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SUMMARY

The extraordinary chemical diversity of the plant-
derived monoterpene indole alkaloids, which include
vinblastine, quinine, and strychnine, originates from
a single biosynthetic intermediate, strictosidine agly-
cone. Here we report for the first time the cloning of
a biosynthetic gene and characterization of the corre-
spondingenzymethat actsat this crucialbranchpoint.
This enzyme, an alcohol dehydrogenase homolog,
converts strictosidine aglycone to the heteroyo-
himbine-type alkaloid tetrahydroalstonine. We also
demonstrate how this enzyme, which uses a highly
reactive substrate, may interact with the upstream
enzyme of the pathway.

INTRODUCTION

The monoterpene indole alkaloids (MIAs) are a highly diverse

family of natural products that are produced in a wide variety

of medicinal plants. Over 3000 members of this natural product

class, which includes compounds such as quinine, vinblastine,

reserpine, and yohimbine, are derived from a common biosyn-

thetic intermediate, strictosidine aglycone (O’Connor and Mar-

esh, 2006). How plants transform strictosidine aglycone into

divergent structural classes has remained unresolved.

The recent availability of transcriptome and genome data has

dramatically accelerated the rate at which newplant biosynthetic

genes are discovered. All genes that lead to strictosidine agly-

cone have been recently cloned from the well-characterized

medicinal plant Catharanthus roseus, which produces over 100

MIAs (De Luca et al., 2014). However, gene products that act

on strictosidine aglycone have not been identified in any plant,

despite decades of effort. Attempts have been hampered in

part by the reactivity and instability of strictosidine aglycone. In

C. roseus, there are at least twomajor pathway branches derived

from strictosidine aglycone (O’Connor and Maresh, 2006). One

pathway is hypothesized to lead to the aspidosperma and the

iboga classes to yield the precursors of vinblastine, while the

other is expected to lead to alkaloids of the heteroyohimbine

type (Figure 1A). These alkaloids have diverse biological activ-

ities: vinblastine is used as an anticancer agent (Kaur et al.,
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2014) and the heteroyohimbines have a range of pharmacolog-

ical uses (Costa-Campos et al., 1998; Elisabetsky and Costa-

Campos, 2006). While it is unknown how many C. roseus en-

zymes use strictosidine aglycone as a substrate, there is clearly

more than one enzyme that acts at this crucial branchpoint.

The biochemical pathway leading from strictosidine aglycone

to the heteroyohimbine alkaloids has been previously investi-

gated using both crude plant extracts and biomimetic chemistry.

Reduction of strictosidine aglycone with NaBH4 or NaCNBH3

yielded the heteroyohimbines ajmalicine (raubasine), tetrahy-

droalstonine, and 19-epi-ajmalicine, which differ only in the

stereochemical configuration at carbons 15, 19, and 20, in

various ratios (Figure 1B) (Brown et al., 1977; Kan-Fan and

Husson, 1978, 1979, 1980). These three diastereomers were

again observed, also in varying relative amounts, when crude

C. roseus protein extracts were incubated with strictosidine

aglycone and NADPH, but not in the absence of NADPH (Rueffer

et al., 1979; Stoeckigt et al., 1976, 1977, 1983; Zenk, 1980).

Collectively, these observations indicate that the heteroyohim-

bines result directly from the reduction of strictosidine aglycone

and that an NADPH-dependent enzyme is implicated in this

process. However, no gene encoding such an enzyme has

been identified. Here we report the discovery of a reductase

that converts strictosidine aglycone to the heteroyohimbine

alkaloid tetrahydroalstonine.

