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A b s t r a c t - - I n  this paper, we define a validity measure for fuzzy criterion clustering which is a 
novel approach to fuzzy clustering that in addition to being non-distance-based, addresses the cluster 
validity problem. The model is then recast as a bilevel fuzzy criterion clustering problem. We propose 
an algorithm for this model that solves both the validity and clustering problems. Our approach is 
validated via some sample problems. © 1999 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Cluster analysis is an important  technique in pat tern  recognition. The basic problem of cluster 
analysis is to divide the K da ta  points into N clusters in an optimal  fashion with N a preassigned 

integer. Clustering via fuzzy set theory arises in two cases. One is to group fuzzy da ta  points 
into some fuzzy subsets. The other is to divide the crisp da ta  points into a specified number 
of subsets which need not be fuzzy, but  utilizing fuzzy set theoretic methods in developing the 

clusters. 
The  beginning of fuzzy cluster analysis can be traced to the early works of Bellman etal. [1] 

and Ruspini [2]. According to Yang [3], the studies of cluster analysis via fuzzy set theory can 

be divided into three categories: fuzzy clustering based on fuzzy relation, fuzzy clustering based 
on objective function, and the fuzzy generalized k-nearest neighbor rule. The  first group, fuzzy 
clustering based on fuzzy relation, was first proposed by Tamura  etal.  [4]. They  presented a 
multistep procedure by using the composition of fuzzy relations beginning with a reflexive and 
symmetr ic  relation. Fuzzy clustering based on objective function was proposed by Dunn [5] and 

generalized by Bezdek [6]. A variety of generalizations of this method has been developed [7]. 

The fuzzy general k-nearest neighbor rule is a type of nonparametr ic  classifiers. Let a set 

of n correctly classified samples be (xl ,  ~1), (x2, 02) , . . . ,  (xn, ~n), where O~ represents the labeling 
variables of N clusters and take values in the set { 1 , 2 , . . . , N } .  A new pair (x,O) is given, 
where only the measurement  x is observable by the statistician, and it is desired to est imate 
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by utilizing the information contained in the set of correctly classified points. We shall call 
x '  E { x l , x 2 , . . .  ,Xn} a nearest neighbor to x if [Ix' -x[[  = minl<~<n [[xi -x[ [ .  Then the point x 
is assigned to the cluster 01 of its nearest neighbor x ~. Most of the foregoing approaches are 
essentially heuristic. 

As a departure, Esogbue [8] introduced fuzzy dynamic programming to the area of fuzzy 
clustering with optimality as an objective. Application to the evaluation of fuzzy data generated 
in connection with nonpoint source water pollution control strategies was also reported. Recently, 
Liu and Esogbue [9] presented a concept of fuzzy prototype as opposed to a crisp prototype and 
a new kind of fuzzy clustering named fuzzy criterion clustering. Two forms of fuzzy criteria for 
cluster analysis are proposed. One is fuzzy average criterion which is to maximize the weighted 
sum of all degrees of membership of given data points, while the other is to maximize the minimum 
degree of membership of all given data points. Different from the approaches of traditional 
clustering methods, fuzzy criterion clustering will preassign the membership functions for all 
possible clusters to form a collection of fuzzy prototypes, and then select a number of clusters 
from all fuzzy prototypes by fuzzy criterion as the optimal fuzzy partition. 

In this paper, we define a validity measure for fuzzy criterion clustering and form a bilevel 
fuzzy criterion clustering problem which solves both the validity and clustering problems. We 
introduce a solution algorithm for the model and exercise it on a number of sample problems. 

2. F U Z Z Y  CRITERION C L U S T E R I N G  

Suppose that  we have K data  points, xk, k = 1 ,2 , . . . ,  K,  each xk is an m-dimensional vector, 
i.e., xk = (Xkl,Xk2,... ,xk,n). These data  points may be crisp or fuzzy. Our problem is to group 
the set of K (crisp or fuzzy) data  points into N clusters, where N is a predetermined integer. 

To do this, fuzzy criterion clustering demands a collection of fuzzy prototypes which will be 
given by the decision maker. Usually, a crisp prototype, for example, crisp circle, is (Xl - a) 2 + 
(X2 -- b) 2 = r 2. A point (x~,x~) is on that  circle if and only if (x~ - a) 2 + (x~ - b) 2 = r 2. A fuzzy 
prototype, for example, fuzzy circle, has a prototype center like (xl - a) 2 q- (x2 - b) 2 -- r 2 on 

! t which the degree of membership is defined as 1. For any other data  point (xx, x2) , it is on the 
fuzzy circle with degree of membership 

exp ( -  [(x~ - a) 2 + (z~. - b) 2 - r2]) .  

Certainly, we can define the membership function in other ways. Similarly, we can define fuzzy 
point, fuzzy line, fuzzy ellipse, fuzzy parabola, etc. Generally, let U = {u [ u C R m} be a 
collection of all fuzzy prototypes given by some decision maker(s). This collection may be finite 
or infinite (countable or not). Each prototype u is a fuzzy subset with membership function #. 

