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1. Introduction and preliminary facts

Second-order sufficient optimality conditions play a very important role in optimization theory, see e.g. [1-29] and the
references therein.

Various generalized second-order sufficient optimality conditions have been introduced since 80s of the last century.
In our previous articles [14,15], we established the generalized second-order sufficient optimality condition by means of a
certain second-order derivative of the Peano type for the so-called £-stable functions (see Theorem 1).

Let us give a short survey of notions concerning £-stability. Unless stated otherwise, we assume that X is a normed linear
space, Sy is the unit sphere of X and for x € X and § > 0, B(x, §) denotes the set {y € X; |ly — x|| < d}.

For a function f : X — R, x, h € X, we denote

fx+th) —fx)

74 . o .
f(x; h) = llr[l‘i(l)rlf ;

Lemma 1 ([14, Lemma 4]). Let f : X — R be a continuous function, and let a, b € X. Then there exist &, & € (a, b) such that

fY&ib—a) < f(b) —f(a) < f'(&; b —a).

We say that f : X — R is £-stable at x € X if there exist a neighbourhood U of x and K > 0 such that
Ffsh) — s m <Klly = x|, Vy €U, VheSy.
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We notice that the property to be an £-stable function at some point requires weaker assumptions than the property
to be a C!'! function near this point. Recall that f : X — Risa C"! function near x € X if it is differentiable on some
neighbourhood of x and its derivative f’(-) is Lipschitz here. C"! functions appear in, e.g., the augmented Lagrange method,
the penalty function method and the proximal point method. In [14, Example 6] an example of the function f : R — R
which is £-stable at 0 but which is not differentiable on any neighbourhood of 0 was given.

As was shown in [14,15], £-stability at x implies for a continuous function defined on a finite-dimensional space the
Lipschitzness on a neighbourhood of x and also the strict differentiability at x. The differentiability properties of the functions
which are £-stable at some point and which are defined on an arbitrary normed space were studied in [16].

Theorem 1 ([14,15]). Let a function f : RY — R be £-stable at x € RN. If f*(x; h) = 0 for every h € Sgw, and

ooy f@ ) = f) =t (s h)
j:P x; h) = lll‘}‘ll(l)nf /2 >

then x is an isolated minimizer of order 2 for f.

0, Vh e Sgn,

Recall that x € X is an isolated minimizer of order k (k € N) for a function f : X — R if there are neighbourhood U of x
and A > 0 satisfying f (y) > f(x) +Ally — x||* for every y € U. It is easy to verify that each isolated minimizer is a strict local
minimizer.

By means of Theorem 1 we generalized the previous results given in [ 17, Theorem 3.2], [2, Proposition 5.2], [ 18, Theorem
3.2], and [19, Theorem 2] as was shown in [14]. Theorem 1 also generalizes the unconstrained and scalar case of results
presented in [24, Theorem 5] and [25, Theorem 4.2] as it follows from the remarks given in [25].

In the paper [14] we also compared Theorem 1 with the one presented in [20, Theorem 2.9] by L.R. Hung and K.F. Ng.
We recall that it was shown in [20, page 388] that Theorem 1 of Chaney in [21] is a weak form of the result of L.R. Hung and
K.F. Ng mentioned before.

We would like to recall that Ginchev in [26] (see also [19]) stated the following sufficient and necessary optimality
condition for an isolated minimizer of second order using the derivatives of Hadamard type, i.e.

fLxh) = liminfw’
u—h,t]0 t
and
1 (o R TI f(x+tu)_f(x)_tfl()(,h)
Joeem = n t2/2 .

Theorem 2. Let f : RN — R be an arbitrary function, and let x € RN, If for each h € Sy one of the following two conditions
hold:

(i) fL(x;h) >0
(ii) f_ (x; h) = 0and f”(x; h) > 0,
then x is an isolated minimizer of order 2 for f. Conversely, each isolated minimizer of order 2 satisfies these sufficient conditions.
The derivative f”(x; h) does not coincide with the classical ones even in the case of C? functions in general in contrast to
f ;f (x; h). For more details about this “complementary principle” in nonsmooth analysis, see [19]. We also recall that in [19]

the problem for what class of functions f : RY — R we can replace the Hadamard derivatives by the respective Dini
derivatives in Theorem 2 was presented.

