 5 as
the hydrophobic matching condition. Eq. 5 implies that the

perturbed bilayer has not six but only five independent
internal degrees of freedom, say h(r), 
(r), b(r), 
D(rD), and
bD(rD). Hence, together with the tether region, characterized
by 
T(z), and bT(z), we are able to express the structure and
free energy of the entire stalk in terms of seven independent
functions. In the Appendix, we show how to calculate the
separate contributions to the free energy F � FP � FD � FT

in terms of the seven independent functions.

Free energy minimization

Generally, the mathematical method of functional minimi-
zation provides a convenient way to find the unknown
functions, h(r), 
(r), b(r), 
D(rD), bD(rD), 
T(z), and bT(z),
such that F adopts a minimum. To this end, seven differ-
ential equations (Euler equations) for the seven independent
functions can be derived and must be solved with respect to
appropriate boundary conditions. However, in the present
case this is a formidable task because the Euler equations
are nonlinear with respect to the unknown functions. The
situation simplifies considerably if we linearize the Euler
equations with respect to both an unperturbed membrane (in
which b � bD � b0, 
 � 
D � 0 and h � const) and a
uniform tether (in which 
T � 0 and bT � b0). In the present
work we use the linearized Euler equations to obtain the
conformation of the fusion stalk. This, however, requires us
to ensure that the deformation of the stalk is sufficiently
small compared with both an unperturbed, planar membrane
and a uniform tether. In particular, it must be 
(r) �� �/2
and 
T(z) �� �/2. On the other hand, at the transition region
between the proximal monolayer and the tether (that is at
r � rA and at the corresponding zB � z(rA)) compactness of
the stalk’s hydrophobic region can only be achieved if the
relation 
(rA) � 
T(zB) � �/2 is fulfilled (see also Fig. 2).
Hence, smallness of 
(rA) would go at the expanse of 
T(zB)
and vice versa. The optimal compromise is where 
(rA) 	

T(zB) 	 �/4. In the Results section we show that, indeed,
the energetic minimum of the stalk is adopted for the
situation where neither 
(rA) nor 
T(zB) deviates much from
�/4.

The Euler equations must be solved with respect to cer-
tain boundary conditions. Two boundary conditions reflect
the compactness of the stalk structure: 
D(rD � 0) � 0 and
the above-mentioned 
(rA) � 
T(zB) � �/2. Some other
boundary conditions can be formulated if one requires the
proximal and distal monolayers of the fusion stalk to join an
unperturbed bilayer (for which f̃ according to Eq. 2 vanishes
everywhere). This implies certain conditions for the lipid
directors at positions rB and rB

D. If in addition to that we
demand rB � rB

D then the unperturbed bilayer, joining the
stalk, is parallel to the r axis (or, equivalently, to the plane
of mirror symmetry). This case is obviously relevant if a
stalk is formed starting from two, apposed, parallel bilayers.
Yet, this situation need not be the energetically most favor-
able one. We may, alternatively, allow the bilayer wings to
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adjust their angle, � (see Fig. 2), with respect to the r axis
such that F adopts a minimum. The difference of the free
energy F for both cases reflects the energetic cost of trans-
forming an energetically optimal stalk into one that con-
nects two parallel membranes. In the Results section we
shall consider both cases.

There are two more boundary conditions to be chosen. In
fact, these two boundary conditions play a crucial role for
the purpose of the present study. One of them specifies the
length of the lipid director, bD, originating at position rD �
0 of the distal monolayer. If the fusion stalk has a smooth
interface, then this length must be chosen such that the
condition

�dhD�rD�

drD
�

rD�0

� 0 (6)

is fulfilled. Alternatively, if the stalk is not required to adopt
a smooth interface, bD(rD � 0) is allowed to adjust such as
to minimize F. In the latter case, the distal monolayer may
exhibit a corner at its symmetry axis. The second remaining
boundary condition specifies the length, b(r � rA), of the
lipid director at the transition region between the proximal
monolayer and the tether. Again, this length may be chosen
such as to ensure smoothness of the stalk structure. Alter-
natively, it can be allowed to adjust to minimize F. In the
latter case, the interfacial region of the stalk may exhibit an
edge at r � rA. These two different sets of boundary
conditions, one ensuring a smooth interface of the stalk and
the other one minimizing F at the expansive of forming a
nonsmooth interface, are the key point of our present inves-
tigation. They allow a direct comparison of the free ener-
gies, F, for smooth versus nonsmooth stalks.