After constructing a collection of fuzzy prototypes, we need a clustering measure called fuzzy 
criterion which will maximize the weighted sum of all memberships of all given data points, that  
is, select N fuzzy prototypes {un, n = 1, 2 , . . . ,  N} from the collection U to maximize 

K 
max J(Ul, u 2 , . . . ,  u g )  = E Ak#l(Xk) V. . -  V #g(Xk), (1) 

k = l  

where Un E U are fuzzy prototypes with membership functions/zn, n -- 1 , 2 , . . . ,  N, respectively, 
Ak are weighted factors; typically, we can define Ak = 1/K.  

In practice, we can employ a vector y to represent the N fuzzy'prototypes u a , u 2 , . . . ,  UN. 
Thus, we can rewrite (1) as 

K 
max f ( y ,  N) = Z Ak#t (x~) V #2(Xk) V . . .  V #g(Xk), (2) 

Y 
k = l  

where f ( y ,  N) is called a clustering measure of y when the number of clusters is N. 
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Let ul ,  u2 , . . . ,  UN be the optimal N fuzzy prototypes optimizing the objective function J(ul ,  
u2 , . . . ,  UN) in model (1) or (2). Then {u l ,u2 , . . . ,  uN} is an optimal fuzzy criterion partition 
of the given data point set. Each un is a fuzzy cluster with membership function #n. A data 
point x is considered to be in un if 

~n(X) = max {#l(X), ~2(x), . . . ,  #N(X)} • (3) 

That is, a data point belongs to one and only one cluster. 

3. V A L I D I T Y  M E A S U R E S  

Given a number of clusters N, we can obtain N optimal clusters represented by parameter 
vector y by employing fuzzy criterion clustering. We denote the N clusters by ul,  u2 , . . . ,  UN. 
Then, the K data points can be classified into one and only one cluster of Ul, u2 , . . . ,  UN. 

Let the length of un be Ln, the number of data points belonging to un be Kn, n = 1, 2 , . . . ,  N ,  
respectively; then, we have K1 +/£2 + . . .  + KN = K.  The validity measure g(y, N) is defined by 

Ix", } g ( y , N ) = m i n  [.L,~ n = l , 2 , . . . , N  . (4) 

On the other hand, we know that cluster validity should eliminate spurious clusters and merge 
compatible clusters. According to the partition rule of fuzzy criterion clustering, any point can 
belong to one and only one cluster, so a cluster is considered spurious if the number of its data 
points is too small; meanwhile, the validity measure g(y, N) should also be too small. In addition, 
the fact that two clusters are compatible implies that there is at least one cluster such that it 
contains only a few number of data points, i.e., the validity measure g(y, N) is very small. Hence 
g(y, N) can be regarded as a validity measure. 

This validity measure presumes that we have an approximate estimation on the number of 
potential points of certain prototypes. Meanwhile, the length Ln will be represented by that 
number. This assumption is motivated by the theory and operation of the digital process of a 
camera. 

4. B I L E V E L  F U Z Z Y  C R I T E R I O N  C L U S T E R I N G  

We can design our clustering model as a bilevel programming problem which can be formulated 
as follows: 

mNaxg(y, N) 

where y solves (5) 

max f (y ,  g ) ,  
yllU 

here, N is a positive integer representing the number of clusters, y is a vector of parameters 
describing the selected N clusters. 

We note that the model (5) is a bilevel programming problem. However, in this case, since the 
validity measure g(y, N) is a decreasing function of N, the optimal solution is clearly N* = 1, 
always. Consequently, this form is not considered a good choice. 

To circumvent this difficulty, we reformulate it as follows: 

max N such that 

g(y, N) _ 

where y solves (6) 

max f (y ,  Y), 
yUN 
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where c~ is a p rede te rmined  level called the  critical number. T h e  de te rmina t ion  of the  critical 
number  is not  a difficult proposi t ion  because the  validi ty measure  will decrease qui te  rapidly  f rom 
correct  clustering to  a clustering with  a spurious cluster. Usually, the  val idi ty  measure  takes on 
a value of abou t  1 for correct  clustering if we have a correct  e s t imat ion  of all of Ln, and  a value 
of less t h a n  0.5 for a clustering with a t  least one spurious cluster. 

The  model  of  p rob lem (2) is solved via a genetic algori thm. T h e  general  form of bilevel fuzzy 
criterion cluster ing based on a genetic a lgor i thm is shown below. 