RESULTS AND DISCUSSION

Given that heteroyohimbine biosynthesis likely requires reduc-

tion of an iminium present in strictosidine aglycone (Figure 1B),

we used a publically available RNA-seq database that we

recently generated (Gongora-Castillo et al., 2012) to search for

C. roseus candidates displaying homology to enzyme classes

known to reduce the carbonyl functional group. The alcohol de-

hydrogenases (ADHs), enzymes that reduce aldehydes and

ketones to alcohols, were chosen as the initial focus. As part of

a screen of ADHs that are upregulated in response to methyl

jasmonate (Gongora-Castillo et al., 2012), a hormone known to

upregulate alkaloid biosynthesis, we identified a candidate an-

notated as sinapyl alcohol dehydrogenase (Supplemental Infor-

mation). When heterologously expressed and purified from

E. coli (Figure S1), and assayed with strictosidine aglycone and

NADPH, this candidate yielded a product with a mass consistent

with a heteroyohimbine (m/z 353.1855), thereby implicating this
thors
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Figure 1. The Monoterpene Indole Alkaloids

(A) Representative monoterpene indole alkaloids derived from strictosidine and strictosidine aglycone found in Catharanthus roseus.

(B) Heteroyohimbine biosynthesis.
enzyme in the important structural branchpoint of the MIA

biosynthetic pathway (Figure 2A).

To determine the identity of the alkaloid product, the enzyme

was incubated with purified strictosidine (4.3mg) in the presence

of strictosidine glucosidase (SGD), which generated strictosidine

aglycone in situ to best mimic physiologically relevant condi-

tions. The major product (approximately 1 mg) was isolated

by preparative thin-layer chromatography and exhibited an 1H-

NMR and 13C-NMR spectrum matching an authentic standard

of tetrahydroalstonine (Figure 2B; Figure S2). Hemscheidt and

Zenk (1985) previously reported the isolation of an enzyme that

produced tetrahydroalstonine, although this protein was purified

only 35-fold from C. roseus cell cultures. Consistent with Hem-

scheidt and Zenk’s (1985) nomenclature, we named this enzyme

tetrahydroalstonine synthase (THAS). A minor enzymatic prod-

uct was produced in yields too low for NMR characterization,

but had amass and Rf value consistent with ajmalicine, a stereo-

isomer of tetrahydroalstonine (Figure S2). When applied to

normal phase liquid chromatography conditions, ajmalicine

and tetrahydroalstonine could be resolved, indicating that the

enzyme produces approximately 95% tetrahydroalstonine (Fig-

ure 3; Supplemental Information). We also silenced this gene in

C. roseus seedlings using virus-induced gene silencing (VIGS)

(Liscombe and O’Connor, 2011). LC-mass spectrometry (MS)

analysis of the silenced leaf tissue showed a statistically signifi-

cant decrease (approximately 50%) of a peak with a mass and

retention time consistent with a heteroyohimbine, suggesting

that this enzyme is involved in this biosynthetic pathway branch

in vivo (Figure S2). A 50% reduction in product levels upon
Chemist
silencing has been observed for other physiologically relevant

biosynthetic genes using the VIGS approach in both C. roseus

(Asada et al., 2013; Geu-Flores et al., 2012) and another

well-studied medicinal plant, opium poppy (Desgagne-Penix

and Facchini, 2012; Chen and Facchini, 2014). Therefore,

THAS is likely a major producer of tetrahydroalstonine in vivo,

although additional, undiscovered C. roseus enzymes could

also contribute to production of this compound. While we could

not resolve tetrahydroalstonine and its stereoisomer ajmalicine

in the silenced crude extracts, the levels of the ajmalicine-

derived alkaloid serpentine remain the same, suggesting that

silencing of THAS does not substantially affect ajmalicine levels

and consequently that THAS does not play a major role in the

biosynthesis of ajmalicine in planta.