RESULTS AND DISCUSSION

We present calculations for the following set of material
parameters: K � 0.35 kBT/Å2, � � 6.8 kBT, c0 � 0, kt � 0.1
kBT/Å2, and b0 � 14 Å. The material constants of lipid
bilayers obtained by different investigators do often vary,
depending on the experimental method and the system
(compare Niggemann et al., 1995). Hence, our present
choice for K and �, which follows Evans and Rawicz
(1990), is not meant to represent a specific system. Rather,
we use it to illustrate the mechanism of how membrane
edges reduce the stalk energy. The uncertainty about the
correct magnitude is even larger for the tilt modulus, which
has not yet been determined experimentally. The value kt �
0.1 kBT/Å2 follows from a simple estimate that directly
relates the tilt modulus to the chain stretching rigidity of the
lipid chains (May and Ben-Shaul, 1999; Hamm and Kozlov,
1998).

Structure of smooth stalk

We first demand the stalk to have smooth interface every-
where. In this case we must use appropriate boundary con-
ditions for the Euler equations as discussed in the Free
Energy Minimization section (the exact boundary condi-
tions are outlined in the Appendix; see Eqs. 19 and 20).

Recall that the bilayer wing of the stalk at rB either
optimizes its orientation (angle � in Fig. 2) or is forced to be
flat (� � 0). In Fig. 3, A and B, we present calculations of
the corresponding stalk structures for rB � 70 Å. In both
cases, the tether half-length l is optimized. The interfacial
regions of both structures are smooth everywhere. The
corresponding free energies of the stalks are similar but very
high. This is in agreement with previous calculations (Sie-
gel, 1993, 1999). The main difference of the present study
is that no structural assumptions on the shape and confor-
mation of the stalks is made. We only assume its topological
structure and interfacial smoothness everywhere.

The stalk in Fig. 3 B is forced to join a flat bilayer (at rB).
Yet, its energy, F, is only marginally higher than the one for

FIGURE 3 Calculated structure of a smooth fusion stalk (with the cor-
responding free energies, F � FP � FD � FT, indicated in units of kBT) for
K � 0.35 kBT/Å2, � � 6.8 kBT, c0 � 0, kt � 0.1 kBT/Å2, and b0 � 14 Å.
At rB � 70 Å the bilayer adopts its optimal orientation (A) or joins a flat,
unperturbed membrane (B).
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optimal bilayer wing orientation displayed in Fig. 3 A. This
shows that bending of the bilayer at rB from its optimal
orientation into a flat conformation is energetically inexpen-
sive. This allows the conclusion that the stalk energy is
relatively insensitive with respect to the membrane-mem-
brane distance of the fusing bilayers. Similarly, we conclude
that the stalk energy only weakly depends on the choice of
rB. That is, for any rB 
 70 Å, the stalk free energy, F,
would be found between the values given in Fig. 3, A and B.
Only a considerably smaller choice of rB � rA �  would
substantially increase F. Here  is the decay length of the
membrane tilt angle perturbation, which is given by �1 �
(2b0/(�K)1/2�1/kt)

1/2 � K1/2/2b0 (May, 2002). Typically for
lipid bilayers (and consistent with our present choice of the
material parameters)  	 10 Å. Hence, our present results
would be similar for any choice of rB 

 rA � . Similar
considerations also apply for nonsmooth stalks.

Structure of stalk with membrane edges

A stalk structure of much lower free energy forms if sharp
membrane edges are allowed to occur. Two corresponding
calculations are presented in Fig. 4, A and B. The stalk in

Fig. 4 A is optimized with respect to the wing orientation of
the bilayer (expressed by the angle �; see Fig. 2); for Fig. 4
B, it is � � 0. The two structures in Fig. 4 differ from the
corresponding ones in Fig. 3 only in the choice of those two
boundary conditions that specify whether the stalk is forced
to be smooth at r � rA and rD � 0 or not (as discussed in
the Free Energy Minimization section).

The stalk structures clearly exhibit edges at the joint
between the proximal monolayer and the tether. Moreover,
there is a sharp corner located at the intersection between
the z axis and the interface of the distal monolayer. This
considerably helps the lipid chains to fill up the hydrocar-
bon region at r � z � 0 without causing large lipid layer
perturbations. As a consequence, the free energies of the
nonsmooth stalks are several times lower compared with the
corresponding smooth stalks.