Theorem 1 presented recently answered this question for £-stable at some point functions. Nevertheless, our first goal
of this paper is to show that Theorem 1 is a special case of Theorem 2.

Lemma 2. Let a function f : RN — R be £-stable at x € RN and h € Spn. Then
FAx:h) = fL(x: ).

Proof. Since the inequality f(x; h) > f’ (x; h) is evident, it suffices to show that
Fo ) < fL(x h.

Let {t,}.-5, {ha}25 be such sequences that

n=1’

lim h, =h, lim ¢, =0,

n—+oo n——+00

t, > Oforeveryn € N, and
I F&x +tahn) — f (%)
im —————

n——+o00 tn

=f"(x; h).
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By [14, Proposition 1] f is Lipschitz near x and thus there exists K > 0 satisfying

fx4+th) —f)  fx+tah) —f() fx+ tyh) — f(x + tahn)
th ty tn

=< Kllh = hyll,
for every sufficiently large n € N. Then
fa+th) —fx) _ f&x+tahy) — &)
ty - ty
for every sufficiently large n € N. Hence
(f(x + tnhn) _f(x)

n

+ K|[h — hy],

fiesh) < lim

n——+00

+K||h—hn||>

=f'(x;h. O

Lemma 3. Let a function f : RN — R be ¢-stable at x € RN and let f*(x; h) = 0 for every h € Sgn. Then

fryxh) =f"(x hy,
forevery h € Sgn.

Proof. We take an arbitrary h € Spn and notice that f’ (x; h) = 0 by Lemma 2. Since the inequality

FrEe;h) = 7 (x h)
is evident, it suffices to show that f° ;f (x; h) < f"(x; h).
Let {tx},2, {hn};25 be such sequences that

lim h, = h, lim t, =0,
n—-+00 n—-+00

t, > O foreveryn € N, and

.2 "
ngToo E(f(x + tnhn) —f(X)) :f_(X; h)

Due to Lemma 1 and the property of £-stability, for every sufficiently large n € Nwe canfind &, € (x+t,h, x+t,h;) such that

2 2
2 &+ th) = f() = 5 (& + tahn) —f(x))’ =

2 4 .
= Ef (énvtn(h_hn))

2
=E%ﬂ@mh—h@—f%mh_m»

2
< —Kll& —x[lllh — hq]|.
tn

Since &, € (x + tyh, x + t,h,), for every n € N there exists «, € (0, 1) satisfying

2 2
K 60 — XI[lh — hy || = ?Ktn”anh + (1 —an)hllllh — hyll
n n

2K lanh + (1 — an)hy|l[Ih = hy |-

Using formulas (1) and (2), we have that for every sufficiently large n € N it holds

2 2
tj(f(x +th) — f(x) < tj(f(x + tahn) — f(%)) + 2K [lanh + (1 — ) hall | — hy .

n

Hence
L) < minf 2 (et t) £ 0)
<t (Z00 ) = 00) + 2Klash+ (1 = ol =
= fl(x: ),

because lim,_, [[h — hy|| =0. O

20+ th) — £+ )

(2)
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Now, using Lemmas 2 and 3, Theorem 2 implies Theorem 1.

All the previously mentioned results were stated for the functions which are defined on finite-dimensional spaces. In
fact, there are not many unconstrained second-order sufficient optimality conditions established in terms of generalized
second-order derivatives for infinite dimension. So, maybe now it is time to generalize Theorem 1 with respect to infinite
dimension. In this way we will show that f ;f (x; h) has a certain Fréchet property which is the main aim of our paper.

2. Fréchet approach

We will start this section with a definition concerning the Fréchet differentiability and we establish second-order
sufficient optimality condition in infinite dimension.

Definition 1. Letf : X — R be a function, and let x € X. We say thatﬂjZ (x; -) is Fréchet if for every ¢ > 0 there exists § > 0
such that for every h € Sx and for every 0 < t < § there holds
L freah) — Z(F(xe+th) — f(0 — tf () < e, iff) (6 h) < +o0.
2. Z(Fx+thy —feo —tf (s ) > 1, iffif (6 h) = +oc.
It was shown e.g. in [22, page 484] that if f is C? with (classical) second-order Fréchet derivative f”(x), then
fyh) =f"(x hh), VheX.