Small-scale assays using LC-MS tomonitor product formation

indicated that NADPH was required for the reaction, although

NADH could also be utilized (Figure S1). Efforts to accurately

measure the steady state kinetic constants of this enzyme

were complicated because strictosidine aglycone reacts with

nucleophiles, opening the possibility that the substrate reacts

with components in the reaction or the enzyme. This reactivity

has already been associated with a plant defense mechanism

involving strictosidine aglycone-mediated aggregation of pro-

teins in C. roseus (Guirimand et al., 2010). Nevertheless, we ob-

tained estimatedKm and kcat values (Figure S1). To support these

kinetic data, we also performed isothermal titration calorimetry

(ITC) with THAS in the presence of NADPH and strictosidine

aglycone. Titration of THAS with NADPH indicated that the co-

substrate binds first with a Kd of 1.5 ± 0.1 mM (DH (cal/mol)
ry & Biology 22, 336–341, March 19, 2015 ª2015 The Authors 337



Figure 2. Activity Assays of THAS

Enzyme reactions were performed at 25�C for 30 min and assayed using a mass spectrometer in tandem with ultraperformance liquid chromatography.

(A) The total ion chromatogram for m/z 353 (red trace) and m/z 351 (purple trace) from 1 to 4 min is shown. Top trace: THAS (50 nM), SGD (6 nM), strictosidine

(200 mM), NADPH (200 mM); bottom trace: same reaction in the absence of THAS. The y axis represents normalized ion abundance as a percentage relative to

1.00e8 detected by selected ion monitoring at m/z 353 and 351.

(B) Portion of the 1H-NMR spectrum of the isolated enzymatic product compared with an authentic standard of tetrahydroalstonine.
2310 ± 123.2; DS (cal/mol/deg) 34.2 ± 0.3) (Figure S1). The agly-

cone substrate does not appear to bind in the absence of

NADPH, suggesting that the enzyme utilizes an ordered binding

mechanism in which NADPH binds first. However, titration of

the THAS-NADPH complex with strictosidine aglycone led to

formation of a precipitate when concentrations of strictosidine

aglycone exceeded 60 mM, preventing calculation of an accurate

Kd. Collectively, the ITC data for THAS are consistent with an

ordered Bi-Bi mechanism, a kinetic mechanism that has been

reported for similar ADHs such as cinnamyl alcohol dehydroge-

nase (Charlier and Plapp, 2000; Lee et al., 2013).

The amino acid sequence of THAS was subjected to a

BLAST alignment against the C. roseus transcriptome (Gon-

gora-Castillo et al., 2012), as well as the NCBI (Figure S3). The

closest characterized homologs of THAS are sinapyl alcohol

dehydrogenase (Populus tremuloides, 64% amino acid identity),

cinnamyl alcohol dehydrogenase (Populus tomentosa, 64%) and

8-hydroxygeraniol dehydrogenase (C. roseus, 63%), which are

zinc-containing medium chain ADHs (Bomati and Noel, 2005;

Lee et al., 2013).

Strictosidine aglycone can rearrange into several isomers (Fig-

ure 1B), and while it has been reported that the dominant isomer

is cathenamine (Gerasimenko et al., 2002; Stoeckigt et al., 1977),

equilibration in solution with other isomers occurs (Brown and

Leonard, 1979; Stoeckigt et al., 1983). Reduction of cathen-

amine or epi-cathenamine (Figure 1B) by a reductase would

require reduction of the carbon-carbon double bond of an
338 Chemistry & Biology 22, 336–341, March 19, 2015 ª2015 The Au
enamine; alternatively, Stoeckigt et al. (1983) and Zenk (1980)

suggested that the iminium isomer is reduced (Figure 1B).

THAS may catalyze the stereoselective formation of tetrahy-

droalstonine by selectively binding the correct isomer of the sub-

strate for reduction, thereby relying on the inherent propensity for

the enamine and imine to tautomerize under physiological condi-

tions. Given that three diastereomers, ajmalicine, tetrahydroal-

stonine, and 19-epi-ajmalicine, can be obtained from chemical

reduction of strictosidine aglycone, this is a chemically reason-

able proposal. An alternative hypothesis is that THAS catalyzes

enamine-imine tautomerization in addition to reduction. The

difficulties associated with obtaining accurate kinetic data

in this system, as well as the inherent reactivity of the strictosi-

dine aglycone, make answering these questions using enzy-

mology approaches challenging. However, identification and

comparison with enzymes that generate other heteroyohimbine

diastereomers will likely provide the basis for a more definitive

mechanism of product specificity.