The stalks shown in Fig. 4 have a tether length of 	2l �
12 Å. Instead of minimizing F with respect to l one can also
impose a certain l to the stalk and calculate the correspond-
ing F. We have performed this calculation for the stalk
displayed in Fig. 4 A; the result is shown in Fig. 5.

The minimum appears at some intermediate l for the
following reason. For large l, the length of the tether does
not affect the structure of the two perturbed bilayers. More-
over then, the free energy FT of the cylindrical micelle-like
tether is proportional to its length, implying F � l. The
slope of F(l) must be positive because the lipid bilayer is
energetically preferred compared with a uniform tether. For
small l, the tether nearly vanishes and so does its free energy
FT. Yet, the hydrophobic core of the stalk must be compact,
implying 
T(zB) � 0 (recall zB � z(r � rA)). The corre-
sponding lipids have thus a very high tilt angle �, which
results in high free energies of the perturbed lipid bilayers.
A compromise is offered for intermediate l in which FT is
still small and 
T(zB) can relax to values for which the
corresponding lipid tilt deformations are not too high.

Note that l � 0 corresponds to the model suggested by
Kozlovsky and Kozlov (2002). We shall not attempt to
directly compare with their calculated energies for two
reasons: First, our approach allows the local lipid chain
lengths to adjust and hence contains an additional order
parameter. Second, and perhaps more important, our

FIGURE 4 Structure of the fusion stalk (with the corresponding free
energies, F � FP � FD � FT, indicated in units of kBT) for K � 0.35
kBT/Å2, � � 6.8 kBT, c0 � 0, kt � 0.1 kBT/Å2, and b0 � 14 Å. At rB � 70
Å, the bilayer adopts its optimal orientation (A) or joins a flat, unperturbed
membrane (B).
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FIGURE 5 Dependence of the stalk free energy on the half-length, l, of
the tether. The calculation corresponds to the nonsmooth stalk shown in
Fig. 4 A with variable l.
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method to calculate F assumes small values of 
 (this was
needed to linearize the Euler equations). Yet, for 
(r �
rA) � �/2 as required by l � 0 the profile 
(r) becomes
large near rA, which may induce a substantial overestima-
tion of F. Still, despite our uncertainty regarding l � 0, the
existence of an energetic minimum for intermediate l is a
reliable prediction of the present model. Thus, it is very
likely that fusion stalks contain a tether as shown in Fig. 4.

Comparison of smooth with non-smooth stalks

The free energy of the stalks depends strongly on the
assumption whether interfacial smoothness is imposed or
not. The main structural difference is the degree of chain
stretching for those lipids that fill the interstices at r � z �
0. This is shown in Fig. 6 for the smooth stalk (broken lines)
and nonsmooth stalk (solid lines) displayed in Figs. 3 A and
4 A, respectively. The left diagram of Fig. 6 shows the
relative chain dilation s(r) � b(r)/b0 � 1 for the proximal
monolayer. The corresponding relative chain dilation for the
distal monolayer, sD(rD) � bD(rD)/b0 � 1, has the same
functional dependence as s(r) (as following from the Euler
equations; see Appendix). That is sD(rD) � s(r) in which
rD � rD(r) relates “corresponding” directors according to
Eq. 4. Note in particular that s(r � rA) � sD(rD � 0). The
right diagram in Fig. 6 displays the tilt angles, 
(r) and

D[rD(r)] where, again, the director at r (belonging to the
proximal monolayer) and the “corresponding” one at rD �
rD(r) (belonging to the distal monolayer) point onto the
same midplane position as expressed by Eq. 4. The large
difference of s(r) at small r between smooth and nonsmooth
stalks expresses the different degree of chain stretching,
causing substantial differences in the corresponding free
energies. What is the reason for the pronounced chain
stretching of smooth stalks near the point z � r � 0? This
stretching results from the packing of the respective lipid
chains. On one hand, the lipids must not leave any voids in
the hydrophobic interior of the stalk. That means they must
(on average) be able to reach the point z � r � 0. The lipid
packing, on the other hand, becomes very unfavorable if the
monolayer’s interface is strongly bent towards the point z �

r � 0. This would create high splay energies for the corre-
sponding lipids. The resulting compromise is an only mod-
erately curved interface, as the cross-sections in Fig. 3
show. Yet, this leads to the large distance between the lipid
head groups and the point z � r � 0, implying pronounced
chain stretching. This situation changes drastically if the
constraint of interfacial smoothness is abandoned. Then, the
two lipid layers, forming regions P and T (see Fig. 1), can
pack separately. An edge is created between regions P and
T, but this allows the lipid heads to come close enough to
the point z � r � 0 to avoid high chain stretching. At the
first glance, the presence of an edge might indicate a diver-
gence of the free energy. However, this is not the case as
was already pointed out by Kozlovsky and Kozlov (2002).
All relevant lipid deformations (those taken into account in
Eq. 2) remain finite. Bending of the describing surface itself
is not connected with an energetic cost. Hence, there is no
reason for an edge (or corner) not to form if this lowers the
free energy of the stalk.

Dependence on tilt modulus

The present approach is based on the assumption that lipid
chains are allowed to tilt with respect to the monolayer’s
interface. However, the corresponding tilt modulus, kt, is
unknown at present. The value kt � 0.1 kBT/Å2, used to
calculate Figs. 3 and 4, results from a simple theoretical
estimate (May and Ben-Shaul, 1999; Hamm and Kozlov,
1998). It assumes that upon a uniform tilt of the lipids in a
bilayer, the hydrocarbon chains have to stretch to uniformly
fill the hydrophobic interior (the thickness of the hydrocar-
bon core remains unaffected by the tilt deformation). The
energy to stretch lipid chains can be roughly related to the
stretching modulus K. The resulting prediction kt 	 0.1
kBT/Å2 is, of course, very crude. Yet, the ability of the lipids
to tilt (that is kt � ) is the very basis of the present model.
With kt 3  membrane edges could not form, and the
resulting stalk energies would be very high. It is thus useful
to test whether the ability of membrane edges to reduce the
energy of stalks is similarly found for other values of kt. To
this end, we compare in Table 1 the free energies F for
smooth (F � Fsmooth) and nonsmooth (F � Fnonsmooth)
stalks at different kt. Clearly, the model is robust with regard
to variations in kt. The nonsmooth stalk always has a much
lower energy than its smooth counterpart. We remark that
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FIGURE 6 Relative chain dilation, s(r) � b(r)/b0 � 1, and tilt angles
with respect to the z axis, 
(r) and 
D[rD(r)], of a smooth (broken lines) and
nonsmooth (solid lines) stalk. The profiles correspond to Figs. 3 A and 4 A.

TABLE 1 Stalk free energies for smooth (F � Fsmooth) and
nonsmooth (F � Fnonsmooth) membrane interfaces for different
values of the tilt modulus kt

kt/kBTÅ�2 0.02 0.1 0.2 0.3
Fsmooth/kBT 44.1 117.6 196.7 346.5
Fnonsmooth/kBT 17.7 33.4 48.0 60.6

The calculations were performed for the bilayer adopting its optimal
orientation at rB � 70 Å.
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we cannot perform calculations in the limit kt 3 . The
reason is the linearization of the Euler equations that we use
throughout this work. It only allows us to approximatively
calculate the optimal stalk structure. In particular, in the
limit kt3  the tilt angles � will not be predicted to exactly
vanish. Therefore, F will diverge for kt 3 . If we could
exactly minimize F (without linearizing the Euler equa-
tions) then we would find a finite value for F(kt3 ). The
structures and energies of the smooth and corresponding
nonsmooth stalks would then be identical.

Dependence on spontaneous curvature

A quantity that is of considerable experimental interest is
the spontaneous curvature, co, of the lipid layers. In fact, the
stalk free energy is likely to increase with the spontaneous
curvature of the lipids. Lipids with highly negative c0 (like
dioleoylphosphatidylethanolamine) are found more fuso-
genic than those with vanishing or small c0 (like dio-
leoylphosphatidylcholine). Lipids with highly positive c0

(like lysolipids) act as typical fusion inhibitors (Cherno-
mordik et al., 1995b). This behavior is supported only by the
model of nonsmooth stalks. To this end, we show in Fig. 7
the dependence of F and its components (FP, FD, and FT) on
c0 for the four stalk structures displayed in Figs. 3 and 4
(these were derived for c0 � 0). The left and right diagrams

are calculated for smooth and nonsmooth stalks, respec-
tively. For the two upper diagrams the bilayer wing orien-
tation is allowed to freely adjust at rB � 70 Å; in the two
lower diagrams, the bilayers are flat at rB � 70 Å (that is
� � 0). Clearly, for smooth stalks there is essentially no
effect of c0 on F. Contrary to that, nonsmooth stalks con-
siderably lower their free energy if the spontaneous curva-
ture becomes more negative.

