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a b s t r a c t

We state a certain second-order sufficient optimality condition for functions defined in
infinite-dimensional spaces by means of generalized Fréchet’s approach to second-order
differentiability. Moreover, we show that this condition generalizes a certain second-order
condition obtained in finite-dimensional spaces.
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1. Introduction and preliminary facts

Second-order sufficient optimality conditions play a very important role in optimization theory, see e.g. [1–29] and the
references therein.
Various generalized second-order sufficient optimality conditions have been introduced since 80s of the last century.

In our previous articles [14,15], we established the generalized second-order sufficient optimality condition by means of a
certain second-order derivative of the Peano type for the so-called `-stable functions (see Theorem 1).
Let us give a short survey of notions concerning `-stability. Unless stated otherwise, we assume that X is a normed linear

space, SX is the unit sphere of X and for x ∈ X and δ > 0, B(x, δ) denotes the set {y ∈ X; ‖y− x‖ < δ}.
For a function f : X → R, x, h ∈ X , we denote

f `(x; h) = lim inf
t↓0

f (x+ th)− f (x)
t

.

Lemma 1 ([14, Lemma 4]). Let f : X → R be a continuous function, and let a, b ∈ X. Then there exist ξ1, ξ2 ∈ (a, b) such that

f `(ξ1; b− a) ≤ f (b)− f (a) ≤ f `(ξ2; b− a).

We say that f : X → R is `-stable at x ∈ X if there exist a neighbourhood U of x and K > 0 such that

|f `(y; h)− f `(x; h)| ≤ K‖y− x‖, ∀y ∈ U,∀h ∈ SX .
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We notice that the property to be an `-stable function at some point requires weaker assumptions than the property
to be a C1,1 function near this point. Recall that f : X → R is a C1,1 function near x ∈ X if it is differentiable on some
neighbourhood of x and its derivative f ′(·) is Lipschitz here. C1,1 functions appear in, e.g., the augmented Lagrange method,
the penalty function method and the proximal point method. In [14, Example 6] an example of the function f : R → R
which is `-stable at 0 but which is not differentiable on any neighbourhood of 0 was given.
As was shown in [14,15], `-stability at x implies for a continuous function defined on a finite-dimensional space the

Lipschitzness on a neighbourhood of x and also the strict differentiability at x. The differentiability properties of the functions
which are `-stable at some point and which are defined on an arbitrary normed space were studied in [16].

Theorem 1 ([14,15]). Let a function f : RN → R be `-stable at x ∈ RN . If f `(x; h) = 0 for every h ∈ SRN , and

f ′`
P
(x; h) := lim inf

t↓0

f (x+ th)− f (x)− tf `(x; h)
t2/2

> 0, ∀h ∈ SRN ,

then x is an isolated minimizer of order 2 for f .

Recall that x ∈ X is an isolated minimizer of order k (k ∈ N) for a function f : X → R if there are neighbourhood U of x
and A > 0 satisfying f (y) ≥ f (x)+ A‖y− x‖k for every y ∈ U . It is easy to verify that each isolated minimizer is a strict local
minimizer.
Bymeans of Theorem 1we generalized the previous results given in [17, Theorem 3.2], [2, Proposition 5.2], [18, Theorem

3.2], and [19, Theorem 2] as was shown in [14]. Theorem 1 also generalizes the unconstrained and scalar case of results
presented in [24, Theorem 5] and [25, Theorem 4.2] as it follows from the remarks given in [25].
In the paper [14] we also compared Theorem 1 with the one presented in [20, Theorem 2.9] by L.R. Hung and K.F. Ng.

We recall that it was shown in [20, page 388] that Theorem 1 of Chaney in [21] is a weak form of the result of L.R. Hung and
K.F. Ng mentioned before.
We would like to recall that Ginchev in [26] (see also [19]) stated the following sufficient and necessary optimality

condition for an isolated minimizer of second order using the derivatives of Hadamard type, i.e.

f ′
−
(x; h) = lim inf

u→h,t↓0

f (x+ tu)− f (x)
t

,

and

f ′′
−
(x; h) = lim inf

u→h,t↓0

f (x+ tu)− f (x)− tf ′
−
(x; h)

t2/2
.

