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In this paper, we investigate practical stabilization of control systems with 
impulse effects. Utilizing piecewise continuous Lyapunov functions and impulsive 
differential inequalities, we prove some general comparison results through which 
we establish some sufficient conditions for practical stabilization of control systems 
with impulse effects. We also use two different measures, which gives a unified 
approach, and include many interesting special cases. ‘i: 1992 Academic Press, Inc. 

1. INTRODUCTION 

It is known that, in applications, even asymptotic stability by itself is not 
sufficient, since the domain of attraction may not be large enough to allow 
the desired derivation to cancel out. As a result, the system may be 
asymptotically stable in theory but actually unstable in practice [Ill. In the 
stabilization of nonlinear systems many interesting problems deal with 
bringing states close to certain sets rather than to the particular state x = 0. 
From a practical point of view, a concrete system is considered stable if the 
deviation of the motions from the equilibrium remain within certain 
bounds determined by the physical situation. The desired state of a system 
may be mathematically unstable, and yet the system may oscillate suf- 
ficiently near this state and its performance is acceptable. Many aircraft 
and missiles behave in this manner. To deal with such situations, the 
notion of practical stability is more useful [4]. 

To unify various stability concepts and to offer a general framework for 
study, the stability concepts defined in terms of two measures have been 
employed fruitfully [S, 61. This idea is also useful in the study of practical 
stability, since it can be used to describe various sets and to provide 
sufficient conditions for practical stability. 

Since many evolution processes are characterized by the fact that at 
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certain moments of time they experience an abrupt change of state, the 
study of dynamic systems with impulse effects has been assuming recently 
a greater importance [2]. We investigate, in this paper, practical stabiliza- 
tion of control systems with impulse effects. Utilizing piecewise continuous 
Lyapunov functions and impulsive differential inequalities, we prove some 
general comparison results through which we establish some sufficient 
conditions for practical stabilization of control systems with impulse effects. 
We also use two different measures, which gives a unified approach, and 
include many interesting special cases. 

2. PRELIMINARIES 

We consider the control system with impulse effects 

x’ =.f(t, -5 u), t#t,, k=l,2 ,..., 

Ax = ZJX), t= ik, k = 1, 2, . . . . 

x(t,+)=x, 

(2.1) 

under the following assumptions: 

AtI. (i) O< t, < tz< ... <t,-c ... and tk+cc as k-x; 

(ii) ,f: R + x R” x R”’ + R” is continuous in (tk ~, , tk] x R” x R” and 
for every (x, u) E R n x R”, k = 1, 2, . . . . 

lim (1. V.1’) - (I;- 1 ..r.to .f(t, I’, u) =.f(t:-, 9 x5 u) 

exists; 

(iii) Ik: R” + R” is continuous. 

We list the following classes of functions for convenience: 

K= [cJEC[R+, R + ] : a(s) is strictly increasing and a(O) = 01; 

PC = [a: R, + R is continuous in (tk , , tk] and ~(tc~~ ,) 

exists for k = 1, 2, . ..I. 

f=[h~C[R+xR”,R+]:infh(t,x)=O]; 

v,=[V:R+xR”+R,iscontinuousin(t,~~,,t,]xR”, 

locally Lipschitzian in x and for each x E R”, k = 1, 2, . . . . 

lim 
(r.y)-(I;,t) 

V(t, Y) = vet: 2 x) 

exists]. 
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Let V~v,.Thenfor(t,.u)~(t,~~,,t,)xR”, wedefine 

D’V(f,X)=n~~,Sup~[~(l+h,I+IZI(Lx,U))-l/(l.x)]. (2.2) 

Let E be the admissible control set. Then corresponding to U* E E, we 
denote by x(t) = X( t, t,, ,x0, u* ) any solution of (2.1) such that x( t(: ) = so. 
We next define the notions of practical stability in terms of two measures. 