Experiments also suggest that addition of fusion-promot-
ing or fusion-inhibiting lipids into either the distal or prox-
imal monolayers have different effects on fusion. When
residing in the distal monolayers these lipids affect the
formation of the fusion pore. On the other hand, formation
of hemifused membranes depends on the presence of these
lipids in the proximal monolayers (Chernomordik et al.,
1995a). Similar findings were also made for protein-medi-
ated fusion (Chernomordik et al., 1997). With regard to Fig.
7, it is clear that only the right bottom diagram shows a
dependence of FP on c0 that is consistent with experiment.
That is, only the nonsmooth stalk that joins (at rB) a flat
membrane lowers the free energy if the proximal monolay-
ers reduce their spontaneous curvature. Even though the two
nonsmooth stalks in Fig. 7 (flat and adjustable bilayer wing
orientation at rB) have very similar energies F, the depen-
dence of their contribution FP on c0 differs qualitatively.

The energy, FT, of the tether is nearly independent of c0

in all diagrams of Fig. 7. This may appear as a surprise
because the tether is structurally similar to a cylindrical
micelle. It is well known that common (unperturbed) cylin-
drical micelles strongly prefer surfactants of positive spon-
taneous curvature c0 (Israelachvili, 1992), implying that FT

should be a decreasing function with c0. Yet, this is not the
case in Fig. 7. The reason is that the packing properties of
the lipid chains within the tether are actually quite different
from those in an unperturbed cylindrical micelle. In fact,
when part of a fusion stalk, the tether experiences a large
splay deformation in z direction as can be seen in Figs. 3 and
4. It appears that the splay along the z axis is similar in
magnitude to that in radial direction but opposite in sign.
Hence, the effective total splay, � � n, is small and does not
contribute much to the free energy. In light of that, the
constancy of FT(c0) is no longer a surprise. In a way, this
finding is somewhat similar to the suggestion of Markin and
Albanesi (2002) that the neck of a fusion stalk is nearly
stress free.

CONCLUSIONS

We have directly compared smooth and nonsmooth fusion
stalks. The corresponding free energies are remarkably dif-
ferent. It appears that membrane edges dramatically reduce
the energy stored in a fusion stalk. Membrane edges become
possible through the ability of the lipids to undergo tilt
deformations. The corresponding tilt modulus, kt, is cur-
rently not well known. Even though the principal conclu-

FIGURE 7 Dependence of F and its components (FD, FP, and FT) on the
spontaneous curvature, c0, of the lipid layer (all energies are in units of
kBT) for smooth (left) and nonsmooth stalks (right). The bilayer is allowed
to adopt its optimal wing orientation at rB � 70 Å (upper diagrams) or is
forced to be flat (� � 0) at rB � 70 Å (lower diagrams). The structures
corresponding to c0 � 0 are shown in Figs. 3 and 4.
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sions of the present study remain the same for different
choices of kt, the need for more reliable values of kt is
apparent.

The reduction of the stalk energy through the formation of
membrane edges is very similar to the recent findings of
Kozlovsky and Kozlov (2002). The main difference is that the
present model predicts the existence of a lipidic tether-like
connection between the proximal monolayers, whereas this
part is absent in the work of Kozlovsky and Kozlov (2002).

APPENDIX

We calculate each of the contribution to the free energy, F � FP � FD �
FT (see Eq. 3), derive the corresponding Euler equations, specify the
boundary conditions, and comment on the numerical procedure to solve the
Euler equations. Note that in all of the following we use cylindrical
coordinates {r, �, z}.