Theorem 2. Let f : RN → R be an arbitrary function, and let x ∈ RN . If for each h ∈ SRN one of the following two conditions
hold:
(i) f ′

−
(x; h) > 0

(ii) f ′
−
(x; h) = 0 and f ′′

−
(x; h) > 0,

then x is an isolated minimizer of order 2 for f . Conversely, each isolated minimizer of order 2 satisfies these sufficient conditions.

The derivative f ′′
−
(x; h) does not coincide with the classical ones even in the case of C2 functions in general in contrast to

f ′`
P
(x; h). For more details about this ‘‘complementary principle’’ in nonsmooth analysis, see [19]. We also recall that in [19]

the problem for what class of functions f : RN → R we can replace the Hadamard derivatives by the respective Dini
derivatives in Theorem 2 was presented.
Theorem 1 presented recently answered this question for `-stable at some point functions. Nevertheless, our first goal

of this paper is to show that Theorem 1 is a special case of Theorem 2.

Lemma 2. Let a function f : RN → R be `-stable at x ∈ RN and h ∈ SRN . Then

f `(x; h) = f ′
−
(x; h).

Proof. Since the inequality f `(x; h) ≥ f ′
−
(x; h) is evident, it suffices to show that

f `(x; h) ≤ f ′
−
(x; h).

Let {tn}+∞n=1 , {hn}
+∞

n=1 be such sequences that

lim
n→+∞

hn = h, lim
n→+∞

tn = 0,

tn > 0 for every n ∈ N, and

lim
n→+∞

f (x+ tnhn)− f (x)
tn

= f ′
−
(x; h).
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By [14, Proposition 1] f is Lipschitz near x and thus there exists K > 0 satisfying∣∣∣∣ f (x+ tnh)− f (x)tn
−
f (x+ tnhn)− f (x)

tn

∣∣∣∣ = ∣∣∣∣ f (x+ tnh)− f (x+ tnhn)tn

∣∣∣∣
≤ K‖h− hn‖,

for every sufficiently large n ∈ N. Then
f (x+ tnh)− f (x)

tn
≤
f (x+ tnhn)− f (x)

tn
+ K‖h− hn‖,

for every sufficiently large n ∈ N. Hence

f `(x; h) ≤ lim
n→+∞

(
f (x+ tnhn)− f (x)

tn
+ K‖h− hn‖

)
= f ′
−
(x; h). �

Lemma 3. Let a function f : RN → R be `-stable at x ∈ RN and let f `(x; h) = 0 for every h ∈ SRN . Then

f ′`
P
(x; h) = f ′′

−
(x; h),

for every h ∈ SRN .
Proof. We take an arbitrary h ∈ SRN and notice that f ′−(x; h) = 0 by Lemma 2. Since the inequality

f ′`
P
(x; h) ≥ f ′′

−
(x; h)

is evident, it suffices to show that f ′`
P
(x; h) ≤ f ′′

−
(x; h).

Let {tn}+∞n=1 , {hn}
+∞

n=1 be such sequences that

lim
n→+∞

hn = h, lim
n→+∞

tn = 0,

tn > 0 for every n ∈ N, and

lim
n→+∞

2
t2n
(f (x+ tnhn)− f (x)) = f ′′−(x; h).

Due to Lemma 1 and the property of `-stability, for every sufficiently large n ∈ Nwe can find ξn ∈ (x+tnh, x+tnhn) such that∣∣∣∣ 2t2n (f (x+ tnh)− f (x))− 2t2n (f (x+ tnhn)− f (x))
∣∣∣∣ = ∣∣∣∣ 2t2n (f (x+ tnh)− f (x+ tnhn))

∣∣∣∣
≤
2
t2n
f `(ξn; tn(h− hn))

=
2
tn
(f `(ξn; h− hn)− f `(x; h− hn))

≤
2
tn
K‖ξn − x‖‖h− hn‖. (1)

Since ξn ∈ (x+ tnh, x+ tnhn), for every n ∈ N there exists αn ∈ (0, 1) satisfying
2
tn
K ‖ξn − x‖‖h− hn‖ =

2
tn
Ktn‖αnh+ (1− αn)hn‖‖h− hn‖

= 2K‖αnh+ (1− αn)hn‖‖h− hn‖. (2)

Using formulas (1) and (2), we have that for every sufficiently large n ∈ N it holds
2
t2n
(f (x+ tnh)− f (x)) ≤

2
t2n
(f (x+ tnhn)− f (x))+ 2K‖αnh+ (1− αn)hn‖‖h− hn‖.