DEFINITION 2.1. Let h,, h E I-. Then the control system (2.1) is said to 
be 

(i) (h,, h)-practically stable if, given (q, H) with 0 < u] < H, we have 
h,,(r,, x0) < q implies h(t, x(r)) < H, t 3 t, for some t, E R + ; 

(ii) (h,, h)-uniformly practically stable if (i) holds for every t, E R, ; 

(iii) (h,, h)-practically quasi stable if given (q, 8, T) > 0 and some 
toER,> we have h,(t,, x0) < q implies h(t, x(t)) < /?, t > t, + T; 

(iv) (h,, h)-uniformly practically quasistable if (iii) holds for all 
tour+; 

(v) (h,, h)-strongly practically stable if (i) and (iii) hold 
simultaneously; 

(vi) (II,, h)-strongly uniformly practically stable if (ii) and (iv) hold 
together; 

(vii) (h,, h)-practically unstable if (i) does not hold. 

A few choices of two measures (h,, h) help to emphasize the generality 
of the above definition. It is easy to see that Definition 2.1 reduces to 

1. the standard practical stability notion [4] if h(t, x I= 
M4 -r) = llxll; 

2. the practical stability of the prescribed motion x0(t) of (2.1 ) if 
h(r, xl = hJ(4 x) = II-X - x,(t)ll; 

3. the partial practical stability if h(t, x) = IlxIIJ, 1 d s <n, and 
MC .x) = 1141; 

4. the orbital practical stability of the orbit C if h(t, x) = &(I, x) = 
d(x, C), d being the distance function; 

5. the practical stability of an invariant set A is h(t, x) = h,( t, X) = 
4x9 A 1; 

6. the practical stability of conditionally invariant set B with respect 
to A, where A c B, if h(t, x) = d(x, B) and h,(t, x) = d(x, A). 

Several other combinations of choices are possible for (h,, h) in addition to 
those given above. 
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3. COMPARISON RESULTS 

Let us begin by stating a Lemma [3] for later use. 

LEMMA 3.1. Assume that 

ch 

(i) m,oEC[[7,7+4],R] a>O, and 

D ‘m(t) 6g(4 m(t), u(t)), t E [z, 7 + a], 

where ge C[ [T, z + a] x R2, R], g is nondecreasing in v for ea 
(t, W)E [z, ~+a] x R; 

(ii) y(t) is the maximal solution of the scalar differential equation 

w’ =g(t, w, w), W(T) = w* > 0, (3. 

existing on [T, T + a] and u(t) < y(t), t E [s, 7 + a]. 

Then m(t) < y(t), t E [t, 7 + a], provided m(z) < w*. 

1) 

We now consider the following comparison system with impulse effects 

w’=g(t, w, Iv), t+t,, 

wet: I= Jk(w(tk)), k = 1, 2, . . . . (3.2) 

w( to’ ) = wg 3 0, 

whereg:R,xRxR~Riscontinuousin(t,~,,t,]xRxRandforevery 
(w, z) E R x R, k = 1, 2, . . . . 

exists, and Jk: R -+ R is nondecreasing for k = 1, 2, . . . . 
We denote by y(t) = y(t, t,, wO) the maximal solution of (3.2) existing on 

[to, co). Then it is easy to see the following result. 

LEMMA 3.2. Zf y(t) = y( t, t,, wO) is the maximal solution of (3.2), then 
y(t) is the maximal solution of (3.1) on [tk ~, , tk] such that w( t: ,) = 
y(tkfel), k= 1, 2, . . . . 

Now we are ready to prove the following comparison result. 

THEOREM 3.1. Assume that 

(i) m, v E PC and 

D ‘m(t) dg(t, m(t), dt)), t+t,, 

M(tL 1 d Jk(m(tk)), k = 1, 2, . . . . 
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(ii) g( t, w, a) is nondecreasing in u for each (t, w) and y(t) is the 
maximal solution of (3.2) existing on [to, cc) such that u(t) <y(t), t z to. 

Then m(t) < y(t), t 3 t,, provided m(t,) < w,,. 