Proximal monolayer

The parameterization of the three functions h(r), 
(r), and b(r) (see Fig. 2)
is given by

x � �r cos �, r sin �, h�r�� (7)

b � b�r���cos � sin 
�r�, �sin� sin 
�r�, cos
�r��

Instead of h(r) one may equivalently use the local angle, �(r), between
the height profile and the r axis. The relation between both quantities is tan
� � h�. (Here the prime denotes the derivative with respect to r).

The free energy FP can be calculated according to Eq. 1 and Eq. 2 in terms
of the three internal degrees of freedom: 
 � 
(r), b � b(r), and h � h(r). To
this end note that s � s(r) � b/b0 � 1, � � 
 � �, and � � n � (rsin
)�/r.
Inserting these expressions into Eq. 2 results in f̃ � f̃(s, 
, 
�, h�). Because
the area element, corresponding to x in Eq. 7, is da � 2�r�1 � h�2 we
arrive at

FP � 2 � 2��
rA

rB

dr r�1 � h�2 f̃�s, 
, 
�, h�� (8)

in which the additional factor of two results from the two proximal
monolayers that contribute to the fusion stalk.

Distal monolayer

In Fig. 2, the three internal degrees of freedom of the distal monolayer are
denoted by bD � bD(rD), 
D � 
D(rD), and hD � hD(rD). Because the distal
monolayer behaves energetically equivalent to the proximal monolayer, its
free energy, FD, is calculated analogously to Eq. 8

FD � 2 � 2��
0

rB
D

drDrD�1 � hD
�2 f�sD, 
D, 
�D, � h�D� (9)

in which the prime denotes the derivative with respect to rD. Note that
sD(rD) � bD(rD)/b0 � 1 is the relative chain dilation within the distal
monolayer. Also note the negative sign in front of h�D(rD), which accounts
for the fact that the two monolayers of the bilayer face each other in
opposite direction.

In Eqs. 4 and 5, we have introduced the hydrophobic matching condi-
tion that expresses the hydrophobic coupling of the two apposed leaflets of

a bilayer membrane. This condition will now be integrated into FD in Eq.
9. To this end, we transform the integration variable in Eq. 9 from rD to r
according to Eq. 4. This means that in the following the function hD[rD(r)]
� hD(r) specifies the height profile of the distal monolayer at position rD �
rD(r), and analogously for sD[rD(r)] � sD(r) and 
D[rD(r)] � 
D(r). As a
result, FD in Eq. 9 is written in the form

FD � 4��
rA

rB

dr r�D rD�1 � �h�D
r�D
�2

f̃�sD, 
D,

�D
r�D

, �
h�D
r�D
�
(10)

where now the prime denotes the derivative with respect to r. Note that
r�D � r�D(r) and h�D(r) can be calculated by differentiating Eqs. 4 and 5. Note
also that FD in Eq. 10 accounts for both of the two distal monolayers that
contribute to a fusion stalk.

Applying the hydrophobic matching condition (resulting in Eq. 10)
allows us to write the free energy, Fbl � FP � FD, of the perturbed bilayer
as an integration over the describing surface of the proximal monolayer
only

Fbl � �
rA

rB

dr f�bl�s, s�, 
, 
�, h�, sD, s�D, 
D, 
�D� (11)

(with s� � ds/dr etc) in which the free energy density along the r axis, f�bl,
is the sum of the integrands of Eqs. 8 and 10. Note that the dependence of
f�bl on s� and s�D enters through r�D and h�D. Eq. 11 is the starting point for
deriving the Euler equations of the bilayer region (see Eqs. 14 below).

Tether

Three internal degrees of freedom define the conformation of a single
monolayer. (The bilayer has only five degrees of freedom because of the
hydrophobic matching condition). The tether is formed by only a single
(yet highly bent) monolayer that should, in principle, be characterized by
three order parameters: chain dilation, director tilt, and the shape of the
midaxis. For a fusion stalk (see Fig. 1 A), however, the midaxis of the
tether is a straight line because of the angular symmetry. This eliminates
one degree of freedom, and we are thus left with only two unknown
functions. We use the following parameterization of b(x)

x � �hT�z) cos �, hT�z) sin �, z� (12)

b � hT�z���cos �, �sin �, tan 
T�z)}

in which r � hT(z) is the distance of the describing surface from the z axis,
and 
T(z) is the angle between the director and the r axis.