Hence

f ′`
P
(x; h) ≤ lim inf

n→+∞

2
t2n
(f (x+ tnh)− f (x))

≤ lim
n→+∞

(
2
t2n
(f (x+ tnhn)− f (x))+ 2K‖αnh+ (1− αn)hn‖‖h− hn‖

)
= f ′′
−
(x; h),

because limn→+∞ ‖h− hn‖ = 0. �
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Now, using Lemmas 2 and 3, Theorem 2 implies Theorem 1.
All the previously mentioned results were stated for the functions which are defined on finite-dimensional spaces. In

fact, there are not many unconstrained second-order sufficient optimality conditions established in terms of generalized
second-order derivatives for infinite dimension. So, maybe now it is time to generalize Theorem 1 with respect to infinite
dimension. In this way we will show that f ′`

P
(x; h) has a certain Fréchet property which is the main aim of our paper.

2. Fréchet approach

We will start this section with a definition concerning the Fréchet differentiability and we establish second-order
sufficient optimality condition in infinite dimension.

Definition 1. Let f : X → R be a function, and let x ∈ X . We say that f ′`
P
(x; ·) is Fréchet if for every ε > 0 there exists δ > 0

such that for every h ∈ SX and for every 0 < t < δ there holds
1. f ′`

P
(x; h)− 2

t2
(f (x+ th)− f (x)− tf `(x; h)) < ε, if f ′`

P
(x; h) < +∞.

2. 2
t2
(f (x+ th)− f (x)− tf `(x; h)) > 1

ε
, if f ′`

P
(x; h) = +∞.

It was shown e.g. in [22, page 484] that if f is C2 with (classical) second-order Fréchet derivative f ′′(x), then
f ′`
P
(x; h) = f ′′(x; h, h), ∀h ∈ X .

Therefore f ′`
P
(x; h) < +∞ for every h ∈ SX and condition 1 from Definition 1 is satisfied in this case.

Theorem 3. Let f : X → R be a function, x ∈ X, and let c > 0. If f `(x; h) = 0 for every h ∈ SX , f ′`P (x; ·) is Fréchet, and

f ′`
P
(x; h) ≥ c, ∀h ∈ SX ,

then x is an isolated minimum of second order for f .

Proof. We put ε = min{ c2 , 1}. There exists δ > 0 such that for every h ∈ SX and for every 0 < t < δ, we have

2
t2
(f (x+ th)− f (x)− tf `(x; h)) > ε.

Since f `(x; h) = 0 for every h ∈ SX , the previous inequality implies

f (x+ th)− f (x) >
ε

2
t2, ∀h ∈ SX ,∀0 < t < δ.

Thus, x is an isolated minimizer of second order for f . �

A series of the following lemmas yields to the properties of f ′`
P
(x; ·) for an `-stable function which are presented in

Proposition 1.

Lemma 4 ([23, Lemma 2.1]). Let f : X → R be Lipschitz near x ∈ X. Then the function h 7→ f `(x; h) is continuous on X.

Lemma 5 ([23, Lemma 2.2]). Let f : RN → R be Lipschitz near x ∈ RN . Then for every ε > 0 there exists δ > 0 such that for
every h ∈ SRN

0 < t < δ H⇒ f `(x; h)− ε <
f (x+ th)− f (x)

t
.

Lemma 6. Let f : X → R be a function which is continuous near x ∈ X and `-stable at x. If f `(x; h) = 0 for every h ∈ SX , then
the function g : X → R defined by

g(y) =


f (y)− f (x)
‖y− x‖

, if y 6= x,

0, if y = x,

is Lipschitz near x.

Proof. Step 1. We can suppose without any loss of generality that x = 0 and f (0) = 0. We have to prove that the following
function g : X → R,

g(y) =


f (y)
‖y‖

, if y 6= 0,

0, if y = 0,

is Lipschitz near 0.
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If f is `-stable at 0, there are K > 0 and δ > 0 such that

|f `(y; h)− f `(0; h)| ≤ K‖y‖, ∀y ∈ B(0, δ),∀h ∈ SX .

Now, let us choose arbitrary y, z ∈ B(0, δ) such that y 6= z.
Step 2. If ‖y‖ = ‖z‖, due to Lemma 1 there is ξ ∈ (z, y) such that

‖g(z)− g(y)‖ =
|f (z)− f (y)|
‖z‖

≤
|f `(ξ ; z − y)|
‖z‖

=
|f `(ξ ; z − y)− f `(0; z − y)|

‖z‖
≤
K‖ξ‖‖z − y‖
‖z‖

.