Proqfi It follows from Lemma 3.2 that y(t) is the maximal solution of 
(3.1) on [tk _ r, tk] such that w(t$- r) = ~(fk+- ,), for k = 1, 2, . . . . Then, for 
i E (to, t,], Lemma 3.1 implies that 

m(t) G r,(t, to, wo), (3.3) 

where yr( t, to, wo) is the maximal solution of the differential equation (3.1) 
existing on [to, t,] such that y,(t,‘, to, w,)= wo. Since J,(w) is non- 
decreasing, we get from assumption (i) and (3.3) that m(t:) < w,+ , where 
M’+ = J,(y,(t,, to, 1~~)). Using again Lemma 3.1, we obtain 1 

m(WM, 6, w:), tdt,, t,], 

where y2( t, t, , w: ) is the maximal solution of (3.1) existing on [t, , t2] such 
that y,(t:, t,, wT)=w:. We therefore have successively, for k = 1,2, . . . . 

m(t)<?k(t, tk-l, wkf-L), ttEtk-I, tkl, 

yk( t, t, ~ r, wk+_ r ) being the maximal solution of (3.1) existing on [tk _ r, tk] 
such that y,(t,‘_ , , t, ~, , r~:- ,) = w:. Thus if we define 

Yk(f> tk ~ 1 3 wk+_ 11, tE(tk-,, fkl, 

. 

then it is easy to see that w(t) is a solution of (3.2) and 

m(f) d 4th t> to. 

(3.4) 

Since y(t, to, wo) is the maximal solution of (3.2), we get immediately 

m(t) d y(t, to, wok t2 to, 

and the proof is complete. 

Let us collect several interesting and useful special cases of Theorem 3.1 
in the following corollary. 
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COROLLARY 3.1. [f in Theorem 3.1, Ice choose that 

(i) g(t, II’. IV)-0 und J,(W)= ~‘,fi,r ull k, then m(t)< ii’,,, t> t,; 

(ii) g( t, H’, 121) = 0 and Jk( vv) = d, IV, dk > 0 ,for all k, then 

m(t)<wO n d,, t3t0; 
f,, c II. < I 

(iii) g( t, M’, 1~) = -WV, c( > 0, Jk( M.) = d, bv, dk 3 0, ,for all k, then 

m(t)<w(, n dkexp[-a(t-t,)], t>t,,; 
10 < ,A < 1 

(iv) g(t,M’,II’)=j.‘(t)M., J,(w)=d,w, d,>Ofor ull k, LEC’[R+,R+] 
and i.‘(t) 3 0, then 

(v) g(t, M’, tv)= -wc+h, x, h>O, Jk(lt’)=dk(M’)=d~H’, d,aO,for all 
k, then 

If we drop the requirement, in Theorem 3.1, that g(t, IZ‘, c) is nondecreas- 
ing in II, then we have the following result. 

THEOREM 3.2. Assume thus 

(i) m,vEPCand 

D +m(f)dg(f, m(f), df)), f#fk, 

m(f,C) GJk(m(fk)h k = I, 2, . . . . 

(ii) y(t) is the maximal solution qf 

w’ = g( t, w, v(t)), f+fk, 

Lv(t:) = Jk(w(fk)), k = 1, 2, . . . 

w( t; ) = W’” < 0, 

(3.5) 

existing on [t,, x ). 

Then m(t) < y(t), t 3 t,, prooided m( to) < wO. 
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The proof of Theorem 3.2 is similar to that of Theorem 3.1; we omit the 
details here. 

4. STABILIZATION CRITERIA 

Having the comparison results developed in Section 3 at our disposal, we 
are ready to prove, in this section, some results which offer sufftcient 
conditions in a unified way for various practical stabilization criteria of 
the control system (2.1). We first consider the control set 

E={zzR”‘, U(t,u)<y(t),t>t,,}, (4.1) 

where U: R + x R”’ + R + is continuous on (t, , , tk J x R” and for every 
u E R”‘, k = 1, 2, . . . . 

lim 
(Lc)-(l;m,.u) 

U(t, u) = U(tC ) u) 

exists, and g(t) is the maximal solution of (3.2). 

THEOREM 4.1. Assume that 

(i) O<Y]<Haregiven; 
(ii) h,, he f and ho is ,finer than h, i.e. h(t, x) 6 &h,(t, x)), 4 E k 

whenever h,( t, x) < ye ; 

(iii) VE oO and there exist a, b E K such that 

b(h(t, -xl) d V(t, xl, !f h(t,x)<p, P>H, 
V(t, ~1 d 4h,(t, -xl), if ho(t,x)<v; 

(iv) for (t,~)E(t,~,,t,)xR”andu(t)EE. 