Therefore f’ l’f (x; h) < 400 for every h € Sy and condition 1 from Definition 1 is satisfied in this case.
Theorem 3. Let f : X — R be a function, x € X, and let ¢ > 0.If f¢(x; h) = 0 for every h € Sx,j:;f (x; -) is Fréchet, and

fYx;hy =c, Vhes,

then x is an isolated minimum of second order for f.

Proof. We pute = min{%, 1}. There exists § > 0 such that for every h € Sx and for every 0 < t < §, we have

2
tfz(f(er thy — f(x) — tf*(x; ) > &.

Since f¢(x; h) = 0 for every h € Sy, the previous inequality implies
Fx+thy —f(x) > gﬂ, Vhe S, V0 <t <.

Thus, x is an isolated minimizer of second order for f. O

A series of the following lemmas yields to the properties of f I’f (x; -) for an ¢-stable function which are presented in
Proposition 1.

Lemma 4 ([23, Lemma 2.1]). Let f : X — R be Lipschitz near x € X. Then the function h — f*(x; h) is continuous on X.

Lemma 5 ([23, Lemma 2.2]). Let f : RN — R be Lipschitz near x € RN. Then for every ¢ > 0 there exists § > 0 such that for
every h € Sgn
_fetth) —f

0<t<d=fl(x;h)—¢ .

Lemma 6. Let f : X — R be a function which is continuous near x € X and £-stable at x. If f*(x; h) = 0 for every h € Sy, then
the function g : X — R defined by

fO—fx .
s =1 xR

0, fy=x,
is Lipschitz near x.

Proof. Step 1. We can suppose without any loss of generality that x = 0 and f(0) = 0. We have to prove that the following
functiong : X — R,

o
T ey 20,
s =1y 7

0, ify =0,

is Lipschitz near 0.
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If f is £-stable at O, there are K > 0 and § > 0 such that
s ) = B < Kllyll, Vy € B0, ), Vh € Sx.

Now, let us choose arbitrary y, z € B(0, §) such thaty # z.
Step 2. If ||y|| = ||z||, due to Lemma 1 there is § € (z, y) such that

— ? . _
2@ — g = OISO _ &2y
Izl Izl

_ '€z —y) = f0;z2 —y)| _ Kligliiz =yl
Izl B lzll

Since ||€]| < ||z||, the previous calculation implies

lg@) —gWIl < Kllz—yl.
Step 3. In the next special case —y = 0,z # 0 — due to Lemma 1 we can find £ € (0, z) such that

_ LE: 7) — FLO:
2@ —g@)| = If(Z)”Z”f(V)I < If (S,Z)”Z”f (0; 2)|

< K&zl
Izl

= K]l = Kllz —yII.

Step 4. Now, we suppose that there exists t > 0 with the property z = y + ty. Using Lemma 1, we can find &; € (y,y + ty)
and & € (0, y) satisfying

[+ fO)| o+ —fe)A+D

le@ —sWl = o ~ ol = I +0)
o f(y+ty)—f(y)—t(f(y)—f(0))‘
1+t I
1 f(y+ty)—f(y)’ £ |f@) —FO)
< +
14+t Iyl 1+t Iyl

IA

e (7o)~ Ol b () = (o 5))

t Kt
= ——Kdl&l + 161D = —ly + vl + llylD

1+t 14t
= 2 eyl < 2Kelyll = 2Kz — |
T+t Y= Y= Il

Since the case y = z is clear and because of Step 3, the Lipschitzness of function g will be proved when we show that for
arbitrary y, z € B(0, 8),y # 0,z # 0,y # z, we have

lg@) —gWIl = 5Kllz —yll. (3)
We can suppose that ||z|| > ||y||. We put
s z sy
s=llzll = Iyl Zl=Z—5m’ yi=y+ 21l

Then ||z;]| = |ly1|| and Steps 2 and 4 imply

lg@) —gWIl < llg@) —g@)ll + lIgz) — gl + gy —gWl
< 2K||lz — z1]| + Kllz1 — y1ll + 2K|ly1 — yII. (4)

Using elementary geometry, we can obtain that
Iz =zl < llz =yl lzi =yill = llz—yll and [y1 =yl < llz—yl.

Thus formula (4) implies the considered inequality (3). O

Proposition 1. Let f : X — R be a function which is continuous near x € X and £-stable at x. If f¢(x; h) = 0 for every h € Sy,
the function h — }:;f (x; h) is continuous on X.