P r o c e d u r e  f o r  B i l e v e l  F u z z y  C r i t e r i o n  C l u s t e r i n g  
Set N = No as an underestimated number; 
F O R  number of clusters N D O  

Initialize the fuzzy prototypes 
(chromosomes); 

R E P E A T  

Update the fuzzy prototypes by genetic 
operators; 

Select the fuzzy prototypes by sampling 
mechanism; 

U N T I L ( t e r m i n a t i o n _ c o n d i t i o n )  

Report optimal N clusters YN,* " 
I F  g(Y~v, N )  < c~ T H E N  break; 
N = N + I ;  

E N D F O R  

Report the optimal solution (Y~v-t, N - 1); 

5. N U M E R I C A L  E X P E R I M E N T S  

5.1.  E x a m p l e  1 

In the  sequel, we present  the  results of  numerical  s tudies which exempl i fy  our approach  and 
are used to  implement  the  foregoing algori thm. Let  us consider a perfect  case in which we 
produce  63 d a t a  points  f rom circle (Xl - 5) 2 + (x2 - 2.5) 2 = 2.52, 50 d a t a  points  f rom circle 
(Xl - 2.5) 2 + (x2 - 7.5) 2 = 22, and  50 d a t a  points  f rom circle (xt  - 7.5) 2 + (x2 - 7.5) 2 = 22 on 

the  region 10 x 10. T h e  to ta l  numbe r  of d a t a  points  is 163. 
We define the  critical number  for val idi ty measure  as 0.5. We have developed a compute r  

p rog ram to  implement  the  a lgori thm. T h e  compu te r  p rog ram s ta r t s  a t  N = 1 and finds tha t  
the  op t imal  cluster  is (xl  - 5.004) 2 + (x2 - 2.500) 2 = 2.5042, meanwhile ,  the  clustering measure  

f ( y * ,  1) = 0.349 and the  val idi ty measure  g(y*,  1) = 2.591, which is g rea te r  t h a n  the  critical 
number  0.5. 

b 

So the  number  of  clusters  N is replaced by N + 1, i.e., N - 2. T h e  op t ima l  two clusters are 
(Xl -- 5.003) 2 + (X2 -- 2.500) 2 ---- 2.5042, and (Xl - 7.500) 2 + (x2 - 7.500) 2 = 2.0122. T h e  clustering 

measure  f ( y * ,  2) = 0.630 and  the  validi ty measure  g(y*,  2) = 1.542, which is also grea ter  t han  
the  critical number  0.5. 

The  n u m b e r  of  clusters N is replaced by N + 1 again, i.e., N = 3. T h e  following op t imal  three  
clusters are then  obtained:  

(Xl - 5.003) 2 + (x2 - 2.500) 2 = 2.5042, 

( X l  - -  2.495) 2 + (x2 - 7.499) 2 = 2.0142, (7) 

(xl  -- 7.493) 2 + (x2 -- 7.500) 2 = 2.0112. 

T h e  clustering measure  f ( y * ,  3) = 0.911 and the  val idi ty  measure  g(y*,  3) = 0.988, which shows 
t h a t  the  n u m b e r  of clusters N can be enlarged again. 
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However, when N = 4, the computer program reports that the optimal four clusters are 

(Q - 5.000)2 + (x2 - 2.500)2 = 2.5042, (q - 2.495)2 + ( zz - 7.501)2 = 2.0142, (zi - 7.501)2 + 
(z2 - 7.499)2 = 2.0142, (zi - 1.613)2 + (zz - 2.498)2 = 1.5432. Meanwhile, the clustering 
measure f(y*, 4) = 0.914 and the validity measure g(y*, 4) = 0.052, which is less than the critical 
number 0.5. We can then stop the procedure. We mention that the cluster (zi - 1.613)2 + (~2 - 
2.498)2 = 1.5432 is spurious. This case is shown in Figure 1. 

Figure 1. Caae of four clusters. 

Thus, the optimal number of clusters is three and the optimal three clusters are described 
by (7). The validity and cluster measures for different number of clusters are shown in Figure 2, 
in which the decreasing curve represents the validity measure and the increasing curve represents 
the clustering measure. 

Figure 2. Validity and clustering measures. 

6. DISCUSSION 

The problem of clustering appears in an array of different and important application areas. 
Various algorithms for its implementation abound. The efficiency of these algorithms also varies. 
Often, the particular problem of interest dictates the best one to employ. 

The contribution of fuzzy clustering is well documented in the literature. However, the benefits 
are usually minimized by the absence of reliable validity measures. In a previous effort, we 
presented a completely different approach to fuzzy clustering. The model combines a fuzzy 
criterion set approach which we developed for fuzzy dynamic programming with a fuzzified version 
of clustering based on crisp prototypes which we call fuzzy prototypes. 

In this paper, we extended that effort by first advancing a validity measure and then posing 
the resultant clustering problem as a bilevel fuzzy criterion clustering problem. We developed 
a computational algorithm based on genetic algorithms for this model. Using this algorithm, 
we showed, through some sample problems, that both the problem of cluster validity and the 
clustering problem can be conjunctively solved effectively via this approach. 
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