D + V(t, ~1 <g(t, V(t, xl, u(t, u(t))), if h(t, x) <P, 

where g( t, w, II) is nondecreasing in c‘ for each (t, 1~) E R + x R and 

vtr: 2 -x: ) d Jk( V(fk, x,)), if h(tk, x,)<p; 

(~1 d(v) < H and a(v) < b(H); 
(vi) h(t, x) < H implies h(t, x + Zk(x)) <p for all k. 
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Then the practical stability properties of (3.2) with respect to (a(r), h(H)) 
imply the corresponding (A,, h)-practical stability properties of (2.1) with 
respect to (q, H). 

Proqf: We only show (A,, h)-practical stability and (A,,, h)-strongly 
practical stability of (2.1). The remaining cases can be verified similarly. Let 
t,, 2 0 and t, E (t,, t, + ,] f or some j > 1. For convenience, we designate, 
t,= t,+i if t,#t,+,, ti=t,+,+,, if to=t,+,, i=1,2 ,.... Suppose that the 
comparison system (3.2) is practically stable with respect to (a(q), b(H)). 
Then we have that u’~ < a(q) implies 

M’(f, to, M.0) <h(H), r3 t,, (4.2 1 

where w(t, t,,, rcU) is any solution of (3.2) existing on [t,, c;c). Choose 
(to, -x0) E R, x R” such that h,(t,, x,,) < q. Then by assumptions (ii) and 
(v), we have 

Nfo, -xo) 6 d(ho(to, -d) 6 d(v) < H. 

We claim that 

46 -x(f)) < H, for all t 3 t,, (4.3) 

where -u(t) = ,~;(t, t,, x,,, u*) is any solution of (2.1) with A,( t,, -uo) < II. If 
this is not true, then there would exist a U” = u’(r) and a corresponding 
solution x(t) = x(t, to, -yo, u”) of (2.1) with h,(r,, -x0) < q and a t* > to such 
that tk<f*<tk+, for some k, satisfying 

H<h(t*, s(t*)) and /I( r, x(t)) < H, t,, < t < t,. (4.4) 

It then follows from assumption (vi) that we can find a t” such that 
t, < to d t* and 

H6h(t”,x(to))<p. (4.5) 

Setting m(r) = V(t, x(t)), to 6 t 6 to, and M‘~ = V(rO, x,), then assumption 
(iii) yields, by standard computation, the differential inequality 

Dfm(t) dg(4 m(t), U(4 u”(f))), to < t < to, t # t,, i = 1, 2, . . . . k, 

~(~,+)~J,(~(f,))~ i = 1, 2, . . . . k. (4.6) 

Since u” E E and g is nondecreasing in v, we have, from (4.6), that 

D+m(t) Gg(t, 4th y(t)), t, < t d to, t # t, 
(4.7 1 

dt,+ 1 G Ji(Nf,)), i = 1, 2, . . . . k. 
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It then follows from Theorem 3.1 that 

m(t) d Y(f), t, < t < to, (4.8) 

where y(t) = ;t(t, to, wo) is the maximal solution of (3.2). We are then led, 
from (4.2), (4.5), and (4.8) to a contradiction 

h(H) < V(tO, x(tO)) < y(tO) < b(H), (4.9) 

proving the control system (2.1) is (h,, /I)-practically stable. 
Let us suppose next that (3.2) is strongly practically stable with respect 

to (a(y), h(H)). This implies that (2.1) is (ho, h)-practically stable. Conse- 
quently, we have that h,(t,, x0) < P) implies 

4t, -4t)) < H, t> to, (4.10) 

x(t)=x(t, to, x0, u*) being any solution of (2.1) with ho(to, x0) <‘I. Let 
0 < fl< H and T > 0 be given. Since (3.2) is practically quasistable, given 
h(b) > 0 and T> 0, we have 

\co < a(q) implies w(t, to, ~1~) <h(b), tLt,+T. (4.11) 

Let (to, x0) be chosen such that h,(t,, x0) < ‘I. In view of (4.10), arguments 
leading to (4.9) yield 

V(t, x(t)) G Id& to, 4ho(to, -x0))), t>t,, 

from which and (4.11) it follows that 

b(h(t, x(t)) G vt, x(t)) < 48), tat,+T, 

which proves 

NC x(t)) < B, t3 to+ T. 