Recent research has highlighted that plant secondary metab-

olite biosynthetic pathways often are compartmentalized in

different subcellular locations. While microscopy experiments

have demonstrated that most of the early steps of monoterpene

indole alkaloid biosynthesis inC. roseus take place in the cytosol

(Courdavault et al., 2014), the enzyme that synthesizes stricto-

sidine is located in the vacuole, and the enzyme SGD, which

deglycosylates strictosidine, contains a nuclear localization

signal and is in the nucleus, a highly unusual site for secondary
thors



Figure 4. THAS Is Targeted to the Nucleus via aMonopartite Nuclear

Localization Signal (NLS) and Interacts with SGD

(A) C. roseus cells were transiently cotransformed with plasmids expressing

either THAS-YFP (upper row), YFP-THAS (middle row), or the NLS deleted

version of THAS (lower row) and plasmids encoding the nuclear CFPmarker or

the nucleocytosolic CFP marker (second column). Colocalization of the fluo-

rescence signals appears in yellow when merging the two individual (green/

red) false color images (third column). Cell morphology is observed with dif-

ferential interference contrast (DIC) (fourth column).

(B) THAS and SGD interactions were analyzed by BiFC in C. roseus cells

transiently transformed by plasmids encoding fusions indicated on the top

(fusion with the split YFPN fragment) and on the left (fusion with split YFPC

fragment). bZIP63 was used as a positive BiFC control and to evaluate the

specificity of THAS and SGD interactions. The images are merges of the YFP

BiFC channel (magenta false color) with the DIC channel to show the nuclear

localization of the interactions. Bars, 10 mm.

Figure 3. LC-MSPerformed under Normal Phase Conditions (Hydro-

philic Interaction Liquid Chromatography) Showing Separation of

Ajamlicine (Retention Time of 0.49 min) and Tetrahydroalstonine

(THA, Retention Time 0.67 min)

THAS produces approximately 95% of the tetrahydroalstonine (THA) diaste-

reomer. The y axis represents normalized ion abundance as a percentage

detected by selected ion monitoring at m/z 353.
metabolite biosynthesis (Guirimand et al., 2010). Notably, a motif

resembling a class V nuclear localization sequence (Kosugi et al.,

2008) was observed in THAS (K214K215K216R217). Microscopy of

C. roseus cells transformed with YFP-tagged THAS confirmed

the nuclear location of this enzyme, while deletion of the KKKR

sequence disrupted the localization (Figure 4A; Figure S4). This

is one of the very few examples of secondary metabolism that

is localized to the nucleus (Saslowsky et al., 2005).

Given the reactivity of strictosidine aglycone (Guirimand et al.,

2010), metabolic channeling via a protein-protein interaction

between SGD and the enzyme immediately downstream may

be necessary to protect the substrate. Pull down experiments

between SGD and THAS gave partially positive but inconclusive

results (Figure S4). However, when we used bimolecular

fluorescence complementation (BiFC) in C. roseus cells, we

observed an interaction between SGD and THAS (Figure 4B).

While this interaction generated a diffuse nuclear fluorescent

signal when the C-terminal end of SGD was fused to the split-

YFP fragment, a sickle-shaped signal was observed when

both SGD and THAS were expressed with free C-terminal

ends (YFPN-SGD and YFPC-THAS). Such a signal was also

observed for SGD self-interactions (Guirimand et al., 2010)

and likely results from the formation of SGD complexes over

1.5 MDa (Luijendijk et al., 1998). Similar experiments with

SGD and an upstream MIA biosynthetic enzyme, loganic acid

methyl transferase, failed to show an interaction, highlighting

the specificity of this interaction (Figure S4). The fact that

THAS interacts with SGD provides further support for the phys-

iological relevance of THAS in planta. As strictosidine aglycone

is reactive and most likely toxic in vivo, it has been proposed

that this molecule is produced by the plant in response to attack

(Guirimand et al., 2010). The nuclear localization of THAS might

be an evolutionary mechanism designed to channel this mole-
Chemist
cule into a more stable product when no such defense is

required. Identification of additional nuclear-localized biosyn-

thetic enzymes in C. roseus and other heteroyohimbine
ry & Biology 22, 336–341, March 19, 2015 ª2015 The Authors 339



producing plants may provide more insight into the reasons for

this unusual localization pattern.