Since ‖ξ‖ < ‖z‖, the previous calculation implies

‖g(z)− g(y)‖ ≤ K‖z − y‖.

Step 3. In the next special case — y = 0, z 6= 0 — due to Lemma 1 we can find ξ ∈ (0, z) such that

‖g(z)− g(y)‖ =
|f (z)− f (y)|
‖z‖

≤
|f `(ξ ; z)− f `(0; z)|

‖z‖

≤
K‖ξ‖‖z‖
‖z‖

= K‖ξ‖ ≤ K‖z − y‖.

Step 4. Now, we suppose that there exists t > 0 with the property z = y+ ty. Using Lemma 1, we can find ξ1 ∈ (y, y+ ty)
and ξ2 ∈ (0, y) satisfying

‖g(z)− g(y)‖ =
∣∣∣∣ f (y+ ty)‖y+ ty‖

−
f (y)
‖y‖

∣∣∣∣ = ∣∣∣∣ f (y+ ty)− f (y)(1+ t)‖y‖(1+ t)

∣∣∣∣
=

1
1+ t

∣∣∣∣ f (y+ ty)− f (y)− t(f (y)− f (0))‖y‖

∣∣∣∣
≤

1
1+ t

∣∣∣∣ f (y+ ty)− f (y)‖y‖

∣∣∣∣+ t
1+ t

∣∣∣∣ f (y)− f (0)‖y‖

∣∣∣∣
≤

t
1+ t

(∣∣∣∣f ` (ξ1; y‖y‖
)
− f `

(
0;
y
‖y‖

)∣∣∣∣+ ∣∣∣∣f ` (ξ2; y‖y‖
)
− f `

(
0;
y
‖y‖

)∣∣∣∣)
≤

t
1+ t

K(‖ξ1‖ + ‖ξ2‖) ≤
Kt
1+ t

(‖y+ ty‖ + ‖y‖)

=
2+ t
1+ t

Kt‖y‖ ≤ 2Kt‖y‖ = 2K‖z − y‖.

Since the case y = z is clear and because of Step 3, the Lipschitzness of function g will be proved when we show that for
arbitrary y, z ∈ B(0, δ), y 6= 0, z 6= 0, y 6= z, we have

‖g(z)− g(y)‖ ≤ 5K‖z − y‖. (3)

We can suppose that ‖z‖ ≥ ‖y‖. We put

s = ‖z‖ − ‖y‖, z1 = z −
s
2
z
‖z‖

, y1 = y+
s
2
y
‖y‖

.

Then ‖z1‖ = ‖y1‖ and Steps 2 and 4 imply

‖g(z)− g(y)‖ ≤ ‖g(z)− g(z1)‖ + ‖g(z1)− g(y1)‖ + ‖g(y1)− g(y)‖
≤ 2K‖z − z1‖ + K‖z1 − y1‖ + 2K‖y1 − y‖. (4)

Using elementary geometry, we can obtain that

‖z − z1‖ ≤ ‖z − y‖, ‖z1 − y1‖ ≤ ‖z − y‖ and ‖y1 − y‖ ≤ ‖z − y‖.

Thus formula (4) implies the considered inequality (3). �

Proposition 1. Let f : X → R be a function which is continuous near x ∈ X and `-stable at x. If f `(x; h) = 0 for every h ∈ SX ,
the function h 7→ f ′`

P
(x; h) is continuous on X.

Moreover, if X = RN , then f ′`
P
(x; ·) is Fréchet.
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Fig. 1. Function ϕ.

Proof. Let us consider the function g : X → R such that

g(y) =


2(f (y)− f (x))
‖y− x‖

, for y 6= x,

0, for y = x.

Then

g`(x; h) = lim inf
t↓0

g(x+ th)− g(x)
t

= lim inf
t↓0

2 f (x+th)−f (x)
‖th‖ − 0

t

= lim inf
t↓0

f (x+ th)− f (x)− tf `(x; h)
t2/2

= f ′`
P
(x; h), (5)

for every h ∈ SX . Due to Lemmas 4 and 6, the function h 7→ f ′`
P
(x; h) is continuous on X .

The second part of theorem follows from formula (5) and Lemmas 5 and 6. �

Using Proposition 1 together with the fact that an `-stable function at some point defined on a finite-dimensional space
is continuous near this point [15], the compactness of SRN implies the following consequence.