Moreover, if X = RV, then]:;f (x; +) is Fréchet.
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Fig. 1. Function ¢.

Proof. Let us consider the function g : X — R such that

200(y) = fX) fory # x
gy = ly—xI ’
0, fory = x.
Then

fxtth—fx)
2 [I¢h]l 0

t

gx+th) —gx)
t

o fx+th) — f(x) —tf(x; h)
= liminf
t10 t2/2

g%(x; h) = liminf = liminf
tl0 tl0

=[x h), (5)

for every h € Sy. Due to Lemmas 4 and 6, the function h — ﬁf (x; h) is continuous on X.
The second part of theorem follows from formula (5) and Lemmas 5 and 6. O

Using Proposition 1 together with the fact that an £-stable function at some point defined on a finite-dimensional space
is continuous near this point [15], the compactness of Spv implies the following consequence.

Corollary 1. Let f : RV — R be a function which is £-stable at x € RN. If f¢(x; h) = 0 for every h € Sgn and
[;f(x; h) >0, Vh e Spn,
then there exists ¢ > 0 satisfying
L’f(x; h) >c, Vh e Spn.
Now, by Proposition 1 and Corollary 1, Theorem 1 is a special case of Theorem 3.

Finishing the paper, we show an example of nonconvex and noncontinuous function for which we can use Theorem 3.
We use some ideas from [14, Example 2]

Example 1. Consider a sequence a, = 1/n,n =1, 2, ....Then

2
a a 1
lim Gny1 + 0y - — >0
=00 dpyq + Ay 2
Let us define a function ¢ : [0, 0c0) — R as follows (see Fig. 1 for the construction of ¢).
ai, ifu> a,
2 _

a, — n41

o) = (U — apy1) + Ang1,  ifu € (apgr, aql,
ap, — an+l

0, ifu=0.
Next, we will define a function f : R — R via the Riemann integral :

x|
f®x) ::/ o(u)du, x € R.
0

Since ¢ is a piecewise affine function, the integral exists.
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It is easy to show that f is differentiable at 0 with derivative equal to 0. Now we claim that f’ l’f (0; £1) > 0. So it suffices
to show that

Now consider t € [aj;1, g;) for some j € Nand fix k € N, k > j 4 2. Let S, denote an area of a trapezoid over the interval
(@nt+1, an),n =j+1,..., k, bounded by a graph of ¢. Let R denote an area of a trapezoid over the interval (aj;1, t) bounded
by the graph of ¢. Now we can write down the formula for the integral:

t k
/ ou)du = ( Z Sn> + R.
LS n=j+1

Further S, stands for an area of a trapezoid over the interval (a,+1, a;), n = j+ 1, ..., k bounded by the linear function

y = x, and R stands for an area of a trapezoid over the interval (aj41, t) bounded also by the function y = x. Now it can be
shown that

t k k
/(p(u)du (ZSH>+RZeZ§n+eR

k n=j+1 n=j+1

=e<nXk: §n+R>.

=jt+1

Letting k — +o0, we will get:

fo) = / p(uydt > e(Z §,,+iz>
0 n=j+1

£2
=€e—.
2

Hence 2f (t)/t?> > € > 0,wheret e [aj+1, a;). Since this holds for almost any j € Nand forall t € [a;11, a;), we have for any
8 > 0 sufficiently small,

inf{zft(?:te(o,(ﬁ)}ze>0.

Hence liminf; o 2f (t)/t*> > € > 0.
Now, let us suppose that X is an arbitrary infinite-dimensional space, A, is a nonempty subset of Sy for every n € N, and

+00

UAn = Sy.

n=1
Let us define the function g : X — R by the following way.
g(th)y =nf(t), VneN,VheA,VteR.
It follows immediately from the construction of f that
g (0;h) =f°(0;1) =0, Vhesy,
and for every h € A,, n € N, we have
g;f(o; h) > ne > ¢.
Moreover, since g is defined by means of f in every direction, we have that g;f (0; h) is Fréchet. Therefore, using Theorem 3,
we obtain that 0 is an isolated minimizer for g.

We notice that it follows from the construction of ¢ and definition of f and g that the function g is not convex. Further,
considering arbitrary h; € Ay, we have

g(thy) >0, Vt>O0,
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and

g(thy) = ng(thy),

for every h,, € Ay, n € N. Thus, the function g is not continuous. &
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