SIGNIFICANCE

Many of the monoterpene indole alkaloid structural classes

are generated at the SGD junction. Here we report the first

identification of a biosynthetic gene that acts directly down-

stream of SGD. The enzyme, an ADH homolog, generates a

heteroyohimbine alkaloid by reducing one of the isomers

of strictosidine aglycone. Unusually, this enzyme is located

in the nucleus and may interact with its upstream partner,

SGD. The discovery of the THAS gene represents the

completion of a major branch of monoterpene indole alka-

loid biosynthesis, which will now allow reconstruction of

heteroyohimbines and heteroyohimbine analogs in heterol-

ogous hosts. This discovery is a crucial first step in under-

standing how the structural diversity of MIAs is controlled.

EXPERIMENTAL PROCEDURES

The THAS gene (accession number KM524258) was cloned into pOPINF and

expressed in Rosetta 2 pLysS E. coli cells (Novagen) with induction of expres-

sionwith 0.1mM isopropyl b-D-1-thiogalactopyranoside. Cultures were grown

at 18�C for 16 hr, with shaking at 200 rpm. His-tagged THASwas purified using

a HisTrap FF 5-ml column (GE Healthcare). SGD expression and purification

was done as described for THAS using the expression system described pre-

viously by Yerkes et al. (2008). Purified THAS and SGDwere used in all assays.

Strictosidine was enzymatically synthesized from tryptamine and a crude

methanol extract of snowberries (Symphoricarpos albus) enriched in secolo-

ganin prepared as previously described (Geerlings et al., 2001). Strictosidine

aglycone was generated in situ prior to addition of THAS by incubation of

strictosidine and SGD in the appropriate solution for 10 min, at which time

strictosidine was completely converted to the aglycone.

Steady state kinetic analyses were performed with 50 nM THAS and 6 nM

SGD,50mMphosphatebuffer (pH7.5), 200mMNADPH, andan internal caffeine

standard (50 mM). All LC-MS measurements were performed on AQUITY ultra-

performance liquid chromatography with a Xevo TQ-S mass spectrometer.

For VIGS, a 330-bp fragment of THAS was cloned into the pTRV2u vector as

described (Geu-Flores et al., 2012). The resulting pTRV2u-THAS construct

was used to silence THAS in C. roseus seedlings essentially as described

(Liscombe and O’Connor, 2011).

The subcellular localization of THAS was studied by creating fluorescent

fusion proteins using the pSCA-cassette YFPi plasmid (Guirimand et al.,

2009, 2010). The capacity of interaction of THAS and SGD was characterized

by BiFC assays using THAS PCR product cloned via SpeI into the

pSPYCE(MR) plasmid (Waadt et al., 2008), which allows expression of THAS

fused to the carboxy-terminal extremity of the split YFPC fragment (YFPC-

THAS). The pSCA-SPYNE173-SGD and pSPYNE(R)173-SGD plasmids (Guir-

imand et al., 2010) were used to express SGD fused to the amino-terminal or

carboxy-terminal extremity of the split YFPN fragment (SGD-YFPN and YFPN-

SGD, respectively). THAS self-interactions were analyzed via additional clon-

ing of the THAS PCR product into the pSCA-SPYNE173 and pSCA-SPYCE(M)

plasmids (Guirimand et al., 2010) to express THAS-YFPN and THAS-YFPC,

respectively. Transient transformation of C. roseus cells by particle bombard-

ment and fluorescence imaging were performed following the procedures

previously described (Guirimand et al., 2009, 2010).

Complete experimental details are included in the Supplemental

Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.chembiol.2015.02.006.
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