Hence the control system (2.1) is (ho, h)-strongly practically stable and the 
proof is complete. 

As an example, we consider the linear control system 

x’ = Ax + Bu + a(t), t+t,, 

Ax = C,x, t = t,, k = 1, 2, . . . . 

x(t,’ ) =x0, 

(4.12) 

where A, B are n x n and n x m matrices, C, is n x n matrix for each k, and 
G : R + -+ R” is piecewise continuous. 
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THEOREM 4.2. Assume that 

(i) O<q<H aregiven; 

(ii) p(A) = lim,,,,(l/h 
Ilcr(t)ll < 1 and /IC,// = cli jbr k = 1, 2, . . . . 

1 6 -a, z > 0, IIBII = h 

(iii) r-h=6>0 und qnT=, (1 +ck)+(I/d)C;=, n,Lk(l +c,)+ 
(l/S) < H. 

Then the linear control system (4.12) is practicull~ stable. 

Proof Take V(t, x) = llxll and h,(t, x) = h(t, x) = Ilx11. Then it is easy to 
compute that 

g( t, H’, w) = ( -x + h) K’ + 1 and Jk(W)=(l $C,)W. 

Thus to prove the theorem, it is enough to prove the comparison system 

hi-’ = - 6w + I, f # t, 

W(t:)=(l +c,)M’(tk), k = 1, 2, . . . . (4.13) 

w( t; ) = 12’(), 

is practically stable with respect to (q, H). It is easy to compute that the 
solutions of (4.13) are of the form 

w(t, t,, 12.~~) = w. n (1 + c,) e ‘(‘+ “I) 
,=I 

+f i fj (l+c,)e a’ G) 
,=I ,=, 

-f i fj (l+c,)e -ai 4 I) 
,=l r=, 

1 
+;(l -e “” “‘), fE(fk, fk+ 11. 

Thus it follows from assumption (iii) that w,, < q implies w(t, t,, w,,) < H, 
t3 t,. 

Hence, we get from Theorem 4.1 the corresponding practical stability of 
(4.12) and the proof is complete. 

There are many interesting special cases of Theorem 4.1, which we state 
below as a corollary. 

COROLLARY 4.1 (in Theorem 4.1 ). 1. The,functions g( t, ~1, w) = 0, Jk( w) = 
d, \v, d, 2 0 for cl11 k are admissible to yield (h,, h )-uniform pructical stability 
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qf (2.1) provided the infinite product n,Z= , dk converges. In particular, d, = 1 
for all k is admissible ; 

2. g(t, M’, w)=jw’(t) MI, J.Ec’[R+, R+], J,(w)=dnw, dk>O for all k 
are admissible to imply (h,, h)-practical stability of (2.1) provided 

/I(tk) + In dk d 2(thmmI) ,for all k. 

Let v E PC be given. We shall next consider the control set 

L’= {UE R”; U(t, u)dv(t), tat,,). 

THEOREM 4.3. Assume that 

(i) O<y<Haregiven; 

(ii) h,, hET andfor some 4~ K, h(t, x)<r$(h,(t, x)) {f h,(t, x)<n; 

(iii) VE v,, and a, b E K such that 

b(h(t, xl) < Yt, x), !f h(t,x)<p,y>K 

Vt, x) < a(hdt, .u)), if Mt, xl< Y; 

(iv) for (t,x)E(t,_,,t,)xR” anduEL& 

D+ Vt, x) dg(t, V(t, x), u(t, u(t))), if h(t, x) < p, 

and 

v(t, .x) d a(hdt, x)), if Mt, x) <v; 

(v) d(n)<H, a(n)<b(H), and h(t,x)<H implies h(t,x+Z,,(x))<p 
,for all k ; 