Let �T(z) denote the angle between the shape, hT(z), of the tether and the
z axis (implying tan�T � h�T). Note that for the tether region a prime
denotes the derivative with respect to z. Based on the definitions in Eqs. 12,
we find the tilt angle, � � 
T � �T, between the director and the normal
of the shape profile, and the divergence � � n � cos 
T(1/hT � 
�T). This
allows us to calculate the free energy density, f̃, given in Eq. 2 and, hence,
the free energy of the tether

FT � 2 � 2��
zA

zB

dzhT�1 � h�T
2 f̃ (13)

in which da � 2�hT
�1 � h�T

2 is the surface area element, corresponding
to x in Eq. 12; zA marks the position of the equatorial plane and zB � zA �
l. Note again the prefactor of 2 that accounts for the two (identical) parts
of the tether below and above the equatorial plane where the stalk exhibits
mirror symmetry.
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At this point, we specify the two internal degrees of freedom of the
tether region. One is 
T(z) and the other sT(z) � bT(z)/b0 � 1 in which bT(z)
is the effective lipid chain length. According to Fig. 2 it is hT(z) �
bT(z)cos
T(z) that allows us to express the free energy of the tether, FT �
FT(sT, 
T), fully in terms of sT(z) and 
T(z) (for the corresponding Euler
equations see Eq. 15 below).

Euler equations

We consider first the Euler equations that minimize the free energy, Fbl, of
the perturbed bilayer (see Eq. 11). Because these equations appear as rather
complex expressions, we have linearized them with respect to a flat and
unperturbed membrane, in which s(r) � 
(r) � h�(r) � sD(r) � 
D(r) � 0.
The linearization requires for the resulting stalk conformation �s(r)� �� 1,
�sD(r)� �� 1, �h�(r)� �� 1, �
(r)� �� �/2, and �
D(r)� �� �/2. The resulting
Euler equations read

sD � s

s� �
s�

r
�

K

b0
2kt

s �
1

2b0
�
�D �


D

r
� 
� �




r�
�
�D �


D

r ��
�

kt

�
�
D � 2b0s� � h�� �

b0c0

r2 �
 � 2
D�

�
� �



r��
�

kt

�
�
 � h�� �

b0c0

r2 
D (14)

h� �
h�

r
� �

K

b0kt
s � 
� �




r

Our results for the bilayer conformation are based on numerical solutions
of these equations. The bilayer free energy, Fbl, is obtained by inserting the
solution of Eq. 14 back into Eq. 11.
Next, we calculate the Euler equations that minimize the free energy, FT,
of the tether. Again, we linearize them with respect to a uniform tether,
characterized by sT(z) � 
T(z) � 0. The linearization is valid in the limit
�sT(z)� �� 1 and �
T(z)� �� �/2. The resulting Euler equations are

s �T �
� � � 2�� � b0

2K�sT � 2b0
2�c0� � b0kt�
�T

b0
2�� � 2b0c0� � 2b0

2kt�


 �T � �b0

kt

�
� c0��
T

b0
� s�T� �


T

2b0
2 (15)

It is important to note that the state sT(z) � 
T(z) � 0 of the uniform tether
does not correspond to its energetically most favorable conformation. This
would be obtained by the uniform deformation 
T(z) � 0 and

sT(z) �
1

2 (1�b0
2 K/�)

(16)

Obviously, sT 
 0, indicating that some chain stretching occurs to com-
pensate for the unfavorable monolayer bending. That is, the hydrocarbon
region of an unperturbed tether, which is structurally equivalent to a
cylindrical micelle, is somewhat thicker than that of the corresponding
unperturbed bilayer. This is in agreement with other models of structural
transitions in lipidic systems (Ben-Shaul and Gelbart, 1994).

The solution of the Euler equations, Eqs. 14 and 15, determines the
shape and structure of the fusion stalk correctly if the perturbation is
sufficiently small. However, smallness of the perturbation does not neces-
sarily apply for a fusion stalk. In this case, the linearized Euler equations

predict a shape that may deviate somewhat from the optimal one. The
corresponding perturbation free energy, F, will in general be higher than
the optimal one. Because in the present work we use the linearized Euler
equations, we must refer to F as an upper bound.

Boundary conditions

The first one of Eq. 14 states that corresponding lipid directors (i.e., those
whose ends meet at a single point) have the same director length. The four
remaining differential equations (Eq. 14) have to be solved with respect to
eight appropriate boundary conditions (at rA and rB with four boundary
conditions at each position).