Corollary 1. Let f : RN → R be a function which is `-stable at x ∈ RN . If f `(x; h) = 0 for every h ∈ SRN and

f ′`
P
(x; h) > 0, ∀h ∈ SRN ,

then there exists c > 0 satisfying

f ′`
P
(x; h) ≥ c, ∀h ∈ SRN .

Now, by Proposition 1 and Corollary 1, Theorem 1 is a special case of Theorem 3.
Finishing the paper, we show an example of nonconvex and noncontinuous function for which we can use Theorem 3.

We use some ideas from [14, Example 2]

Example 1. Consider a sequence an = 1/n, n = 1, 2, . . .. Then

lim
n→∞

an+1 + a2n
an+1 + an

=
1
2
> 0.

Let us define a function ϕ : [0,∞)→ R as follows (see Fig. 1 for the construction of ϕ).

ϕ(u) =


a1, if u > a1,
a2n − an+1
an − an+1

(u− an+1)+ an+1, if u ∈ (an+1, an],

0, if u = 0.

Next, we will define a function f : R→ R via the Riemann integral :

f (x) :=
∫
|x|

0
ϕ(u)du, x ∈ R.

Since ϕ is a piecewise affine function, the integral exists.



966 D. Bednařík, K. Pastor / Applied Mathematics Letters 22 (2009) 960–967

It is easy to show that f is differentiable at 0 with derivative equal to 0. Now we claim that f ′`
P
(0;±1) > 0. So it suffices

to show that

lim inf
t↓0

f (t)
t2/2

> 0.

Note that there is ε > 0 such that for each n ∈ N it holds:

an+1 + a2n
an+1 + an

≥ ε > 0.

Now consider t ∈ [aj+1, aj) for some j ∈ N and fix k ∈ N, k ≥ j + 2. Let Sn denote an area of a trapezoid over the interval
(an+1, an), n = j+ 1, . . . , k, bounded by a graph of ϕ. Let R denote an area of a trapezoid over the interval (aj+1, t) bounded
by the graph of ϕ. Now we can write down the formula for the integral:∫ t

ak
ϕ(u)du =

(
k∑

n=j+1

Sn

)
+ R.

Further S̃n stands for an area of a trapezoid over the interval (an+1, an), n = j + 1, . . . , k bounded by the linear function
y = x, and R̃ stands for an area of a trapezoid over the interval (aj+1, t) bounded also by the function y = x. Now it can be
shown that∫ t

ak
ϕ(u)du =

(
k∑

n=j+1

Sn

)
+ R ≥ ε

k∑
n=j+1

S̃n + εR̃

= ε

(
k∑

n=j+1

S̃n + R̃

)
.

Letting k→+∞, we will get:

f (t) =
∫ t

0
ϕ(u)dt ≥ ε

(
∞∑

n=j+1

S̃n + R̃

)

= ε
t2

2
.

Hence 2f (t)/t2 ≥ ε > 0, where t ∈ [aj+1, aj). Since this holds for almost any j ∈ N and for all t ∈ [aj+1, aj), we have for any
δ > 0 sufficiently small,

inf
{
2
f (t)
t2
: t ∈ (0, δ)

}
≥ ε > 0.

Hence lim inft↓0 2f (t)/t2 ≥ ε > 0.
Now, let us suppose that X is an arbitrary infinite-dimensional space, An is a nonempty subset of SX for every n ∈ N, and
+∞⋃
n=1

An = SX .

Let us define the function g : X → R by the following way.

g(th) = nf (t), ∀n ∈ N,∀h ∈ An,∀t ∈ R.

It follows immediately from the construction of f that

g`(0; h) = f `(0; 1) = 0, ∀h ∈ SX ,

and for every h ∈ An, n ∈ N, we have

g ′`
P
(0; h) ≥ nε ≥ ε.

Moreover, since g is defined by means of f in every direction, we have that g ′`
P
(0; h) is Fréchet. Therefore, using Theorem 3,

we obtain that 0 is an isolated minimizer for g .
We notice that it follows from the construction of ϕ and definition of f and g that the function g is not convex. Further,

considering arbitrary h1 ∈ A1, we have

g(th1) > 0, ∀t > 0,
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and

g(thn) = ng(th1),

for every hn ∈ An, n ∈ N. Thus, the function g is not continuous. ♣
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