(vi) there exists a control function v E PC such that any) solution 
U’(t) = w(t, t,, w(j, v) of (3.5) satisfies 

w0 6 a(n) implies w(t) < b(H), t3 t,, (4.14) 

and 

w(t, + Z-1 d b(B), 0 < B < H, ,for some T= T(t,, w,)>O. (4.15) 

Then there exist admissible controls u = u(t) E Q such that the control system 
(2.1) is (h,, h)-practically stable and all solutions x(t) =x(t, to, x0, u) 
starting in Q, = {x E R”, h(t, x) < n, t 2 to} are transferred to the region 
Sz, = {XE R”: h(t, x) < fl} in a fide time T* = T*(t,, x0) = T(t,, Vit,,, x0)), 
that is, the qstem (2.1 ) is controllable. 
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Proof Let ho(t,, x0) d &h,(t,, x0) < q and U(t, u(t)) < v(t), t >, to. 
Then we have h(t,, x0) d &h,(t,, x0)) < H. We claim that for any solution 
x(t) =x(t, to, x0, u) of (2.1) we have 

h,( t,, x0) < rj implies h( t, x(t)) < H for t 2 t,,. (4.16) 

If this is false, there would exist a U” E Q and a corresponding solution 
x(r) = x(t, t,, x,,, uO) of (2.1) and a l* > t, such that t, < t* < tk +, for some 
k, satisfying 

H< h(r*, x(t*)) and h(t,x(t))-cH, t,)<t<ltk. (4.17) 

It then follows from assumption (v) that we can find a t” such that 
t, < to < t* and 

Hdh(P, x(tO))<p. (4.18) 

Setting m(t) = V( I, x(t)), for to < f < to, then assumption (iv) yields 

D ‘m(t) dg(h 4th u(t)), lff,, to6tdt”, 

41: 1 G J,(m(r,)), i = 1, 2, . . . . k, 

which implies by Theorem 3.2 the estimate 

m(t) G y(t, to, wo, u), t, < t < to, (4.19) 

provided m(r,) d MI*, where ~(1, t,, M:~, V) is the maximal solution of (3.5). 
Choosing u’,,= V(t,, x,), we then get from (iii), (4.17)-(4.19) the relation 

h(h(t, x(t)) < qt, x(t)) < y(t, to, MTo, t’), 0 f,dl61. (4.20) 

Now we are led to the following contradiction, in view of (4.14) and (4.18) 

h(H) 6 b(h(t”, .Y(fO))) <Y(fo, I,, M!o, u) < h(W, 

which proves the practical stability of (2.1). As a result, (4.20) holds for all 
t b I,, and therefore the assumption (4.15) yields 

h(t, + T*, x(r, + T*)) d B, 

where T* = T(t,, V(t,, x0)). The proof is hence complete. 

As an example, we let the comparison system (3.5) be of the following 
form 

w’=r5(t)w+/$t),t#t,, ii, 6 E PC, 

w(t;)=d,w(t,),dk)/O, k = 1, 2, . . . . (4.21) 

w(t,‘) = wo. 
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The solution of (4.21) is 

woexp(/,~,6(s)dLi)+exp(/:ii(i)ds) 

-j,:ew( -jl:a(o)d~)6(s)i:(s)ds, todt6r,, 

w(t) = 
jZ;-.,exp([,l ,ii(s)ds)+exp(jl: ,U(s)ds) 

(4.22) 

I 
-i:-, exp(-?:: , ii(a) da h(s) u(s) ds, > tk- ,cttttk> 

W’ :- , =dkdtk ,I, k = 2, 3, 

Let 0 <h(q) < h(H) and 0 <h(P) < h(H) be given. We choose u t: PC such 
that 

h(s) u(s) ds f Yk. 

If ii(t) d 0 for t 3 to and 

k=l k=I I=k 

then we have from (4.22) 

,v(t, t,, M’o) < h(H), t 6 t,, provided M’,, < h(q), 

i.e., (4.21) is practically stable. 
If in addition, there exists T> 0 such that t, + T= t, + , 

exp(~~~~,,i,id.~)~ri-,, i=1,2 ,..., k+l, 

and 

then 

which shows that the comparison system (4.21) is controllable. 
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