To specify the four boundary conditions at rB we shall demand that at
this point the two monolayers join an unperturbed bilayer. This implies the
three boundary conditions


�rB� � ��rB�, 
D�rB� � � 
�rB�, s��rB� � 0 (17)

A fourth boundary condition can be specified at rB, depending on whether
the bilayer is forced to be flat (� � 0 in Fig. 2) or free to choose its optimal
spatial orientation (optimal � in Fig. 2). In the former case h�(rB) � 0 and
in the latter 
�(rB) � 0.

At rA, another four boundary conditions must be specified. The first,

D(rA) � 0 (recall 
D(r) � 
D[rD(r)]), ensures compactness of the distal
monolayer. The second fixes the z position of the perturbed membrane.
Here we require at rA the midplane to be found at z � 0 (see Fig. 2),
implying h(rA) � �b(rA) cos 
(rA). The two remaining boundary condi-
tions can generally be written as


�rA� � 
0, s�rA� � s0 (18)

They fix the tilt, 
0, and chain dilation, s0, of the proximal monolayer at
position rA. Note that because of s � sD (see the first one of Eq. 14) also the
chain dilation of the distal monolayer at the z axis is fixed to be s0. The
question arises how 
0 and s0 should be chosen. This question directly
concerns the smoothness of the stalk’s interface. We consider the two possi-
bilities of a smooth and a nonsmooth stalk. 1) For a smooth stalk, s0 must
be chosen such that the interfacial profile of the distal monolayer does not
exhibit a corner at the z axis. This gives rise to Eq. 6, or, equivalently, to

�h�D
r�D
�

r�rA

� 0 (19)

in which h�D � h�D(r) and r�D � r�D(r) can be calculated using the hydro-
phobic matching condition given in Eqs. 4 and 5. Similarly, if the inter-
facial profile of the proximal monolayer is required to be smooth then also

0 must be determined such that the relation

��rA� � �T�zB� �
�

2
(20)

is fulfilled. Hence, for a smooth stalk Eqs. 19 and 20 replace Eq. 18. 2) If
interfacial smoothness is not required then the stalk may adjust s0 and 
0

such as to minimize its overall free energy, F.
We proceed with a comment on the choice of rA, which is given by rA �

b(rA) sin
(rA). Obviously, rA itself depends on the functions s(r) and 
(r),
which can be determined only after first specifying the region rA. . .rB.
However, in our numerical solutions of the Euler equations, we have
designed a simple iteration scheme to self-consistently calculate rA such
that the relation rA � b(rA)sin 
(rA) is fulfilled.

Consider now the boundary conditions for the tether. At the equatorial
plane (z � zA denotes this position) symmetry requires s�T(zA) � 
T(zA) �
0. At zB � zA � l the tether must match the perturbed bilayer, implying
b(rA) � bT(zB) and 
T(zB) � �/2 � 
0 (recall that 
0 is defined in Eq. 18).
In fact, the last two boundary conditions define a compact transition region
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between the bilayer and tether. If beyond compactness, we also demand
smoothness of the interfacial region, then (as already mentioned above) 
0

must be adjusted until Eq. 20 is fulfilled.

Numerical procedure to optimize stalk structure

The numerical calculations of the stalk structure were performed according
to the following procedure. For any given s0 and 
0 one can solve the Euler
equations for the bilayer region, Eq. 14, within rA 	 r 	 rB, and the Euler
equations for the tether, Eq. 15, in a region of length l.

Whereas rB is fixed at some given value (we use rB � 70 Å) we
determine rA self-consistently such that the condition rA � b0(1 � s0)sin
0

is fulfilled. This is achieved by iteratively solving Eq. 14 and updating rA

in each iteration step. We are thus able to calculate the stalk structure and
its corresponding energy F � F(s0, 
0, l) as a function of s0, 
0, and l. For
nonsmooth stalks there is no further structural constraint, implying that
F � F(s0, 
0, l) must adopt its minimum. (Alternatively, we can also
minimize F with respect to only s0 and 
0 and observe the dependence of
F on the half-length, l, of the tether).

For smooth stalks, the situation is different. Here, s0 and 
0 must be
chosen such that Eqs. 19 and 20 are fulfilled. This can be done for any
choice of l. Finally, the stalk energy F is minimized with respect to l.
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